
Median finding

Vera Sacristán

Computational Geometry
Departament de Matemàtica Aplicada II

Facultat d’Informàtica de Barcelona
Universitat Politècnica de Catalunya

Definition 1 The median value of a finite set of real numbers X = {x1, . . . , xn}, is the number
m = xj ∈ X such that:

#{i | xi < m} < n
2

#{i | xi > m} ≤ n
2

The median value of such a set is its n
2 -th statistic:

Definition 2 The k-th statistic of a finite set of real numbers X = {x1, . . . , xn} is the number
m = xj ∈ X such that:

#{i | xi < m} < k

#{i | xi > m} ≤ n− k

Proposition 3 The k-th statistic and, particularly, the median value of a set of n real numbers
can be computed in O(n log n) time.

The most obvious solution consists in sorting the n numbers and then finding out the value through-
out the sorted numbers.

Proposition 4 The k-th statistic and, particularly, the median value of a set of n real numbers
can be computed in O(n) time.

The solution algorithm follows a prune-and-search strategy:

Algorithm 1 Select({x1, . . . , xn}, k)

1. If n is small, compute the statistic by sorting the set.
2. Else, choose one p ∈ {x1, . . . , xn} (how to choose it will be explained later on) and do:

2.1 Partition:
2.1.1 Test all xi and classify them as smaller, equal or bigger than p.

2.2 Recursion:
2.2.1 If the number of xi < p is < k and the number of xi > p is ≤ n− k, return p.
2.2.2 Else, if the number of xi < p is ≥ k, return Select({xi | xi < p}, k).
2.2.3 Else, return Select({xi | xi > p}, k − j), where j is the number of xi ≤ p.

The partition phase takes Θ(n) time. On the other hand, the recursion phase depends on the value
of the chosen p. A bad choice of p may lead to a T (n) = T (n − 1) + O(n) running time, and the
algorithm will have complexity T (n) = O(n2). Therefore, it is convenient to cleverly choose p. The
following algorithm (to be inserted in step 2 of Algorithm 1) is a convenient solution:

1

Algorithm 2 Choose p

1. Divide x1, . . . , xn into subsets of 5 elements.
2. Compute the median value mi of each subset x5i+1, x5i+2, x5i+3, x5i+4, x5i+5, by sorting.
3. Return Select({m1, . . . ,mr}, dr/2e), where r = bn/5c.

This way of computing p guarantees that at least 1/4 of all xi are smaller than p, and at least
another 1/4 of all xi are greater than p. As a consequence, the running time of Select is

T (n) = T
(n

5

)
+ T

(
3n

4

)
+ O(n) ≤ T

(
19n

20

)
+ O(n) = O(n),

where the factor T (n/5) corresponds to the recursive call Select({m1, . . . ,mr}, dr/2e), the factor
T (3n/4) corresponds to the recursive call Select({xi | xi < p}, k) or Select({xi | xi > p}, k− j),
and the factor O(n) is the running time of the partition, the division into subsets of five elements,
and the computation of the median value, mi, of the subsets.

Notice that the choice of making subsets of 5 elements is intended to guarantee that 3
4 + 1

5 = 19
20 < 1.

Therefore, any other number grater than 5 could have been suitable.

Proposition 5 The k-th statistic and, particularly, the median value of a set of n real numbers
can be computed in O(n) expected time.

The algorithm is the same as Algorithm 1, but now p is randomly chosen:

Algorithm 3 Choose p

1. Randomly choose p among x1, . . . , xn.

This way of choosing p makes the algorithm run in O(n) expected time, let us see why. First notice
that if p is randomly chosen, the probability of p matching each xi is 1

n . When p = xi, the recursion
step of the algorithm runs in T (i−1) or T (n− i) time, i.e., in T (max(i−1, n− i)) time. Therefore,
the algorithm running time is:

T (n) ≤ an +
1

n

n∑
i=1

T (max(i− 1, n− i))

= an +
1

n

n−1∑
i=0

T (max(i, n− i− 1))

= an +
2

n

n−1∑
i=n/2

T (i)

∗
≤ cn

= O(n)

The factor an corresponds to the partition step running time. The inequality marked with an
asterisk can be proved by induction. The base case is T (1) ≤ c, which is true if we choose c ≥ a.
The induction step is proved as follows. Assume that T (i) ≤ ci for all i < n, then prove that

2

T (n) ≤ cn:

T (n) ≤ an +
2

n

n−1∑
i=n/2

T (i)

≤ an +
2c

n

n−1∑
i=n/2

i

= an +
2c

n

(n
2

+ (n− 1)
) 1

2

(
(n− 1)− (

n

2
− 1)

)
= an +

2c

n

(
3n

2
− 1

)
1

2

n

2

= an +
3

4
cn− c

2

=

(
3

4
+

a

c

)
cn− c

2

≤
(

3

4
+

a

c

)
cn

∗
≤ cn.

In order for the inequality marked with an asterisk to be true, c must be chosen such that 3
4 + a

c ≤ 1,
i.e., c ≥ 4a.

3

