Median finding

Vera Sacristan

Computational Geometry
Departament de Matematica Aplicada II
Facultat d’Informatica de Barcelona
Universitat Politecnica de Catalunya

Definition 1 The median value of a finite set of real numbers X = {x1,...,x,}, is the number
m = x; € X such that:

#{i|z; <m} <
#{i|z; >m} <

IS NS

The median value of such a set is its %—th statistic:

Definition 2 The k-th statistic of a finite set of real numbers X = {x1,...,z,} is the number
m =x; € X such that:

#{i|x; <m} <k
#{i|zi>m} <n—k

Proposition 3 The k-th statistic and, particularly, the median value of a set of n real numbers
can be computed in O(nlogn) time.

The most obvious solution consists in sorting the n numbers and then finding out the value through-
out the sorted numbers.

Proposition 4 The k-th statistic and, particularly, the median value of a set of n real numbers
can be computed in O(n) time.

The solution algorithm follows a prune-and-search strategy:

Algorithm 1 SELECT({z1,...,2n}, k)
1. If n is small, compute the statistic by sorting the set.
2. Else, choose one p € {z1,...,2,} (how to choose it will be explained later on) and do:
2.1 Partition:
2.1.1 Test all z; and classify them as smaller, equal or bigger than p.
2.2 Recursion:
2.2.1 If the number of x; < p is < k and the number of z; > p is < n — k, return p.
2.2.2 Else, if the number of z; < p is > k, return SELECT({z; | z; < p}, k).
2.2.3 Else, return SELECT({z; | x; > p}, k — j), where j is the number of z; < p.

The partition phase takes ©(n) time. On the other hand, the recursion phase depends on the value
of the chosen p. A bad choice of p may lead to a T'(n) = T'(n — 1) + O(n) running time, and the
algorithm will have complexity T'(n) = O(n?). Therefore, it is convenient to cleverly choose p. The
following algorithm (to be inserted in step 2 of Algorithm 1) is a convenient solution:

Algorithm 2 CHOOSE p
1. Divide z1,...,x, into subsets of 5 elements.
2. Compute the median value m; of each subset x5;4+1, T5i+2, T5i+3, T5i+4, T5i+5, by sorting.
3. Return SELECT({m1,...,m.}, [r/2]), where r = [n/5].

This way of computing p guarantees that at least 1/4 of all x; are smaller than p, and at least
another 1/4 of all z; are greater than p. As a consequence, the running time of SELECT is

) =7 (3)+T (31) LOm) < T <129:> +0(n) = O(n),

where the factor T'(n/5) corresponds to the recursive call SELECT({my,...,m,}, [r/2]), the factor
T'(3n/4) corresponds to the recursive call SELECT({z; | x; < p}, k) or SELECT({z; | z; > p}, k — j),
and the factor O(n) is the running time of the partition, the division into subsets of five elements,
and the computation of the median value, m;, of the subsets.

Notice that the choice of making subsets of 5 elements is intended to guarantee that %4—% = % < 1.
Therefore, any other number grater than 5 could have been suitable.

Proposition 5 The k-th statistic and, particularly, the median value of a set of n real numbers
can be computed in O(n) expected time.

The algorithm is the same as Algorithm 1, but now p is randomly chosen:

Algorithm 3 CHOOSE p
1. Randomly choose p among z1,...,Zy.

This way of choosing p makes the algorithm run in O(n) expected time, let us see why. First notice
that if p is randomly chosen, the probability of p matching each z; is % When p = z;, the recursion
step of the algorithm runs in 7'(i — 1) or T'(n —14) time, i.e., in T'(max(i — 1,n —4)) time. Therefore,
the algorithm running time is:

T(n) < an+ % ZT(max(z’ —1,n—1))
i=1

n—1

1
= an+ — g T(max(i,n —i— 1))
n
=0

n—1
2
_ d T
an + - E (1)

i=n/2
*
< cn
= O(n)
The factor an corresponds to the partition step running time. The inequality marked with an

asterisk can be proved by induction. The base case is T'(1) < ¢, which is true if we choose ¢ > a.
The induction step is proved as follows. Assume that T'(i) < ci for all i < n, then prove that

A
=)
S
+

SR

IN
AN
oo
+
Qe
~——
Q
S

*k
< cn.

In order for the inequality marked with an asterisk to be true, ¢ must be chosen such that %—&—% <1,
i.e., ¢ > 4a.

