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CONVEX HULLS IN ARBITRARY DIMENSION

Let S be a set of points in E¢, a real Euclidean space of dimension d.
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Let S be a set of points in E¢, a real Euclidean space of dimension d.

k

A linear combination of points in S is Z)\ip,-, where k € N, \; € R, p; € S.
i=1
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Let S be a set of points in E¢, a real Euclidean space of dimension d.

k
A linear combination of points in S is Z)\ip,-, where k € N, \; € R, p; € S.
i=1
k
An affine combination of points in S is a linear combination such that Z A= 1.
i=1

e The set of all affine combinations of S is called affine hull of S.
e The affine hull of two points p and ¢ is the line through them.
e k + 1 points are called affinely independent if their affine hull is an affine space of dimension &.
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Let S be a set of points in E¢, a real Euclidean space of dimension d.

k
A linear combination of points in S is Z)\ip,-, where k € N, \; € R, p; € S.
i=1
k
An affine combination of points in S is a linear combination such that Z A= 1.
i=1

e The set of all affine combinations of S is called affine hull of S.
e The affine hull of two points p and ¢ is the line through them.
e k + 1 points are called affinely independent if their affine hull is an affine space of dimension &.

A convex combination of points in S is an affine combination such that \; > 0 V1.

e The set of all convex combinations of .S is called convex hull of S.

e The convex hull of two affinely independent points p and ¢ is the line segment pq.

e The convex hull of three affinely independent points p, ¢ and 7 is the triangle pgr.

e The convex hull of four affinely independent points p, ¢, r and s is the tetrahedron pgrs.
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CONVEX HULLS IN ARBITRARY DIMENSION

Let S be a set of points in E¢, a real Euclidean space of dimension d.

k
A linear combination of points in S is Z)\ipi, where k € N, \; € R, p; € S.
i=1
k
An affine combination of points in S is a linear combination such that Z A= 1.
i=1

e The set of all affine combinations of S is called affine hull of S.
e The affine hull of two points p and ¢ is the line through them.
e k + 1 points are called affinely independent if their affine hull is an affine space of dimension &.

A convex combination of points in S is an affine combination such that \; > 0 V1.

e The set of all convex combinations of .S is called convex hull of S.

e The convex hull of two affinely independent points p and ¢ is the line segment pq.

e The convex hull of three affinely independent points p, ¢ and 7 is the triangle pgr.

e The convex hull of four affinely independent points p, ¢, r and s is the tetrahedron pgrs.

A set is called convex if it is stable under convex combinations.
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Proposition: A set S is convex iff it contains segment pq for all p,q € S.

Proof: If S is convex, it is stable under convex combinations and, in particular, it contains all segments
with endpoints in .S. The reciprocal is proved by induction on the number of points k of the convex
combination. For £ = 2, we have the hypothesis. Consider now a convex combination with k£ 4+ 1 points.

We have
k i k \

AiDi = A AiDi = A 1—A p, €S,
z’z:o: D 0p0+; D oo + ( O)ZZ:;)\OP
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Proposition: A set S is convex iff it contains segment pq for all p,q € S.

Proof: If S is convex, it is stable under convex combinations and, in particular, it contains all segments
with endpoints in .S. The reciprocal is proved by induction on the number of points k of the convex
combination. For £ = 2, we have the hypothesis. Consider now a convex combination with k£ 4+ 1 points.

We have
k i k \

AiDi = A AiDi = A 1—A p, €S,
ZZ:O: D 0p0+; D oo + ( O)ZZ:;)\OP

Corollary: The intersection of convex sets is convex.
Corollary: The convex hull ch(S) of a set .S is the smallest convex set containing S.

Corollary: The convex hull ch(S) of a set S is the intersection of all the convex sets containing S.
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Proposition: A set S is convex iff it contains segment pq for all p,q € S.

Proof: If S is convex, it is stable under convex combinations and, in particular, it contains all segments
with endpoints in .S. The reciprocal is proved by induction on the number of points k of the convex
combination. For £ = 2, we have the hypothesis. Consider now a convex combination with k£ 4+ 1 points.

We have
k i k \
AiDi = A AiDi = A 1—A p, €S,
ZZ:O: D 0p0+; D oo + ( 0);)\0]?

Corollary: The intersection of convex sets is convex.
Corollary: The convex hull ch(S) of a set .S is the smallest convex set containing S.

Corollary: The convex hull ch(S) of a set S is the intersection of all the convex sets containing S.

The dimension of a convex set is defined as the dimension of its affine hull.
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POLYTOPES
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CONVEX HULLS IN ARBITRARY DIMENSION

POLYTOPES

e The convex hull of a finite set of points is called polytope.
e A polytope of dimension k is called /-polytope.
e The convex hull of k£ + 1 affinely independent points is a k-polytope called i-simplex.
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CONVEX HULLS IN ARBITRARY DIMENSION

POLYTOPES

e The convex hull of a finite set of points is called polytope.
e A polytope of dimension k is called /-polytope.
e The convex hull of k£ + 1 affinely independent points is a k-polytope called i-simplex.

Proposition: Polytopes are closed and bounded.
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CONVEX HULLS IN ARBITRARY DIMENSION

POLYTOPES

e The convex hull of a finite set of points is called polytope.
e A polytope of dimension k is called /-polytope.
e The convex hull of k£ + 1 affinely independent points is a k-polytope called i-simplex.

Proposition: Polytopes are closed and bounded.

Let P be a polytope and H be a hyperplane in E%:

e H supports Pif PNH # () and (PC H" or P C H-).
o If H supports P, then we call P N H a face of P.

e The O-faces are called vertices of P.

e The 1-faces are called edges of P.

e The (d — 1)-faces are called facets of P.
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CONVEX HULLS IN ARBITRARY DIMENSION

POLYTOPES

e The convex hull of a finite set of points is called polytope.
e A polytope of dimension k is called /-polytope.
e The convex hull of k£ + 1 affinely independent points is a k-polytope called i-simplex.

Proposition: Polytopes are closed and bounded.

Let P be a polytope and H be a hyperplane in E%:

e H supports Pif PNH # () and (PC H" or P C H-).
o If H supports P, then we call P N H a face of P.

e The O-faces are called vertices of P.

e The 1-faces are called edges of P.

e The (d — 1)-faces are called facets of P.

Incidence

Two faces are called incident if one of them is a subset of the other one.

Adjacency

e Two vertices are adjacent if they are incident to the same edge.
e Two facets are adjacent if they are incident to the same (d — 1)-face.
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PROPERTIES OF POLYTOPES
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CONVEX HULLS IN ARBITRARY DIMENSION

PROPERTIES OF POLYTOPES
1. The boundary of a polytope is the union of all its faces.
2. Every polytope has a finite number of faces, and each one of them is a polytope.
3. Every polytope is the convex hull of its vertices.

4. Every polytope is the intersection of a finite set of closed halfspaces, namely, one for each of its
(d — 1)-faces.

5. The intersection of a finite number of closed halfspaces, if bounded, is a polytope.

5. Every face of a polytope P is a face of a (d — 1)-face of P. Reciprocally, every face of a face of P is
a face of P.

7. If P is a polytope, then

(a) The intersection of any family of faces of P is a face of P.
(b) Every (d — 2)-face of P is the intersection of two (d — 1) faces of P.

(c)If j,k € N,and 0 < j < k < d, every j-face is the intersection of all the k-faces contanining it.

Discrete and Algorithmic Geometry, Facultat de Matematiques i Estadistica, UPC



CONVEX HULLS IN ARBITRARY DIMENSION

COMBINATORICS OF POLYTOPES
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COMBINATORICS OF POLYTOPES

Let P be a d-polytope.
Let n; be its number of k-faces, for —1 < k < d (the (—1)-face being () and the d-face being P itself).

Euler’s relation

(=1)fny =1 — (=1)¢ or, equivalently, Z (—1)fny, = 0.
k=0 k=-1
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CONVEX HULLS IN ARBITRARY DIMENSION

COMBINATORICS OF POLYTOPES

Let P be a d-polytope.
Let n; be its number of k-faces, for —1 < k < d (the (—1)-face being () and the d-face being P itself).

Euler’s relation

S8

-1 d
(=1)fny =1 — (=1)¢ or, equivalently, Z (—1)fny, = 0.
0 k=-1

il

The Dehn-Sommerville relations

k .
d—
If P is simple (i.e., each of its vertices belongs exactly to d facets), then g (—1)9( J)nj = ny.
j=0
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COMBINATORICS OF POLYTOPES

Let P be a d-polytope.
Let n; be its number of k-faces, for —1 < k < d (the (—1)-face being () and the d-face being P itself).

Euler’s relation

S8

-1 d

(=1)fny =1 — (=1)¢ or, equivalently, Z (—1)fny, = 0.
0 k=-1

il

The Dehn-Sommerville relations

k .
d—
If P is simple (i.e., each of its vertices belongs exactly to d facets), then g (—1)/ (d 2) nj = nj.
J=0

The upper bound theorem

Any d-polytope with n vertices (or n facets) has at most O(n'%?)) faces of all dimensions and O(nl%/2))
pairs of incident faces of all dimensions.
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COMBINATORICS OF POLYTOPES

Let P be a d-polytope.
Let n; be its number of k-faces, for —1 < k < d (the (—1)-face being () and the d-face being P itself).

Euler’s relation

S8

-1 d

(=1)fny =1 — (=1)¢ or, equivalently, Z (—1)fny, = 0.
0 k=-1

il

The Dehn-Sommerville relations

k .
d—
If P is simple (i.e., each of its vertices belongs exactly to d facets), then g (—1)/ (d i) n;g = n.
J=0

The upper bound theorem

Any d-polytope with n vertices (or n facets) has at most O(n'%?)) faces of all dimensions and O(nl%/2))
pairs of incident faces of all dimensions.

Tightness of the bound

There exists a d-polytope with Q(nl%2)) faces of all dimensions and Q(nl%/2!) pairs of incident faces of all
dimensions.
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STORING A POLYTOPE
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STORING A POLYTOPE

The incidence graph stores one node for each face and an edge for each pair of incident faces.
The space used is O(nl%?)).

abcd

7 N\

abc abd acd bed
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CONVEX HULLS IN ARBITRARY DIMENSION

STORING A POLYTOPE

The incidence graph stores one node for each face and an edge for each pair of incident faces.
The space used is O(nl%?)).

The incidence graph also encodes the adjacency graph, which has a node for each facet and an arc for
each pair of adjacent facets: the arcs of the adjacency graph are in one-to-one correspondance with the
(d — 2)-faces.

/ de\
abe abd acd bed
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CONVEX HULLS IN ARBITRARY DIMENSION

COMPUTING d-DIMENSIONAL CONVEX HULLS
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COMPUTING d-DIMENSIONAL CONVEX HULLS

Lower bound: Computing the convex hull of n points in E% is Q(nlogn 4 nl¥/?)).

Proof: If d > 4, then Q(nlogn + nl¥2) = Q(nl%2)), which is the size of the output. If d = 2,3, then
Q(nlogn + nl¥2) = Q(nlogn), which we know is a lower bound for the problem in dimension 2.
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CONVEX HULLS IN ARBITRARY DIMENSION

COMPUTING d-DIMENSIONAL CONVEX HULLS

Lower bound: Computing the convex hull of n points in E% is Q(nlogn 4 nl¥/?)).

Proof: If d > 4, then Q(nlogn + nl¥2) = Q(nl%2)), which is the size of the output. If d = 2,3, then
Q(nlogn + nl¥2) = Q(nlogn), which we know is a lower bound for the problem in dimension 2.

Notation

e Denote by Hp the supporting hyperplane of each facet I’ of a given polytope. Among the two closed
subspaces determined by Hp, let H;: be the one containing the polytope, and H the one not
containing the polytope.

e Let p be a point exterior to a convex polytope C', and suppose that p does not belong to any hyperplane
supporting a facet of C'. Then:

— Facets F' such that p ¢ H—;S are called red.
— Facets F' such that p € H—} are called blue.

— The color of any remaining face is the intersection (red, blue or purple) of the colors of the facets
incident to it.
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CONVEX HULLS IN ARBITRARY DIMENSION

COMPUTING d-DIMENSIONAL CONVEX HULLS
Let C' be a convex polytope and p a point in general position with respect to C.

Lemma 1: Every face of ch(C U {p}) is either a blue or purple face of C' or the convex hull ch(G' U {p}) of
p and a purple face G of C.
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COMPUTING d-DIMENSIONAL CONVEX HULLS

Let C' be a convex polytope and p a point in general position with respect to C.

Lemma 1: Every face of ch(C U {p}) is either a blue or purple face of C' or the convex hull ch(G' U {p}) of
p and a purple face G of C.

Proof: If P belongs to C', every face is blue and the result follows.
Otherwise:
e Every blue facet F' of C is a facet of ch(C' U {p}) because Hp supports ch(C U {p}) and

HrNch(CU{p}) = F . The remaining blue faces being the intersection of blue facets, the result
holds for all blue faces.

e If G is a purple face of (', then G must belong at least to one red facet F7 and one blue facet F5.
Then p € Hf, and Hg, N ch(C' U {p}) = G. Therefore, G is a face of ch(C' U {p}).
Since p € Hy, , any hyperplane H rotating about Hp, N Hp,, will eventually hit p. Then H supports
ch(C U {p}) and ch(C U{p}) N H D ch(G U {p}). Therefore, ch(G U {p}) is a face of ch(C U {p}).

e Any face of ch(G U {p}) that does not contain p must be a blue or purple face of C. Any face of
ch(C'U {p}) that contains p must be of the form ch(G U {p}), for some face of C' that must be purple.
(Note: in particular, p itself is a face of ch(C' U {p}) because the empty face of C' must be purple.)
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CONVEX HULLS IN ARBITRARY DIMENSION

COMPUTING d-DIMENSIONAL CONVEX HULLS
Let C' be a convex polytope and p a point in general position with respect to C.

Lemma 1: Every face of ch(C U {p}) is either a blue or purple face of C' or the convex hull ch(G' U {p}) of
p and a purple face G of C.

Lemma 2: Incidences in ch(C U {p}) are:

— All blue-blue, blue—purple and purple—purple incidences from C'.

— (& and ch(G U {p}), for all purple GG in C.
—ch(F'U{p}) and ch(G U {p}), for all purple F" and  incident in C.
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COMPUTING d-DIMENSIONAL CONVEX HULLS

Let C' be a convex polytope and p a point in general position with respect to C.

Lemma 1: Every face of ch(C U {p}) is either a blue or purple face of C' or the convex hull ch(G' U {p}) of
p and a purple face G of C.

Lemma 2: Incidences in ch(C U {p}) are:

— All blue-blue, blue—purple and purple—purple incidences from C'.
— (& and ch(G U {p}), for all purple GG in C.
—ch(F'U{p}) and ch(G U {p}), for all purple F" and  incident in C.
Lemma 3: The set of red facets is connected. The set of blue facets is connected too.

Proof: If d = 2, this is a well known fact. Otherwise, let 7, and 75 be two points in £ on two different red
(blue) facets of C. The plane m spanned by p, r1, 79 intersects C' in a 2-polytope, where the set of all red
(blue) edges is connected. Therefore, there exists a red (blue) path connecting 7y and 7y in mNC C C.
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COMPUTING d-DIMENSIONAL CONVEX HULLS

Let C' be a convex polytope and p a point in general position with respect to C.

Lemma 1: Every face of ch(C U {p}) is either a blue or purple face of C' or the convex hull ch(G' U {p}) of
p and a purple face G of C.

Lemma 2: Incidences in ch(C U {p}) are:

— All blue-blue, blue—purple and purple—purple incidences from C'.

— (& and ch(G U {p}), for all purple GG in C.

—ch(F'U{p}) and ch(G U {p}), for all purple F" and  incident in C.
Lemma 3: The set of red facets is connected. The set of blue facets is connected too.
Lemma 4: The set of purple faces is isomorphic to a (d — 1)-politope of at most n vertices.

Proof: Any hyperplane H separating p from C' intersects all the faces of ch(C' U {p}) containing p (except
for the vertex p) and those faces only. The trace in H of these faces is a (d — 1)-polytope whose
incidences correspond to incidences in C'.
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COMPUTING d-DIMENSIONAL CONVEX HULLS

Input: py,...,p, € E¢
Output: Incidence graph of ch({p1,...,pn})
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CONVEX HULLS IN ARBITRARY DIMENSION

COMPUTING d-DIMENSIONAL CONVEX HULLS

Input: p1,...,p, € E
Output: Incidence graph of ch({p1,...,pn})

Algorithm
1. Lexicographically sort the points.

2. Initialize Cy 1 = simplex (py, ..., par1) = ch({p1, ..., pis1})
3. Construct C 11 = ch({p1,...,pis1}) from C; = ch({p1,...,p:i}).

1. Identify a red facet of C; as seen from p;, 1.

2. Construct three lists, respectively containing all red facets,
all (d — 2) red faces, and all (d — 2) purple faces.

3. Construct two more lists, respectively containing all
remaining red faces, and all remaining purple faces.

4. Update the incidence graph.
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CONVEX HULLS IN ARBITRARY DIMENSION

COMPUTING d-DIMENSIONAL CONVEX HULLS

Input: p1,...,p, € E
Output: Incidence graph of ch({p1,...,pn})

Algorithm
1. Lexicographically sort the points.

2. Initialize Cyyq = simplex (p1, ..., pis1) = ch({p1, ..., Pas1})
3. Construct C 11 = ch({p1,...,pis1}) from C; = ch({p1,...,p:i}).

1. Identify a red facet of C; as seen from p; 1.
Explore all facets incident to p; (the last inserted point). Due to the lexicographical order of the
points, at least one of them needs to be red.
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CONVEX HULLS IN ARBITRARY DIMENSION

COMPUTING d-DIMENSIONAL CONVEX HULLS

Input: p1,...,p, € E
Output: Incidence graph of ch({p1,...,pn})

Algorithm
1. Lexicographically sort the points.

2. Initialize Cy 1 = simplex (py, ..., par1) = ch({p1, ..., pis1})
3. Construct C 11 = ch({p1,...,pis1}) from C; = ch({p1,...,p:i}).
1. Identify a red facet of C; as seen from p;, 1.

2. Construct three lists, respectively containing all red facets,
all (d — 2) red faces, and all (d — 2) purple faces.

A deptf-first search allows to find all red facets and classify all (d — 2)-faces into red and purple.
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CONVEX HULLS IN ARBITRARY DIMENSION

COMPUTING d-DIMENSIONAL CONVEX HULLS

Input: p1,...,p, € E
Output: Incidence graph of ch({p1,...,pn})

Algorithm
1. Lexicographically sort the points.

2. Initialize Cy 1 = simplex (py, ..., par1) = ch({p1, ..., pis1})
3. Construct C 11 = ch({p1,...,pis1}) from C; = ch({p1,...,p:i}).
1. Identify a red facet of C; as seen from p;, 1.

2. Construct three lists, respectively containing all red facets,
all (d — 2) red faces, and all (d — 2) purple faces.

3. Construct two more lists, respectively containing all
remaining red faces, and all remaining purple faces.

Once all red and purple faces have been classified from dimension d — 1 down to dimension k + 1,
all k-subfaces of purple (k + 1)-faces are declared purple. Once this done, all unclassified
k-subfaces of red (k + 1)-faces are declared red.
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CONVEX HULLS IN ARBITRARY DIMENSION

COMPUTING d-DIMENSIONAL CONVEX HULLS

Input: p1,...,p, € E
Output: Incidence graph of ch({p1,...,pn})

Algorithm
1. Lexicographically sort the points.
2. Initialize Cy 1 = simplex (py, ..., par1) = ch({p1, ..., pis1})
3. Construct C 11 = ch({p1,...,pis1}) from C; = ch({p1,...,p:i}).

1. Identify a red facet of C; as seen from p;, 1.

2. Construct three lists, respectively containing all red facets,
all (d — 2) red faces, and all (d — 2) purple faces.

3. Construct two more lists, respectively containing all
remaining red faces, and all remaining purple faces.

4. Update the incidence graph.

Fist, all red faces are eliminated from the incidence graph (both nodes and incident arcs).
Then, starting from k = 0, if F' is a purple k-face a new node is created for the (k + 1)-face
ch(F'U{p}). This new node is connected to F' and also to all the k-faces of the form
ch(GU{p}), where G is a (k — 1)-subface of F'.
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CONVEX HULLS IN ARBITRARY DIMENSION

COMPUTING d-DIMENSIONAL CONVEX HULLS

Input: p1,...,p, € E
Output: Incidence graph of ch({p1,...,pn})

Algorithm Analysis
1. Lexicographically sort the points.

2. Initialize Cy 1 = simplex (py, ..., par1) = ch({p1, ..., pis1})
3. Construct C 11 = ch({p1,...,pis1}) from C; = ch({p1,...,p:i}).

1. Identify a red facet of C; as seen from p;, 1.

2. Construct three lists, respectively containing all red facets,
all (d — 2) red faces, and all (d — 2) purple faces.

3. Construct two more lists, respectively containing all
remaining red faces, and all remaining purple faces.

4. Update the incidence graph.
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CONVEX HULLS IN ARBITRARY DIMENSION

COMPUTING d-DIMENSIONAL CONVEX HULLS

Input: p1,...,p, € E
Output: Incidence graph of ch({p1,...,pn})

Algorithm Analysis
1. Lexicographically sort the points. O(nlogn)

2. Initialize Cy 1 = simplex (py, ..., par1) = ch({p1, ..., pis1})
3. Construct C 11 = ch({p1,...,pis1}) from C; = ch({p1,...,p:i}).

1. Identify a red facet of C; as seen from p;, 1.

2. Construct three lists, respectively containing all red facets,
all (d — 2) red faces, and all (d — 2) purple faces.

3. Construct two more lists, respectively containing all
remaining red faces, and all remaining purple faces.

4. Update the incidence graph.
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incidences and purple faces and their
purple incidences.
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And the space used is O(nL%J)

This is optimal when n is even.
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