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Let S be a set of points in Ed, a real Euclidean space of dimension d.
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Let S be a set of points in Ed, a real Euclidean space of dimension d.

A linear combination of points in S is
k∑
i=1

λipi, where k ∈ N, λi ∈ R, pi ∈ S.
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Let S be a set of points in Ed, a real Euclidean space of dimension d.

A linear combination of points in S is
k∑
i=1

λipi, where k ∈ N, λi ∈ R, pi ∈ S.

An affine combination of points in S is a linear combination such that
k∑
i=1

λi = 1.

• The set of all affine combinations of S is called affine hull of S.

• The affine hull of two points p and q is the line through them.

• k + 1 points are called affinely independent if their affine hull is an affine space of dimension k.
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Let S be a set of points in Ed, a real Euclidean space of dimension d.

A linear combination of points in S is
k∑
i=1

λipi, where k ∈ N, λi ∈ R, pi ∈ S.

An affine combination of points in S is a linear combination such that
k∑
i=1

λi = 1.

• The set of all affine combinations of S is called affine hull of S.

• The affine hull of two points p and q is the line through them.

• k + 1 points are called affinely independent if their affine hull is an affine space of dimension k.

A convex combination of points in S is an affine combination such that λi ≥ 0 ∀ i.

• The set of all convex combinations of S is called convex hull of S.

• The convex hull of two affinely independent points p and q is the line segment pq.

• The convex hull of three affinely independent points p, q and r is the triangle pqr.

• The convex hull of four affinely independent points p, q, r and s is the tetrahedron pqrs.
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Let S be a set of points in Ed, a real Euclidean space of dimension d.

A linear combination of points in S is
k∑
i=1

λipi, where k ∈ N, λi ∈ R, pi ∈ S.

An affine combination of points in S is a linear combination such that
k∑
i=1

λi = 1.

• The set of all affine combinations of S is called affine hull of S.

• The affine hull of two points p and q is the line through them.

• k + 1 points are called affinely independent if their affine hull is an affine space of dimension k.

A convex combination of points in S is an affine combination such that λi ≥ 0 ∀ i.

• The set of all convex combinations of S is called convex hull of S.

• The convex hull of two affinely independent points p and q is the line segment pq.

• The convex hull of three affinely independent points p, q and r is the triangle pqr.

• The convex hull of four affinely independent points p, q, r and s is the tetrahedron pqrs.

A set is called convex if it is stable under convex combinations.
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Proof : If S is convex, it is stable under convex combinations and, in particular, it contains all segments

with endpoints in S. The reciprocal is proved by induction on the number of points k of the convex

combination. For k = 2, we have the hypothesis. Consider now a convex combination with k + 1 points.

We have
k∑
i=0

λipi = λ0p0 +

k∑
i=1

λipi = λ0p0 + (1− λ0)
k∑
i=1

λi
λ0
pi ∈ S.

Proposition: A set S is convex iff it contains segment pq for all p, q ∈ S.
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Proof : If S is convex, it is stable under convex combinations and, in particular, it contains all segments

with endpoints in S. The reciprocal is proved by induction on the number of points k of the convex

combination. For k = 2, we have the hypothesis. Consider now a convex combination with k + 1 points.

We have
k∑
i=0

λipi = λ0p0 +

k∑
i=1

λipi = λ0p0 + (1− λ0)
k∑
i=1

λi
λ0
pi ∈ S.

Proposition: A set S is convex iff it contains segment pq for all p, q ∈ S.

Corollary: The intersection of convex sets is convex.

Corollary: The convex hull ch(S) of a set S is the smallest convex set containing S.

Corollary: The convex hull ch(S) of a set S is the intersection of all the convex sets containing S.
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Proof : If S is convex, it is stable under convex combinations and, in particular, it contains all segments

with endpoints in S. The reciprocal is proved by induction on the number of points k of the convex

combination. For k = 2, we have the hypothesis. Consider now a convex combination with k + 1 points.

We have
k∑
i=0

λipi = λ0p0 +

k∑
i=1

λipi = λ0p0 + (1− λ0)
k∑
i=1

λi
λ0
pi ∈ S.

Proposition: A set S is convex iff it contains segment pq for all p, q ∈ S.

Corollary: The intersection of convex sets is convex.

Corollary: The convex hull ch(S) of a set S is the smallest convex set containing S.

Corollary: The convex hull ch(S) of a set S is the intersection of all the convex sets containing S.

The dimension of a convex set is defined as the dimension of its affine hull.
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POLYTOPES
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POLYTOPES

• The convex hull of a finite set of points is called polytope.

• A polytope of dimension k is called k-polytope.

• The convex hull of k + 1 affinely independent points is a k-polytope called k-simplex.
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POLYTOPES

• The convex hull of a finite set of points is called polytope.

• A polytope of dimension k is called k-polytope.

• The convex hull of k + 1 affinely independent points is a k-polytope called k-simplex.

Proposition: Polytopes are closed and bounded.
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POLYTOPES

• The convex hull of a finite set of points is called polytope.

• A polytope of dimension k is called k-polytope.

• The convex hull of k + 1 affinely independent points is a k-polytope called k-simplex.

Proposition: Polytopes are closed and bounded.

Let P be a polytope and H be a hyperplane in Ed:

• H supports P if P ∩H 6= ∅ and (P ⊂ H+ or P ⊂ H−).

• If H supports P , then we call P ∩H a face of P .

• The 0-faces are called vertices of P .

• The 1-faces are called edges of P .

• The (d− 1)-faces are called facets of P .
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POLYTOPES

• The convex hull of a finite set of points is called polytope.

• A polytope of dimension k is called k-polytope.

• The convex hull of k + 1 affinely independent points is a k-polytope called k-simplex.

Proposition: Polytopes are closed and bounded.

Let P be a polytope and H be a hyperplane in Ed:

• H supports P if P ∩H 6= ∅ and (P ⊂ H+ or P ⊂ H−).

• If H supports P , then we call P ∩H a face of P .

• The 0-faces are called vertices of P .

• The 1-faces are called edges of P .

• The (d− 1)-faces are called facets of P .

Incidence

Two faces are called incident if one of them is a subset of the other one.

Adjacency

• Two vertices are adjacent if they are incident to the same edge.

• Two facets are adjacent if they are incident to the same (d− 1)-face.
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PROPERTIES OF POLYTOPES
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PROPERTIES OF POLYTOPES

1. The boundary of a polytope is the union of all its faces.

2. Every polytope has a finite number of faces, and each one of them is a polytope.

3. Every polytope is the convex hull of its vertices.

4. Every polytope is the intersection of a finite set of closed halfspaces, namely, one for each of its

(d− 1)-faces.

5. The intersection of a finite number of closed halfspaces, if bounded, is a polytope.

6. Every face of a polytope P is a face of a (d− 1)-face of P . Reciprocally, every face of a face of P is

a face of P .

7. If P is a polytope, then

(a) The intersection of any family of faces of P is a face of P .

(b) Every (d− 2)-face of P is the intersection of two (d− 1) faces of P .

(c) If j, k ∈ N, and 0 ≤ j ≤ k < d, every j-face is the intersection of all the k-faces contanining it.
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COMBINATORICS OF POLYTOPES



CONVEX HULLS IN ARBITRARY DIMENSION

Discrete and Algorithmic Geometry, Facultat de Matemàtiques i Estad́ıstica, UPC

COMBINATORICS OF POLYTOPES

Euler’s relation

Let P be a d-polytope.

Let nk be its number of k-faces, for −1 ≤ k ≤ d (the (−1)-face being ∅ and the d-face being P itself).

d−1∑
k=0

(−1)knk = 1− (−1)d or, equivalently,
d∑

k=−1

(−1)knk = 0.
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COMBINATORICS OF POLYTOPES

Euler’s relation

Let P be a d-polytope.

Let nk be its number of k-faces, for −1 ≤ k ≤ d (the (−1)-face being ∅ and the d-face being P itself).

d−1∑
k=0

(−1)knk = 1− (−1)d or, equivalently,
d∑

k=−1

(−1)knk = 0.

The Dehn-Sommerville relations

If P is simple (i.e., each of its vertices belongs exactly to d facets), then
k∑
j=0

(−1)j
(
d− j
d− k

)
nj = nk.
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COMBINATORICS OF POLYTOPES

Euler’s relation

Let P be a d-polytope.

Let nk be its number of k-faces, for −1 ≤ k ≤ d (the (−1)-face being ∅ and the d-face being P itself).

d−1∑
k=0

(−1)knk = 1− (−1)d or, equivalently,
d∑

k=−1

(−1)knk = 0.

The Dehn-Sommerville relations

If P is simple (i.e., each of its vertices belongs exactly to d facets), then
k∑
j=0

(−1)j
(
d− j
d− k

)
nj = nk.

The upper bound theorem

Any d-polytope with n vertices (or n facets) has at most O(nbd/2c) faces of all dimensions and O(nbd/2c)

pairs of incident faces of all dimensions.
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COMBINATORICS OF POLYTOPES

Euler’s relation

Let P be a d-polytope.

Let nk be its number of k-faces, for −1 ≤ k ≤ d (the (−1)-face being ∅ and the d-face being P itself).

d−1∑
k=0

(−1)knk = 1− (−1)d or, equivalently,
d∑

k=−1

(−1)knk = 0.

The Dehn-Sommerville relations

If P is simple (i.e., each of its vertices belongs exactly to d facets), then
k∑
j=0

(−1)j
(
d− j
d− k

)
nj = nk.

The upper bound theorem

Any d-polytope with n vertices (or n facets) has at most O(nbd/2c) faces of all dimensions and O(nbd/2c)

pairs of incident faces of all dimensions.

Tightness of the bound

There exists a d-polytope with Ω(nbd/2c) faces of all dimensions and Ω(nbd/2c) pairs of incident faces of all

dimensions.
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STORING A POLYTOPE

a

b

c

d



CONVEX HULLS IN ARBITRARY DIMENSION

Discrete and Algorithmic Geometry, Facultat de Matemàtiques i Estad́ıstica, UPC

STORING A POLYTOPE

The incidence graph stores one node for each face and an edge for each pair of incident faces.

The space used is O(nbd/2c).

a

b

c

d

abcd

abc abd acd bcd

bc bd cdadacab

a b c d

∅
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STORING A POLYTOPE

The incidence graph stores one node for each face and an edge for each pair of incident faces.

The space used is O(nbd/2c).

The incidence graph also encodes the adjacency graph, which has a node for each facet and an arc for

each pair of adjacent facets: the arcs of the adjacency graph are in one-to-one correspondance with the

(d− 2)-faces.

a

b

c

d

abcd

abc abd acd bcd

bc bd cdadacab

a b c d

∅
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COMPUTING d-DIMENSIONAL CONVEX HULLS



CONVEX HULLS IN ARBITRARY DIMENSION

Discrete and Algorithmic Geometry, Facultat de Matemàtiques i Estad́ıstica, UPC

COMPUTING d-DIMENSIONAL CONVEX HULLS

Lower bound: Computing the convex hull of n points in Ed is Ω(n log n + nbd/2c).

Proof: If d ≥ 4, then Ω(n log n + nbd/2c) = Ω(nbd/2c), which is the size of the output. If d = 2, 3, then

Ω(n log n + nbd/2c) = Ω(n log n), which we know is a lower bound for the problem in dimension 2.
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COMPUTING d-DIMENSIONAL CONVEX HULLS

Lower bound: Computing the convex hull of n points in Ed is Ω(n log n + nbd/2c).

Proof: If d ≥ 4, then Ω(n log n + nbd/2c) = Ω(nbd/2c), which is the size of the output. If d = 2, 3, then

Ω(n log n + nbd/2c) = Ω(n log n), which we know is a lower bound for the problem in dimension 2.

Notation

• Denote by HF the supporting hyperplane of each facet F of a given polytope. Among the two closed

subspaces determined by HF , let H+
F be the one containing the polytope, and H−F the one not

containing the polytope.

• Let p be a point exterior to a convex polytope C, and suppose that p does not belong to any hyperplane

supporting a facet of C. Then:

– Facets F such that p 6∈ H+
F are called red.

– Facets F such that p ∈ H+
F are called blue.

– The color of any remaining face is the intersection (red, blue or purple) of the colors of the facets

incident to it.
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COMPUTING d-DIMENSIONAL CONVEX HULLS

Lemma 1: Every face of ch(C ∪ {p}) is either a blue or purple face of C or the convex hull ch(G∪ {p}) of

p and a purple face G of C.

Let C be a convex polytope and p a point in general position with respect to C.
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COMPUTING d-DIMENSIONAL CONVEX HULLS

Lemma 1: Every face of ch(C ∪ {p}) is either a blue or purple face of C or the convex hull ch(G∪ {p}) of

p and a purple face G of C.

Proof: If P belongs to C, every face is blue and the result follows.

Otherwise:

• Every blue facet F of C is a facet of ch(C ∪ {p}) because HF supports ch(C ∪ {p}) and

HF ∩ ch(C ∪ {p}) = F . The remaining blue faces being the intersection of blue facets, the result

holds for all blue faces.

• If G is a purple face of C, then G must belong at least to one red facet F1 and one blue facet F2.

Then p ∈ H+
F2

and HF2 ∩ ch(C ∪ {p}) = G. Therefore, G is a face of ch(C ∪ {p}).

Since p ∈ H−F2, any hyperplane H rotating about HF1 ∩HF2, will eventually hit p. Then H supports

ch(C ∪ {p}) and ch(C ∪ {p}) ∩H ⊃ ch(G ∪ {p}). Therefore, ch(G ∪ {p}) is a face of ch(C ∪ {p}).

• Any face of ch(G ∪ {p}) that does not contain p must be a blue or purple face of C. Any face of

ch(C ∪ {p}) that contains p must be of the form ch(G∪ {p}), for some face of C that must be purple.

(Note: in particular, p itself is a face of ch(C ∪ {p}) because the empty face of C must be purple.)

Let C be a convex polytope and p a point in general position with respect to C.
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COMPUTING d-DIMENSIONAL CONVEX HULLS

Lemma 1: Every face of ch(C ∪ {p}) is either a blue or purple face of C or the convex hull ch(G∪ {p}) of

p and a purple face G of C.

Let C be a convex polytope and p a point in general position with respect to C.

Lemma 2: Incidences in ch(C ∪ {p}) are:

– All blue–blue, blue–purple and purple–purple incidences from C.

– G and ch(G ∪ {p}), for all purple G in C.

– ch(F ∪ {p}) and ch(G ∪ {p}), for all purple F and G incident in C.
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COMPUTING d-DIMENSIONAL CONVEX HULLS

Lemma 1: Every face of ch(C ∪ {p}) is either a blue or purple face of C or the convex hull ch(G∪ {p}) of

p and a purple face G of C.

Let C be a convex polytope and p a point in general position with respect to C.

Lemma 2: Incidences in ch(C ∪ {p}) are:

– All blue–blue, blue–purple and purple–purple incidences from C.

– G and ch(G ∪ {p}), for all purple G in C.

– ch(F ∪ {p}) and ch(G ∪ {p}), for all purple F and G incident in C.

Lemma 3: The set of red facets is connected. The set of blue facets is connected too.

Proof: If d = 2, this is a well known fact. Otherwise, let r1 and r2 be two points in Ed on two different red

(blue) facets of C. The plane π spanned by p, r1, r2 intersects C in a 2-polytope, where the set of all red

(blue) edges is connected. Therefore, there exists a red (blue) path connecting r1 and r1 in π ∩ C ⊂ C.
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COMPUTING d-DIMENSIONAL CONVEX HULLS

Lemma 1: Every face of ch(C ∪ {p}) is either a blue or purple face of C or the convex hull ch(G∪ {p}) of

p and a purple face G of C.

Let C be a convex polytope and p a point in general position with respect to C.

Lemma 2: Incidences in ch(C ∪ {p}) are:

– All blue–blue, blue–purple and purple–purple incidences from C.

– G and ch(G ∪ {p}), for all purple G in C.

– ch(F ∪ {p}) and ch(G ∪ {p}), for all purple F and G incident in C.

Lemma 3: The set of red facets is connected. The set of blue facets is connected too.

Lemma 4: The set of purple faces is isomorphic to a (d− 1)-politope of at most n vertices.

Proof: Any hyperplane H separating p from C intersects all the faces of ch(C ∪ {p}) containing p (except

for the vertex p) and those faces only. The trace in H of these faces is a (d− 1)-polytope whose

incidences correspond to incidences in C.
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COMPUTING d-DIMENSIONAL CONVEX HULLS

Input: p1, . . . , pn ∈ Ed

Output: Incidence graph of ch({p1, . . . , pn})
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COMPUTING d-DIMENSIONAL CONVEX HULLS

Input: p1, . . . , pn ∈ Ed

Output: Incidence graph of ch({p1, . . . , pn})

Algorithm

1. Lexicographically sort the points.

2. Initialize Cd+1 = simplex (p1, . . . , pd+1) = ch({p1, . . . , pd+1})
3. Construct Ci+1 = ch({p1, . . . , pi+1}) from Ci = ch({p1, . . . , pi}).

3.1. Identify a red facet of Ci as seen from pi+1.

3.2. Construct three lists, respectively containing all red facets,

all (d− 2) red faces, and all (d− 2) purple faces.

3.3. Construct two more lists, respectively containing all

remaining red faces, and all remaining purple faces.

3.4. Update the incidence graph.
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COMPUTING d-DIMENSIONAL CONVEX HULLS

Input: p1, . . . , pn ∈ Ed

Output: Incidence graph of ch({p1, . . . , pn})

Algorithm

1. Lexicographically sort the points.

2. Initialize Cd+1 = simplex (p1, . . . , pd+1) = ch({p1, . . . , pd+1})
3. Construct Ci+1 = ch({p1, . . . , pi+1}) from Ci = ch({p1, . . . , pi}).

3.1. Identify a red facet of Ci as seen from pi+1.

Explore all facets incident to pi (the last inserted point). Due to the lexicographical order of the

points, at least one of them needs to be red.
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COMPUTING d-DIMENSIONAL CONVEX HULLS

Input: p1, . . . , pn ∈ Ed

Output: Incidence graph of ch({p1, . . . , pn})

Algorithm

1. Lexicographically sort the points.

2. Initialize Cd+1 = simplex (p1, . . . , pd+1) = ch({p1, . . . , pd+1})
3. Construct Ci+1 = ch({p1, . . . , pi+1}) from Ci = ch({p1, . . . , pi}).

3.1. Identify a red facet of Ci as seen from pi+1.

3.2. Construct three lists, respectively containing all red facets,

all (d− 2) red faces, and all (d− 2) purple faces.

A deptf-first search allows to find all red facets and classify all (d− 2)-faces into red and purple.
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COMPUTING d-DIMENSIONAL CONVEX HULLS

Input: p1, . . . , pn ∈ Ed

Output: Incidence graph of ch({p1, . . . , pn})

Algorithm

1. Lexicographically sort the points.

2. Initialize Cd+1 = simplex (p1, . . . , pd+1) = ch({p1, . . . , pd+1})
3. Construct Ci+1 = ch({p1, . . . , pi+1}) from Ci = ch({p1, . . . , pi}).

3.1. Identify a red facet of Ci as seen from pi+1.

3.2. Construct three lists, respectively containing all red facets,

all (d− 2) red faces, and all (d− 2) purple faces.

3.3. Construct two more lists, respectively containing all

remaining red faces, and all remaining purple faces.

Once all red and purple faces have been classified from dimension d− 1 down to dimension k + 1,

all k-subfaces of purple (k + 1)-faces are declared purple. Once this done, all unclassified

k-subfaces of red (k + 1)-faces are declared red.
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COMPUTING d-DIMENSIONAL CONVEX HULLS

Input: p1, . . . , pn ∈ Ed

Output: Incidence graph of ch({p1, . . . , pn})

Algorithm

1. Lexicographically sort the points.

2. Initialize Cd+1 = simplex (p1, . . . , pd+1) = ch({p1, . . . , pd+1})
3. Construct Ci+1 = ch({p1, . . . , pi+1}) from Ci = ch({p1, . . . , pi}).

3.1. Identify a red facet of Ci as seen from pi+1.

3.2. Construct three lists, respectively containing all red facets,

all (d− 2) red faces, and all (d− 2) purple faces.

3.3. Construct two more lists, respectively containing all

remaining red faces, and all remaining purple faces.

3.4. Update the incidence graph.

Fist, all red faces are eliminated from the incidence graph (both nodes and incident arcs).

Then, starting from k = 0, if F is a purple k-face a new node is created for the (k + 1)-face

ch(F ∪ {p}). This new node is connected to F and also to all the k-faces of the form

ch(G ∪ {p}), where G is a (k − 1)-subface of F .
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Analysis
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O(n log n)
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O(1)
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O(1)

Linear in #facets created in step i.
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Linear in #facets created in step i.

Linear in #red facets of Ci and their
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Analysis

O(n log n)

O(1)

Proportional to the number of

faces and incidences created along

the algorithm.
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O(ib
d−1
2 c) = O(nb

d+1
2 c)
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And the space used is O(nb
d
2c)
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This is optimal when n is even.
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