Vera Sacristán

Discrete and Algorithmic Geometry Facultat de Matemàtiques i Estadística Universitat Politècnica de Catalunya

Let S be a set of points in E^d , a real Euclidean space of dimension d.

Let S be a set of points in E^d , a real Euclidean space of dimension d.

A linear combination of points in S is $\sum_{i=1}^{k} \lambda_i p_i$, where $k \in \mathbb{N}$, $\lambda_i \in \mathbb{R}$, $p_i \in S$.

Let S be a set of points in E^d , a real Euclidean space of dimension d.

A linear combination of points in S is $\sum_{i=1}^{k} \lambda_i p_i$, where $k \in \mathbb{N}$, $\lambda_i \in \mathbb{R}$, $p_i \in S$.

An affine combination of points in S is a linear combination such that $\sum_{i=1}^{n} \lambda_i = 1$.

- The set of all affine combinations of S is called **affine hull** of S.
- The affine hull of two points p and q is the line through them.
- k + 1 points are called **affinely independent** if their affine hull is an affine space of dimension k.

Let S be a set of points in E^d , a real Euclidean space of dimension d.

A linear combination of points in S is $\sum_{i=1}^{k} \lambda_i p_i$, where $k \in \mathbb{N}, \lambda_i \in \mathbb{R}, p_i \in S$.

An affine combination of points in S is a linear combination such that $\sum_{i=1}^{n} \lambda_i = 1$.

- The set of all affine combinations of S is called **affine hull** of S.
- The affine hull of two points p and q is the line through them.
- k + 1 points are called **affinely independent** if their affine hull is an affine space of dimension k.

A convex combination of points in S is an affine combination such that $\lambda_i \ge 0 \ \forall i$.

- The set of all convex combinations of S is called **convex hull** of S.
- The convex hull of two affinely independent points p and q is the line segment pq.
- The convex hull of three affinely independent points p, q and r is the triangle pqr.
- The convex hull of four affinely independent points p, q, r and s is the tetrahedron pqrs.

Let S be a set of points in E^d , a real Euclidean space of dimension d.

A linear combination of points in S is $\sum_{i=1}^{k} \lambda_i p_i$, where $k \in \mathbb{N}$, $\lambda_i \in \mathbb{R}$, $p_i \in S$.

An affine combination of points in S is a linear combination such that $\sum_{i=1}^{n} \lambda_i = 1$.

- The set of all affine combinations of S is called **affine hull** of S.
- The affine hull of two points p and q is the line through them.
- k + 1 points are called **affinely independent** if their affine hull is an affine space of dimension k.

A convex combination of points in S is an affine combination such that $\lambda_i \ge 0 \ \forall i$.

- The set of all convex combinations of S is called **convex hull** of S.
- The convex hull of two affinely independent points p and q is the line segment pq.
- The convex hull of three affinely independent points p, q and r is the triangle pqr.
- The convex hull of four affinely independent points p, q, r and s is the tetrahedron pqrs.

A set is called **convex** if it is stable under convex combinations.

Proposition: A set S is convex iff it contains segment pq for all $p, q \in S$.

Proof: If S is convex, it is stable under convex combinations and, in particular, it contains all segments with endpoints in S. The reciprocal is proved by induction on the number of points k of the convex combination. For k = 2, we have the hypothesis. Consider now a convex combination with k + 1 points. We have

$$\sum_{i=0}^{k} \lambda_i p_i = \lambda_0 p_0 + \sum_{i=1}^{k} \lambda_i p_i = \lambda_0 p_0 + (1 - \lambda_0) \sum_{i=1}^{k} \frac{\lambda_i}{\lambda_0} p_i \in S.$$

Proposition: A set S is convex iff it contains segment pq for all $p, q \in S$.

Proof: If S is convex, it is stable under convex combinations and, in particular, it contains all segments with endpoints in S. The reciprocal is proved by induction on the number of points k of the convex combination. For k = 2, we have the hypothesis. Consider now a convex combination with k + 1 points. We have

$$\sum_{i=0}^{k} \lambda_i p_i = \lambda_0 p_0 + \sum_{i=1}^{k} \lambda_i p_i = \lambda_0 p_0 + (1 - \lambda_0) \sum_{i=1}^{k} \frac{\lambda_i}{\lambda_0} p_i \in S.$$

Corollary: The intersection of convex sets is convex.

Corollary: The convex hull ch(S) of a set S is the smallest convex set containing S.

Corollary: The convex hull ch(S) of a set S is the intersection of all the convex sets containing S.

Proposition: A set S is convex iff it contains segment pq for all $p, q \in S$.

Proof: If S is convex, it is stable under convex combinations and, in particular, it contains all segments with endpoints in S. The reciprocal is proved by induction on the number of points k of the convex combination. For k = 2, we have the hypothesis. Consider now a convex combination with k + 1 points. We have

$$\sum_{i=0}^{k} \lambda_i p_i = \lambda_0 p_0 + \sum_{i=1}^{k} \lambda_i p_i = \lambda_0 p_0 + (1 - \lambda_0) \sum_{i=1}^{k} \frac{\lambda_i}{\lambda_0} p_i \in S.$$

Corollary: The intersection of convex sets is convex.

Corollary: The convex hull ch(S) of a set S is the smallest convex set containing S.

Corollary: The convex hull ch(S) of a set S is the intersection of all the convex sets containing S.

The **dimension** of a convex set is defined as the dimension of its affine hull.

POLYTOPES

POLYTOPES

- The convex hull of a finite set of points is called **polytope**.
- A polytope of dimension k is called k-polytope.
- The convex hull of k + 1 affinely independent points is a k-polytope called k-simplex.

POLYTOPES

- The convex hull of a finite set of points is called **polytope**.
- A polytope of dimension k is called k-polytope.
- The convex hull of k + 1 affinely independent points is a k-polytope called k-simplex.

Proposition: Polytopes are closed and bounded.

POLYTOPES

- The convex hull of a finite set of points is called **polytope**.
- A polytope of dimension k is called k-polytope.
- The convex hull of k + 1 affinely independent points is a k-polytope called k-simplex.

Proposition: Polytopes are closed and bounded.

Let P be a polytope and H be a hyperplane in E^d :

- H supports P if $P \cap H \neq \emptyset$ and $(P \subset \overline{H^+} \text{ or } P \subset \overline{H^-})$.
- If H supports P, then we call $P \cap H$ a face of P.
- The 0-faces are called **vertices** of *P*.
- The 1-faces are called **edges** of *P*.
- The (d-1)-faces are called **facets** of P.

POLYTOPES

- The convex hull of a finite set of points is called **polytope**.
- A polytope of dimension k is called k-polytope.
- The convex hull of k + 1 affinely independent points is a k-polytope called k-simplex.

Proposition: Polytopes are closed and bounded.

Let P be a polytope and H be a hyperplane in E^d :

- H supports P if $P \cap H \neq \emptyset$ and $(P \subset \overline{H^+} \text{ or } P \subset \overline{H^-})$.
- If H supports P, then we call $P \cap H$ a face of P.
- The 0-faces are called vertices of *P*.
- The 1-faces are called **edges** of *P*.
- The (d-1)-faces are called **facets** of *P*.

Incidence

Two faces are called **incident** if one of them is a subset of the other one.

Adjacency

- Two vertices are **adjacent** if they are incident to the same edge.
- Two facets are **adjacent** if they are incident to the same (d-1)-face.

PROPERTIES OF POLYTOPES

PROPERTIES OF POLYTOPES

- 1. The boundary of a polytope is the union of all its faces.
- 2. Every polytope has a finite number of faces, and each one of them is a polytope.
- 3. Every polytope is the convex hull of its vertices.
- 4. Every polytope is the intersection of a finite set of closed halfspaces, namely, one for each of its (d-1)-faces.
- 5. The intersection of a finite number of closed halfspaces, if bounded, is a polytope.
- 5. Every face of a polytope P is a face of a (d-1)-face of P. Reciprocally, every face of a face of P is a face of P.
- 7. If P is a polytope, then
 - (a) The intersection of any family of faces of P is a face of P.
 - (b) Every (d-2)-face of P is the intersection of two (d-1) faces of P.
 - (c) If $j, k \in \mathbb{N}$, and $0 \le j \le k < d$, every *j*-face is the intersection of all the *k*-faces contanining it.

COMBINATORICS OF POLYTOPES

COMBINATORICS OF POLYTOPES

Let P be a d-polytope.

Let n_k be its number of k-faces, for $-1 \le k \le d$ (the (-1)-face being \emptyset and the d-face being P itself).

Euler's relation

$$\sum_{k=0}^{d-1} (-1)^k n_k = 1 - (-1)^d \quad \text{or, equivalently,} \quad \sum_{k=-1}^d (-1)^k n_k = 0.$$

COMBINATORICS OF POLYTOPES

Let P be a d-polytope.

Let n_k be its number of k-faces, for $-1 \le k \le d$ (the (-1)-face being \emptyset and the d-face being P itself).

Euler's relation

$$\sum_{k=0}^{d-1} (-1)^k n_k = 1 - (-1)^d \qquad \text{or, equivalently,} \qquad \sum_{k=-1}^d (-1)^k n_k = 0$$

The Dehn-Sommerville relations

If P is simple (i.e., each of its vertices belongs exactly to d facets), then $\sum_{j=0}^{k} (-1)^{j} {d-j \choose d-k} n_{j} = n_{k}$.

COMBINATORICS OF POLYTOPES

Let P be a d-polytope.

Let n_k be its number of k-faces, for $-1 \le k \le d$ (the (-1)-face being \emptyset and the d-face being P itself).

Euler's relation

$$\sum_{k=0}^{d-1} (-1)^k n_k = 1 - (-1)^d \quad \text{or, equivalently,} \quad \sum_{k=-1}^d (-1)^k n_k = 0.$$

The Dehn-Sommerville relations

If P is simple (i.e., each of its vertices belongs exactly to d facets), then $\sum_{j=0}^{k} (-1)^{j} {d-j \choose d-k} n_{j} = n_{k}$.

The upper bound theorem

Any *d*-polytope with *n* vertices (or *n* facets) has at most $O(n^{\lfloor d/2 \rfloor})$ faces of all dimensions and $O(n^{\lfloor d/2 \rfloor})$ pairs of incident faces of all dimensions.

COMBINATORICS OF POLYTOPES

Let P be a d-polytope.

Let n_k be its number of k-faces, for $-1 \le k \le d$ (the (-1)-face being \emptyset and the d-face being P itself).

Euler's relation

$$\sum_{k=0}^{d-1} (-1)^k n_k = 1 - (-1)^d \quad \text{or, equivalently,} \quad \sum_{k=-1}^d (-1)^k n_k = 0.$$

The Dehn-Sommerville relations

If P is simple (i.e., each of its vertices belongs exactly to d facets), then $\sum_{j=0}^{k} (-1)^{j} {d-j \choose d-k} n_{j} = n_{k}$.

The upper bound theorem

Any *d*-polytope with *n* vertices (or *n* facets) has at most $O(n^{\lfloor d/2 \rfloor})$ faces of all dimensions and $O(n^{\lfloor d/2 \rfloor})$ pairs of incident faces of all dimensions.

Tightness of the bound

There exists a *d*-polytope with $\Omega(n^{\lfloor d/2 \rfloor})$ faces of all dimensions and $\Omega(n^{\lfloor d/2 \rfloor})$ pairs of incident faces of all dimensions.

STORING A POLYTOPE

STORING A POLYTOPE

The incidence graph stores one node for each face and an edge for each pair of incident faces. The space used is $O(n^{\lfloor d/2 \rfloor})$.

STORING A POLYTOPE

The incidence graph stores one node for each face and an edge for each pair of incident faces. The space used is $O(n^{\lfloor d/2 \rfloor})$.

The incidence graph also encodes the **adjacency graph**, which has a node for each facet and an arc for each pair of adjacent facets: the arcs of the adjacency graph are in one-to-one correspondance with the (d-2)-faces.

COMPUTING *d*-**DIMENSIONAL CONVEX HULLS**

COMPUTING *d*-**DIMENSIONAL CONVEX HULLS**

Lower bound: Computing the convex hull of n points in E^d is $\Omega(n \log n + n^{\lfloor d/2 \rfloor})$.

Proof: If $d \ge 4$, then $\Omega(n \log n + n^{\lfloor d/2 \rfloor}) = \Omega(n^{\lfloor d/2 \rfloor})$, which is the size of the output. If d = 2, 3, then $\Omega(n \log n + n^{\lfloor d/2 \rfloor}) = \Omega(n \log n)$, which we know is a lower bound for the problem in dimension 2.

COMPUTING *d*-**DIMENSIONAL CONVEX HULLS**

Lower bound: Computing the convex hull of n points in E^d is $\Omega(n \log n + n^{\lfloor d/2 \rfloor})$.

Proof: If $d \ge 4$, then $\Omega(n \log n + n^{\lfloor d/2 \rfloor}) = \Omega(n^{\lfloor d/2 \rfloor})$, which is the size of the output. If d = 2, 3, then $\Omega(n \log n + n^{\lfloor d/2 \rfloor}) = \Omega(n \log n)$, which we know is a lower bound for the problem in dimension 2.

Notation

- Denote by H_F the supporting hyperplane of each facet F of a given polytope. Among the two closed subspaces determined by H_F , let $\overline{H_F^+}$ be the one containing the polytope, and $\overline{H_F^-}$ the one not containing the polytope.
- Let p be a point exterior to a convex polytope C, and suppose that p does not belong to any hyperplane supporting a facet of C. Then:
 - Facets F such that $p \notin \overline{H_F^+}$ are called red.
 - Facets F such that $p \in \overline{H_F^+}$ are called blue.
 - The color of any remaining face is the intersection (red, blue or purple) of the colors of the facets incident to it.

COMPUTING *d*-DIMENSIONAL CONVEX HULLS

Let C be a convex polytope and p a point in general position with respect to C.

Lemma 1: Every face of $ch(C \cup \{p\})$ is either a blue or purple face of C or the convex hull $ch(G \cup \{p\})$ of p and a purple face G of C.

COMPUTING *d*-DIMENSIONAL CONVEX HULLS

Let C be a convex polytope and p a point in general position with respect to C.

Lemma 1: Every face of $ch(C \cup \{p\})$ is either a blue or purple face of C or the convex hull $ch(G \cup \{p\})$ of p and a purple face G of C.

Proof: If P belongs to C, every face is blue and the result follows.

Otherwise:

- Every blue facet F of C is a facet of $ch(C \cup \{p\})$ because H_F supports $ch(C \cup \{p\})$ and $H_F \cap ch(C \cup \{p\}) = F$. The remaining blue faces being the intersection of blue facets, the result holds for all blue faces.
- If G is a purple face of C, then G must belong at least to one red facet F_1 and one blue facet F_2 . Then $p \in H_{F_2}^+$ and $H_{F_2} \cap ch(C \cup \{p\}) = G$. Therefore, G is a face of $ch(C \cup \{p\})$. Since $p \in H_{F_2}^-$, any hyperplane H rotating about $H_{F_1} \cap H_{F_2}$, will eventually hit p. Then H supports $ch(C \cup \{p\})$ and $ch(C \cup \{p\}) \cap H \supset ch(G \cup \{p\})$. Therefore, $ch(G \cup \{p\})$ is a face of $ch(C \cup \{p\})$.
- Any face of ch(G ∪ {p}) that does not contain p must be a blue or purple face of C. Any face of ch(C ∪ {p}) that contains p must be of the form ch(G ∪ {p}), for some face of C that must be purple. (Note: in particular, p itself is a face of ch(C ∪ {p}) because the empty face of C must be purple.)

COMPUTING *d*-DIMENSIONAL CONVEX HULLS

Let C be a convex polytope and p a point in general position with respect to C.

Lemma 1: Every face of $ch(C \cup \{p\})$ is either a blue or purple face of C or the convex hull $ch(G \cup \{p\})$ of p and a purple face G of C.

Lemma 2: Incidences in $ch(C \cup \{p\})$ are:

- All blue-blue, blue-purple and purple-purple incidences from C.
- G and $ch(G \cup \{p\})$, for all purple G in C.
- $-ch(F \cup \{p\})$ and $ch(G \cup \{p\})$, for all purple F and G incident in C.

COMPUTING *d*-DIMENSIONAL CONVEX HULLS

Let C be a convex polytope and p a point in general position with respect to C.

Lemma 1: Every face of $ch(C \cup \{p\})$ is either a blue or purple face of C or the convex hull $ch(G \cup \{p\})$ of p and a purple face G of C.

Lemma 2: Incidences in $ch(C \cup \{p\})$ are:

- All blue-blue, blue-purple and purple-purple incidences from C.
- G and $ch(G \cup \{p\})$, for all purple G in C.

 $-ch(F \cup \{p\})$ and $ch(G \cup \{p\})$, for all purple F and G incident in C.

Lemma 3: The set of red facets is connected. The set of blue facets is connected too.

Proof: If d = 2, this is a well known fact. Otherwise, let r_1 and r_2 be two points in E^d on two different red (blue) facets of C. The plane π spanned by p, r_1, r_2 intersects C in a 2-polytope, where the set of all red (blue) edges is connected. Therefore, there exists a red (blue) path connecting r_1 and r_1 in $\pi \cap C \subset C$.

COMPUTING *d*-**DIMENSIONAL CONVEX HULLS**

Let C be a convex polytope and p a point in general position with respect to C.

Lemma 1: Every face of $ch(C \cup \{p\})$ is either a blue or purple face of C or the convex hull $ch(G \cup \{p\})$ of p and a purple face G of C.

Lemma 2: Incidences in $ch(C \cup \{p\})$ are:

- All blue-blue, blue-purple and purple-purple incidences from C.
- G and $ch(G \cup \{p\})$, for all purple G in C.

 $-ch(F \cup \{p\})$ and $ch(G \cup \{p\})$, for all purple F and G incident in C.

Lemma 3: The set of red facets is connected. The set of blue facets is connected too.

Lemma 4: The set of purple faces is isomorphic to a (d-1)-politope of at most n vertices.

Proof: Any hyperplane H separating p from C intersects all the faces of $ch(C \cup \{p\})$ containing p (except for the vertex p) and those faces only. The trace in H of these faces is a (d-1)-polytope whose incidences correspond to incidences in C.

COMPUTING *d*-**DIMENSIONAL CONVEX HULLS**

Input: $p_1, \ldots, p_n \in E^d$ **Output:** Incidence graph of $ch(\{p_1, \ldots, p_n\})$

COMPUTING *d*-**DIMENSIONAL CONVEX HULLS**

Input: $p_1, \ldots, p_n \in E^d$ **Output:** Incidence graph of $ch(\{p_1, \ldots, p_n\})$

Algorithm

- 1. Lexicographically sort the points.
- 2. Initialize $C_{d+1} = simplex (p_1, \dots, p_{d+1}) = ch(\{p_1, \dots, p_{d+1}\})$
- 3. Construct $C_{i+1} = ch(\{p_1, \ldots, p_{i+1}\})$ from $C_i = ch(\{p_1, \ldots, p_i\})$.
 - 1. Identify a red facet of C_i as seen from p_{i+1} .
 - 2. Construct three lists, respectively containing all red facets, all (d-2) red faces, and all (d-2) purple faces.
 - 3. Construct two more lists, respectively containing all remaining red faces, and all remaining purple faces.
 - 4. Update the incidence graph.

COMPUTING *d*-**DIMENSIONAL CONVEX HULLS**

Input: $p_1, \ldots, p_n \in E^d$ **Output:** Incidence graph of $ch(\{p_1, \ldots, p_n\})$

Algorithm

- 1. Lexicographically sort the points.
- 2. Initialize $C_{d+1} = simplex (p_1, \ldots, p_{d+1}) = ch(\{p_1, \ldots, p_{d+1}\})$
- 3. Construct $C_{i+1} = ch(\{p_1, \ldots, p_{i+1}\})$ from $C_i = ch(\{p_1, \ldots, p_i\})$.
 - 1. Identify a red facet of C_i as seen from p_{i+1} .

Explore all facets incident to p_i (the last inserted point). Due to the lexicographical order of the points, at least one of them needs to be red.

COMPUTING *d*-**DIMENSIONAL CONVEX HULLS**

Input: $p_1, \ldots, p_n \in E^d$ **Output:** Incidence graph of $ch(\{p_1, \ldots, p_n\})$

Algorithm

- 1. Lexicographically sort the points.
- 2. Initialize $C_{d+1} = simplex (p_1, \dots, p_{d+1}) = ch(\{p_1, \dots, p_{d+1}\})$
- 3. Construct $C_{i+1} = ch(\{p_1, \ldots, p_{i+1}\})$ from $C_i = ch(\{p_1, \ldots, p_i\})$.
 - 1. Identify a red facet of C_i as seen from p_{i+1} .
 - 2. Construct three lists, respectively containing all red facets, all (d-2) red faces, and all (d-2) purple faces.

A deptf-first search allows to find all red facets and classify all (d-2)-faces into red and purple.

COMPUTING *d*-**DIMENSIONAL CONVEX HULLS**

Input: $p_1, \ldots, p_n \in E^d$ **Output:** Incidence graph of $ch(\{p_1, \ldots, p_n\})$

Algorithm

- 1. Lexicographically sort the points.
- 2. Initialize $C_{d+1} = simplex (p_1, \dots, p_{d+1}) = ch(\{p_1, \dots, p_{d+1}\})$
- 3. Construct $C_{i+1} = ch(\{p_1, \ldots, p_{i+1}\})$ from $C_i = ch(\{p_1, \ldots, p_i\})$.
 - 1. Identify a red facet of C_i as seen from p_{i+1} .
 - 2. Construct three lists, respectively containing all red facets, all (d-2) red faces, and all (d-2) purple faces.
 - 3. Construct two more lists, respectively containing all remaining red faces, and all remaining purple faces.

Once all red and purple faces have been classified from dimension d-1 down to dimension k+1, all k-subfaces of purple (k+1)-faces are declared purple. Once this done, all unclassified k-subfaces of red (k+1)-faces are declared red.

COMPUTING *d*-**DIMENSIONAL CONVEX HULLS**

Input: $p_1, \ldots, p_n \in E^d$ **Output:** Incidence graph of $ch(\{p_1, \ldots, p_n\})$

Algorithm

- 1. Lexicographically sort the points.
- 2. Initialize $C_{d+1} = simplex (p_1, \dots, p_{d+1}) = ch(\{p_1, \dots, p_{d+1}\})$
- 3. Construct $C_{i+1} = ch(\{p_1, \ldots, p_{i+1}\})$ from $C_i = ch(\{p_1, \ldots, p_i\})$.
 - 1. Identify a red facet of C_i as seen from p_{i+1} .
 - 2. Construct three lists, respectively containing all red facets, all (d-2) red faces, and all (d-2) purple faces.
 - 3. Construct two more lists, respectively containing all remaining red faces, and all remaining purple faces.
 - 4. Update the incidence graph.

Fist, all red faces are eliminated from the incidence graph (both nodes and incident arcs). Then, starting from k = 0, if F is a purple k-face a new node is created for the (k + 1)-face $ch(F \cup \{p\})$. This new node is connected to F and also to all the k-faces of the form $ch(G \cup \{p\})$, where G is a (k - 1)-subface of F.

COMPUTING *d*-**DIMENSIONAL CONVEX HULLS**

Input: $p_1, \ldots, p_n \in E^d$ **Output:** Incidence graph of $ch(\{p_1, \ldots, p_n\})$

Algorithm

Analysis

- 1. Lexicographically sort the points.
- 2. Initialize $C_{d+1} = simplex(p_1, ..., p_{d+1}) = ch(\{p_1, ..., p_{d+1}\})$
- 3. Construct $C_{i+1} = ch(\{p_1, \ldots, p_{i+1}\})$ from $C_i = ch(\{p_1, \ldots, p_i\})$.
 - 1. Identify a red facet of C_i as seen from p_{i+1} .
 - 2. Construct three lists, respectively containing all red facets, all (d-2) red faces, and all (d-2) purple faces.
 - 3. Construct two more lists, respectively containing all remaining red faces, and all remaining purple faces.
 - 4. Update the incidence graph.

COMPUTING *d*-**DIMENSIONAL CONVEX HULLS**

Input: $p_1, \ldots, p_n \in E^d$ **Output:** Incidence graph of $ch(\{p_1, \ldots, p_n\})$

Algorithm

- 1. Lexicographically sort the points.
- 2. Initialize $C_{d+1} = simplex(p_1, \dots, p_{d+1}) = ch(\{p_1, \dots, p_{d+1}\})$
- 3. Construct $C_{i+1} = ch(\{p_1, \ldots, p_{i+1}\})$ from $C_i = ch(\{p_1, \ldots, p_i\})$.
 - 1. Identify a red facet of C_i as seen from p_{i+1} .
 - 2. Construct three lists, respectively containing all red facets, all (d-2) red faces, and all (d-2) purple faces.
 - 3. Construct two more lists, respectively containing all remaining red faces, and all remaining purple faces.
 - 4. Update the incidence graph.

Analysis

 $O(n \log n)$

COMPUTING *d*-**DIMENSIONAL CONVEX HULLS**

Input: $p_1, \ldots, p_n \in E^d$ **Output:** Incidence graph of $ch(\{p_1, \ldots, p_n\})$

Algorithm

- 1. Lexicographically sort the points.
- 2. Initialize $C_{d+1} = simplex (p_1, \dots, p_{d+1}) = ch(\{p_1, \dots, p_{d+1}\})$ O(1)
- 3. Construct $C_{i+1} = ch(\{p_1, \ldots, p_{i+1}\})$ from $C_i = ch(\{p_1, \ldots, p_i\})$.
 - 1. Identify a red facet of C_i as seen from p_{i+1} .
 - 2. Construct three lists, respectively containing all red facets, all (d-2) red faces, and all (d-2) purple faces.
 - 3. Construct two more lists, respectively containing all remaining red faces, and all remaining purple faces.
 - 4. Update the incidence graph.

Analysis

 $O(n\log n)$

COMPUTING *d*-**DIMENSIONAL CONVEX HULLS**

Input: $p_1, \ldots, p_n \in E^d$ **Output:** Incidence graph of $ch(\{p_1, \ldots, p_n\})$

Algorithm

- 1. Lexicographically sort the points.
- 2. Initialize $C_{d+1} = simplex (p_1, \dots, p_{d+1}) = ch(\{p_1, \dots, p_{d+1}\})$ O(1)
- 3. Construct $C_{i+1} = ch(\{p_1, \ldots, p_{i+1}\})$ from $C_i = ch(\{p_1, \ldots, p_i\})$.
 - 1. Identify a red facet of C_i as seen from p_{i+1} .
 - 2. Construct three lists, respectively containing all red facets, all (d-2) red faces, and all (d-2) purple faces.
 - 3. Construct two more lists, respectively containing all remaining red faces, and all remaining purple faces.
 - 4. Update the incidence graph.

Analysis

 $O(n \log n)$ O(1)

Linear in #facets created in step i.

COMPUTING *d*-**DIMENSIONAL CONVEX HULLS**

Input: $p_1, \ldots, p_n \in E^d$ Output: Incidence graph of $ch(\{p_1, \ldots, p_n\})$

Algorithm

- 1. Lexicographically sort the points.
- 2. Initialize $C_{d+1} = simplex (p_1, \dots, p_{d+1}) = ch(\{p_1, \dots, p_{d+1}\})$
- 3. Construct $C_{i+1} = ch(\{p_1, \ldots, p_{i+1}\})$ from $C_i = ch(\{p_1, \ldots, p_i\})$.
 - 1. Identify a red facet of C_i as seen from p_{i+1} .
 - 2. Construct three lists, respectively containing all red facets, all (d-2) red faces, and all (d-2) purple faces.
 - 3. Construct two more lists, respectively containing all remaining red faces, and all remaining purple faces.
 - 4. Update the incidence graph.

Analysis

 $O(n\log n)$ O(1)

Linear in #facets created in step i.

Linear in #red facets of C_i and their adjacencies.

Input: $p_1, \ldots, p_n \in E^d$ Output: Incidence graph of $ch(\{p_1, \ldots, p_n\})$

Algorithm

- 1. Lexicographically sort the points.
- 2. Initialize $C_{d+1} = simplex(p_1, \dots, p_{d+1}) = ch(\{p_1, \dots, p_{d+1}\})$
- 3. Construct $C_{i+1} = ch(\{p_1, \ldots, p_{i+1}\})$ from $C_i = ch(\{p_1, \ldots, p_i\})$.
 - 1. Identify a red facet of C_i as seen from p_{i+1} .
 - 2. Construct three lists, respectively containing all red facets, all (d-2) red faces, and all (d-2) purple faces.
 - 3. Construct two more lists, respectively containing all remaining red faces, and all remaining purple faces.
 - 4. Update the incidence graph.

Analysis

 $O(n\log n)$ O(1)

Linear in #facets created in step i.

Linear in #red facets of C_i and their adjacencies.

Linear in #red-red and red-purple incidences in C_i .

Input: $p_1, \ldots, p_n \in E^d$ Output: Incidence graph of $ch(\{p_1, \ldots, p_n\})$

Algorithm

- 1. Lexicographically sort the points.
- 2. Initialize $C_{d+1} = simplex(p_1, \dots, p_{d+1}) = ch(\{p_1, \dots, p_{d+1}\})$
- 3. Construct $C_{i+1} = ch(\{p_1, \ldots, p_{i+1}\})$ from $C_i = ch(\{p_1, \ldots, p_i\})$.
 - 1. Identify a red facet of C_i as seen from p_{i+1} .
 - 2. Construct three lists, respectively containing all red facets, all (d-2) red faces, and all (d-2) purple faces.
 - 3. Construct two more lists, respectively containing all remaining red faces, and all remaining purple faces.
 - 4. Update the incidence graph.

Analysis

 $O(n\log n)$ O(1)

Linear in #facets created in step i.

Linear in #red facets of C_i and their adjacencies.

Linear in #red-red and red-purple incidences in C_i .

Linear in #red faces and their incidences and purple faces and their purple incidences.

Input: $p_1, \ldots, p_n \in E^d$ Output: Incidence graph of $ch(\{p_1, \ldots, p_n\})$

Algorithm

- 1. Lexicographically sort the points.
- 2. Initialize $C_{d+1} = simplex(p_1, ..., p_{d+1}) = ch(\{p_1, ..., p_{d+1}\})$
- 3. Construct $C_{i+1} = ch(\{p_1, \ldots, p_{i+1}\})$ from $C_i = ch(\{p_1, \ldots, p_i\})$.
 - 1. Identify a red facet of C_i as seen from p_{i+1} .
 - 2. Construct three lists, respectively containing all red facets, all (d-2) red faces, and all (d-2) purple faces.
 - 3. Construct two more lists, respectively containing all remaining red faces, and all remaining purple faces.
 - 4. Update the incidence graph.

Analysis

 $O(n\log n)$ O(1)

Proportional to the number of faces and incidences created along the algorithm.

Input: $p_1, \ldots, p_n \in E^d$ **Output:** Incidence graph of $ch(\{p_1, \ldots, p_n\})$

Algorithm

- 1. Lexicographically sort the points.
- 2. Initialize $C_{d+1} = simplex (p_1, \dots, p_{d+1}) = ch(\{p_1, \dots, p_{d+1}\})$
- 3. Construct $C_{i+1} = ch(\{p_1, \ldots, p_{i+1}\})$ from $C_i = ch(\{p_1, \ldots, p_i\})$.
 - 1. Identify a red facet of C_i as seen from p_{i+1} .
 - 2. Construct three lists, respectively containing all red facets, all (d-2) red faces, and all (d-2) purple faces.
 - 3. Construct two more lists, respectively containing all remaining red faces, and all remaining purple faces.
 - 4. Update the incidence graph.

Analysis

 $O(n\log n)$ O(1)

Proportional to the number of faces and incidences created along the algorithm.

$$\sum_{i=1}^n O(i^{\lfloor \frac{d-1}{2} \rfloor}) = O(n^{\lfloor \frac{d+1}{2} \rfloor})$$

Input: $p_1, \ldots, p_n \in E^d$ Output: Incidence graph of $ch(\{p_1, \ldots, p_n\})$

Algorithm

- 1. Lexicographically sort the points.
- 2. Initialize $C_{d+1} = simplex (p_1, \dots, p_{d+1}) = ch(\{p_1, \dots, p_{d+1}\})$
- 3. Construct $C_{i+1} = ch(\{p_1, \ldots, p_{i+1}\})$ from $C_i = ch(\{p_1, \ldots, p_i\})$.
 - 1. Identify a red facet of C_i as seen from p_{i+1} .
 - 2. Construct three lists, respectively containing all red facets, all (d-2) red faces, and all (d-2) purple faces.
 - 3. Construct two more lists, respectively containing all remaining red faces, and all remaining purple faces.
 - 4. Update the incidence graph.

Analysis

 $O(n\log n)$ O(1)

Proportional to the number of faces and incidences created along the algorithm.

$$\sum_{i=1}^n O(i^{\lfloor \frac{d-1}{2} \rfloor}) = O(n^{\lfloor \frac{d+1}{2} \rfloor})$$

And the space used is $O(n^{\lfloor \frac{d}{2} \rfloor})$

Input: $p_1, \ldots, p_n \in E^d$ Output: Incidence graph of $ch(\{p_1, \ldots, p_n\})$

Algorithm

- 1. Lexicographically sort the points.
- 2. Initialize $C_{d+1} = simplex (p_1, \dots, p_{d+1}) = ch(\{p_1, \dots, p_{d+1}\})$
- 3. Construct $C_{i+1} = ch(\{p_1, \ldots, p_{i+1}\})$ from $C_i = ch(\{p_1, \ldots, p_i\})$.
 - 1. Identify a red facet of C_i as seen from p_{i+1} .
 - 2. Construct three lists, respectively containing all red facets, all (d-2) red faces, and all (d-2) purple faces.
 - 3. Construct two more lists, respectively containing all remaining red faces, and all remaining purple faces.
 - 4. Update the incidence graph.

Analysis

 $O(n\log n)$ O(1)

Proportional to the number of faces and incidences created along the algorithm.

$$\sum_{i=1}^n O(i^{\lfloor \frac{d-1}{2} \rfloor}) = O(n^{\lfloor \frac{d+1}{2} \rfloor})$$

And the space used is $O(n^{\lfloor \frac{d}{2} \rfloor})$

This is optimal when n is even.

FURTHER READING

J.-D. Boissonat. M. Yvinec, Algorithmic Geometry, Cambridge University Press, 1998.