Median finding

Vera Sacristán

Computational Geometry
Departament de Matemàtica Aplicada II
Facultat d'Informàtica de Barcelona
Universitat Politècnica de Catalunya

Definition 1 The median value of a finite set of real numbers $X = \{x_1, \ldots, x_n\}$, is the number $m = x_j \in X$ such that:

$$\#\{i \mid x_i < m\} < \frac{n}{2} \#\{i \mid x_i > m\} \le \frac{n}{2}$$

The median value of such a set is its $\frac{n}{2}$ -th statistic:

Definition 2 The k-th statistic of a finite set of real numbers $X = \{x_1, \ldots, x_n\}$ is the number $m = x_j \in X$ such that:

$$\#\{i \mid x_i < m\} < k$$

 $\#\{i \mid x_i > m\} \le n - k$

Proposition 3 The k-th statistic and, particularly, the median value of a set of n real numbers can be computed in $O(n \log n)$ time.

The most obvious solution consists in sorting the n numbers and then finding out the value throughout the sorted numbers.

Proposition 4 The k-th statistic and, particularly, the median value of a set of n real numbers can be computed in O(n) time.

The solution algorithm follows a prune-and-search strategy:

Algorithm 1 SELECT($\{x_1,\ldots,x_n\},k$)

- 1. If n is small, compute the statistic by sorting the set.
- 2. Else, choose one $p \in \{x_1, \ldots, x_n\}$ (how to choose it will be explained later on) and do:
 - 2.1 Partition:
 - 2.1.1 Test all x_i and classify them as smaller, equal or bigger than p.
 - 2.2 Recursion:
 - 2.2.1 If the number of $x_i < p$ is < k and the number of $x_i > p$ is $\le n k$, return p.
 - 2.2.2 Else, if the number of $x_i < p$ is $\geq k$, return Select($\{x_i \mid x_i < p\}, k$).
 - 2.2.3 Else, return Select($\{x_i \mid x_i > p\}, k j$), where j is the number of $x_i \leq p$.

The partition phase takes $\Theta(n)$ time. On the other hand, the recursion phase depends on the value of the chosen p. A bad choice of p may lead to a T(n) = T(n-1) + O(n) running time, and the algorithm will have complexity $T(n) = O(n^2)$. Therefore, it is convenient to cleverly choose p. The following algorithm (to be inserted in step 2 of Algorithm 1) is a convenient solution:

$\overline{\textbf{Algorithm}}$ 2 Choose p

- 1. Divide x_1, \ldots, x_n into subsets of 5 elements.
- 2. Compute the median value m_i of each subset $x_{5i+1}, x_{5i+2}, x_{5i+3}, x_{5i+4}, x_{5i+5}$, by sorting.
- 3. Return Select($\{m_1, ..., m_r\}, \lceil r/2 \rceil$), where $r = \lfloor n/5 \rfloor$.

This way of computing p guarantees that at least 1/4 of all x_i are smaller than p, and at least another 1/4 of all x_i are greater than p. As a consequence, the running time of SELECT is

$$T(n) = T\left(\frac{n}{5}\right) + T\left(\frac{3n}{4}\right) + O(n) \le T\left(\frac{19n}{20}\right) + O(n) = O(n),$$

where the factor T(n/5) corresponds to the recursive call Select($\{m_1, \ldots, m_r\}$, $\lceil r/2 \rceil$), the factor T(3n/4) corresponds to the recursive call Select($\{x_i \mid x_i < p\}, k$) or Select($\{x_i \mid x_i > p\}, k - j$), and the factor O(n) is the running time of the partition, the division into subsets of five elements, and the computation of the median value, m_i , of the subsets.

Notice that the choice of making subsets of 5 elements is intended to guarantee that $\frac{3}{4} + \frac{1}{5} = \frac{19}{20} < 1$. Therefore, any other number grater than 5 could have been suitable.

Proposition 5 The k-th statistic and, particularly, the median value of a set of n real numbers can be computed in O(n) expected time.

The algorithm is the same as Algorithm 1, but now p is randomly chosen:

Algorithm 3 Choose p

1. Randomly choose p among x_1, \ldots, x_n .

This way of choosing p makes the algorithm run in O(n) expected time, let us see why. First notice that if p is randomly chosen, the probability of p matching each x_i is $\frac{1}{n}$. When $p = x_i$, the recursion step of the algorithm runs in T(i-1) or T(n-i) time, i.e., in $T(\max(i-1,n-i))$ time. Therefore, the algorithm running time is:

$$T(n) \leq an + \frac{1}{n} \sum_{i=1}^{n} T(\max(i-1, n-i))$$

$$= an + \frac{1}{n} \sum_{i=0}^{n-1} T(\max(i, n-i-1))$$

$$= an + \frac{2}{n} \sum_{i=n/2}^{n-1} T(i)$$

$$\stackrel{*}{\leq} cn$$

$$= O(n)$$

The factor an corresponds to the partition step running time. The inequality marked with an asterisk can be proved by induction. The base case is $T(1) \leq c$, which is true if we choose $c \geq a$. The induction step is proved as follows. Assume that $T(i) \leq ci$ for all i < n, then prove that

 $T(n) \le cn$:

$$T(n) \leq an + \frac{2}{n} \sum_{i=n/2}^{n-1} T(i)$$

$$\leq an + \frac{2c}{n} \sum_{i=n/2}^{n-1} i$$

$$= an + \frac{2c}{n} \left(\frac{n}{2} + (n-1)\right) \frac{1}{2} \left((n-1) - (\frac{n}{2} - 1)\right)$$

$$= an + \frac{2c}{n} \left(\frac{3n}{2} - 1\right) \frac{1}{2} \frac{n}{2}$$

$$= an + \frac{3}{4}cn - \frac{c}{2}$$

$$= \left(\frac{3}{4} + \frac{a}{c}\right)cn - \frac{c}{2}$$

$$\leq \left(\frac{3}{4} + \frac{a}{c}\right)cn$$

$$\stackrel{*}{\leq} cn.$$

In order for the inequality marked with an asterisk to be true, c must be chosen such that $\frac{3}{4} + \frac{a}{c} \le 1$, i.e., $c \ge 4a$.