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STORING A CONVEX POLYHEDRON

Planarity: Any convex polyhedron is a planar graph.

Proof: Consider a convex polyhedron P . Let p be a point in the interior of P and S be a sphere

containing P . Due to its convexity, the central projection of P from p onto S is a graph G1 isomorphic

to P . Let q be a point in S interior to a face of G1 and π be the plane tangent to S in the point

diametrically opposed to q. The stereographic projection of S from q onto π maps G1 into a graph G2

which is isomorphic to G1 and plane. Therefore, P is a planar graph.
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Euler’s relation: If G is a connected planar graph with v vertices, e edges, and f faces, v + f = e + 2.
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Proof: Consider a convex polyhedron P . Let p be a point in the interior of P and S be a sphere

containing P . Due to its convexity, the central projection of P from p onto S is a graph G1 isomorphic

to P . Let q be a point in S interior to a face of G1 and π be the plane tangent to S in the point

diametrically opposed to q. The stereographic projection of S from q onto π maps G1 into a graph G2

which is isomorphic to G1 and plane. Therefore, P is a planar graph.

Euler’s relation: If G is a connected planar graph with v vertices, e edges, and f faces, v + f = e + 2.

Proof: If G is a tree, we proceed by induction on v. If v = 1, then e = 0, f = 1 and the relation holds.

If G has v > 1 vertices, let G′ be the result of eliminating a leaf from G, together with its incident edge.

By inductive hypothesis: v + f = (v′ + 1) + f ′ = (e′ + 1) + 2 = e + 2.

For arbitrary graphs, we apply induction on e. If G contains a cycle, let G′ be the result of removing an

edge from a cycle of G. By inductive hypothesis, v + f = v′ + (f ′ + 1) = (e′ + 1) + 2 = e + 2.
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Complexity: Any connected planar graph with n vertices has at most 3n− 6 vertices and 2n− 4 faces.



CONVEX HULLS IN 3D

Discrete and Algorithmic Geometry, Facultat de Matemàtiques i Estad́ıstica, UPC
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For arbitrary graphs, we apply induction on e. If G contains a cycle, let G′ be the result of removing an

edge from a cycle of G. By inductive hypothesis, v + f = v′ + (f ′ + 1) = (e′ + 1) + 2 = e + 2.

Complexity: Any connected planar graph with n vertices has at most 3n− 6 vertices and 2n− 4 faces.

Proof: The sum of the complexities of all faces is 2e, and each face has at least 3 edges. Therefore:

2e ≥ 3f . Plugging this inequation into Euler’s relation: 3
2f + 2 ≤ e + 2 = v + f ≤ v + 2

3e, from where

we obtain the desired result.
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If G has v > 1 vertices, let G′ be the result of eliminating a leaf from G, together with its incident edge.

By inductive hypothesis: v + f = (v′ + 1) + f ′ = (e′ + 1) + 2 = e + 2.

For arbitrary graphs, we apply induction on e. If G contains a cycle, let G′ be the result of removing an

edge from a cycle of G. By inductive hypothesis, v + f = v′ + (f ′ + 1) = (e′ + 1) + 2 = e + 2.

Complexity: Any connected planar graph with n vertices has at most 3n− 6 vertices and 2n− 4 faces.

Proof: The sum of the complexities of all faces is 2e, and each face has at least 3 edges. Therefore:

2e ≥ 3f . Plugging this inequation into Euler’s relation: 3
2f + 2 ≤ e + 2 = v + f ≤ v + 2

3e, from where

we obtain the desired result.

Corollary: The convex hull of n points in E3 is a convex polyhedron wich can be stored in a DCEL using

O(n) space.
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Algorithm

Input: p1, . . . , pn ∈ R3

Output: ch(p1, . . . , pn)

1. Initialization

Sort p1, . . . , pn by abscissa.

2. Division

Partition set P = {p1, . . . , pn} into two

equally sized subsets P1 and P2 by means

of a vertical plane h0.

3. Recursion

Compute C1 = ch(P1) and C2 = ch(P2).

4. Merging

Compute C = ch(C1 ∪ C2).
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These bounds are optimal.
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Notation

• Faces of C1 and C2 that appear in C are called blue.

• Faces of C1 and C2 that do not appear in C are called red.

• Edges and vertices are colored with the intersection color

(blue, red and purple) of their incident faces.
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a

Vertex a is not incident to any purple edge.

Purple is not connected.



CONVEX HULLS IN 3D

Discrete and Algorithmic Geometry, Facultat de Matemàtiques i Estad́ıstica, UPC
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COMPUTING A CONVEX HULL IN 3D
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• Faces of C1 and C2 that appear in C are called blue.

• Faces of C1 and C2 that do not appear in C are called red.

• Edges and vertices are colored with the intersection color

(blue, red and purple) of their incident faces.

Be careful!

Vertex a is not incident to any purple edge.

Purple is not connected.

Vertex p is incident to more than 2 purple edges

Edge pq is incident to two red faces

There are no blue faces

p

q
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Notation

• Faces of C1 and C2 that appear in C are called blue.

• Faces of C1 and C2 that do not appear in C are called red.

• Edges and vertices are colored with the intersection color

(blue, red and purple) of their incident faces.

Be careful!

Vertex a is not incident to any purple edge.

Purple is not connected.

Vertex p is incident to more than 2 purple edges

Edge pq is incident to two red faces

There are no blue faces

Corollary

It is not always true that the purple edges and vertices form a cycle.
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Proposition 1

The edges of C \ C1 ∪ C2 are the convex hull of two purple vertices, one from C1 and the other from C2.

The faces of C \C1 ∪C2 are the convex hull of a purple vertex from Ci and a purple edge from Cj, i 6= j.

COMPUTING A CONVEX HULL IN 3D
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The edges of C \ C1 ∪ C2 are the convex hull of two purple vertices, one from C1 and the other from C2.

The faces of C \C1 ∪C2 are the convex hull of a purple vertex from Ci and a purple edge from Cj, i 6= j.

Proposition 2

Let h0 be a plane separating C1 from C2. The faces and edges of C \ C1 ∪ C2 intersect h0 in a convex

polygon C0, and the circular order on the edges and vertices of C0 induce a circular order on the faces and

edges of C \ C1 ∪ C2.

COMPUTING A CONVEX HULL IN 3D
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Merging algorithm

1. Find an edge of C \ C1 ∪ C2

2. Find the remaining new faces and

edges in the order induced by C0

3. Identify the red faces, edges and

vertices and update the DCEL

h0
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COMPUTING A CONVEX HULL IN 3D

Step 1: Finding the first new edge



CONVEX HULLS IN 3D

Discrete and Algorithmic Geometry, Facultat de Matemàtiques i Estad́ıstica, UPC

COMPUTING A CONVEX HULL IN 3D

Step 1: Finding the first new edge

1. Orthogonally project C1 and C2 onto the plane z = 0. Let C ′1 and C ′2 respectively be their projections.

- The vertex v of greatest abscissa in Ci projects onto the vertex v′ of greatest abscissa in C ′i.

- The following vertex of C ′i is the projection of one of the neigbors of v in Ci.

2. Find v′1v
′
2, one of the external bitangents of C ′1 and C ′2.

3. Then v1v2 is an edge of C \ C1 ∪ C2.
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Step 1: Finding the first new edge

Running time: O(n)

1. Orthogonally project C1 and C2 onto the plane z = 0. Let C ′1 and C ′2 respectively be their projections.

- The vertex v of greatest abscissa in Ci projects onto the vertex v′ of greatest abscissa in C ′i.

- The following vertex of C ′i is the projection of one of the neigbors of v in Ci.

2. Find v′1v
′
2, one of the external bitangents of C ′1 and C ′2.

3. Then v1v2 is an edge of C \ C1 ∪ C2.
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COMPUTING A CONVEX HULL IN 3D

Step 1: Finding the first new edge

Running time: O(n)

1. Orthogonally project C1 and C2 onto the plane z = 0. Let C ′1 and C ′2 respectively be their projections.

- The vertex v of greatest abscissa in Ci projects onto the vertex v′ of greatest abscissa in C ′i.

- The following vertex of C ′i is the projection of one of the neigbors of v in Ci.

2. Find v′1v
′
2, one of the external bitangents of C ′1 and C ′2.

3. Then v1v2 is an edge of C \ C1 ∪ C2.

1. Each edge of Ci is tested at most twice.

2. Common external tangents can be found in linear time.

3. Retrieving vi from v′i is done in constant time.
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Step 2: Finding the remaining new faces and edges in the order induced by C0
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Let v1v2 be the last discovered new edge (vi ∈ Ci).

v1
v2

Step 2: Finding the remaining new faces and edges in the order induced by C0
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COMPUTING A CONVEX HULL IN 3D

Let v1v2 be the last discovered new edge (vi ∈ Ci).

v1
v2

Let π be:

- If v1v2 is the first edge, π is the plane through v1, v2, v
′
1, v
′
2.

- Otherwise, π is the plane containing the last discovered new face, which is incident to v1v2 on its left.

Step 2: Finding the remaining new faces and edges in the order induced by C0
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Let v1v2 be the last discovered new edge (vi ∈ Ci).

The next new face found is v1v2w. It is incident to v1v2 on its right, and w is the neighbor of either v1 or

v2 forming smaller angle with π.

v1
v2

w

Let π be:

- If v1v2 is the first edge, π is the plane through v1, v2, v
′
1, v
′
2.

- Otherwise, π is the plane containing the last discovered new face, which is incident to v1v2 on its left.

Step 2: Finding the remaining new faces and edges in the order induced by C0
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Let v1v2 be the last discovered new edge (vi ∈ Ci).

The next new face found is v1v2w. It is incident to v1v2 on its right, and w is the neighbor of either v1 or

v2 forming smaller angle with π.

v1
v2

w

Let π be:

- If v1v2 is the first edge, π is the plane through v1, v2, v
′
1, v
′
2.

- Otherwise, π is the plane containing the last discovered new face, which is incident to v1v2 on its left.

Can we avoid checking all neighbors of vi again and again?

Step 2: Finding the remaining new faces and edges in the order induced by C0
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Lemma 1

There is only one possible candidate wi ∈ Ci and it can be caracterized locally.

Step 2: Finding the remaining new faces and edges in the order induced by C0
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Lemma 1

There is only one possible candidate wi ∈ Ci and it can be caracterized locally.

Proof: WLG, let w1 be a vertex adjacent to v1. Let p(w1), s(w1) respectively be its predecessor and its

successor in the circular order about v1. Let h1 be the plane v1w1v2. Among the two halfspaces defined by

h1 let h+1 be the one opposite to vector n = v1w1 ∧ v1v2. If w1 is a candidate, then h1 supports C1 and

v2. Therefore p(w1), s(w1) ∈ h+1 . Reciprocally, if p(w1), s(w1) ∈ h+1 then v1w1p(w1) and v1w1s(w1) both

support C1. Therefore also h1 supports C1.

v1
v2

w

Step 2: Finding the remaining new faces and edges in the order induced by C0
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Lemma 1

There is only one possible candidate wi ∈ Ci and it can be caracterized locally.

Proof: WLG, let w1 be a vertex adjacent to v1. Let p(w1), s(w1) respectively be its predecessor and its

successor in the circular order about v1. Let h1 be the plane v1w1v2. Among the two halfspaces defined by

h1 let h+1 be the one opposite to vector n = v1w1 ∧ v1v2. If w1 is a candidate, then h1 supports C1 and

v2. Therefore p(w1), s(w1) ∈ h+1 . Reciprocally, if p(w1), s(w1) ∈ h+1 then v1w1p(w1) and v1w1s(w1) both

support C1. Therefore also h1 supports C1.

Lemma 2

When vi is incident to several new edges, the successive candidates are found in circular order about vi.

Step 2: Finding the remaining new faces and edges in the order induced by C0
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Lemma 1

There is only one possible candidate wi ∈ Ci and it can be caracterized locally.

Proof: WLG, let w1 be a vertex adjacent to v1. Let p(w1), s(w1) respectively be its predecessor and its

successor in the circular order about v1. Let h1 be the plane v1w1v2. Among the two halfspaces defined by

h1 let h+1 be the one opposite to vector n = v1w1 ∧ v1v2. If w1 is a candidate, then h1 supports C1 and

v2. Therefore p(w1), s(w1) ∈ h+1 . Reciprocally, if p(w1), s(w1) ∈ h+1 then v1w1p(w1) and v1w1s(w1) both

support C1. Therefore also h1 supports C1.

Lemma 2

When vi is incident to several new edges, the successive candidates are found in circular order about vi.

Proof: WLG, v1 can be separated from the

remaining vertices of C1 and C2 by a plane h1, wich

intersects all the edges of C1 and C incident to v1
forming two convex polygons. The circular order of

the vertices of C1 ∩ h1 and C ∩ h1 is the same, and

it also coincides with the circular order of C ∩ h0.

v1

h0

h1

Step 2: Finding the remaining new faces and edges in the order induced by C0
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Step 2: Finding the remaining new faces and edges in the order induced by C0

At each step:

1. From face uv1v2 find the best candidates w1, adjacent to v1 and w2 adjacent to v2.

2. Choose w to be the best of w1 and w2.

3. You have found:

- a purple vertex w

- a purple edge viw

- a new face v1v2w

that can be added to the DCEL.

v1
v2

w
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Step 2: Finding the remaining new faces and edges in the order induced by C0

At each step:

1. From face uv1v2 find the best candidates w1, adjacent to v1 and w2 adjacent to v2.

2. Choose w to be the best of w1 and w2.

3. You have found:

- a purple vertex w

- a purple edge viw

- a new face v1v2w

that can be added to the DCEL.

v1
v2

w

Running time: O(n)

At each step, the neighbors of vi are tested in order (Lemma 2) and ecah test takes O(1) time (Lemma 1).
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Step 2: Finding the remaining new faces and edges in the order induced by C0

At each step:

1. From face uv1v2 find the best candidates w1, adjacent to v1 and w2 adjacent to v2.

2. Choose w to be the best of w1 and w2.

3. You have found:

- a purple vertex w

- a purple edge viw

- a new face v1v2w

that can be added to the DCEL.

v1
v2

w

Running time: O(n)

At each step, the neighbors of vi are tested in order (Lemma 2) and ecah test takes O(1) time (Lemma 1).

Step 3: Identify the red faces, edges and vertices, and update the DCEL
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Step 2: Finding the remaining new faces and edges in the order induced by C0

At each step:

1. From face uv1v2 find the best candidates w1, adjacent to v1 and w2 adjacent to v2.

2. Choose w to be the best of w1 and w2.

3. You have found:

- a purple vertex w

- a purple edge viw

- a new face v1v2w

that can be added to the DCEL.

v1
v2

w

Running time: O(n)

At each step, the neighbors of vi are tested in order (Lemma 2) and ecah test takes O(1) time (Lemma 1).

Step 3: Identify the red faces, edges and vertices, and update the DCEL

In the previous step, each time a purple edge is found, its incident faces are labelled blue or red.
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Step 2: Finding the remaining new faces and edges in the order induced by C0

At each step:

1. From face uv1v2 find the best candidates w1, adjacent to v1 and w2 adjacent to v2.

2. Choose w to be the best of w1 and w2.

3. You have found:

- a purple vertex w

- a purple edge viw

- a new face v1v2w

that can be added to the DCEL.

v1
v2

w

Running time: O(n)

At each step, the neighbors of vi are tested in order (Lemma 2) and ecah test takes O(1) time (Lemma 1).

Step 3: Identify the red faces, edges and vertices, and update the DCEL

In the previous step, each time a purple edge is found, its incident faces are labelled blue or red.

In this step:

1. All unlabelled faces adjacent to a red face are recursively labelled red.

2. All unlabelled edges incident to a red face are labelled red.

3. All unlabelled vertex incident to a red or purple edge is labelled red.

4. Remove all red faces, edges and vertices from the DCEL.
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Step 2: Finding the remaining new faces and edges in the order induced by C0

At each step:

1. From face uv1v2 find the best candidates w1, adjacent to v1 and w2 adjacent to v2.

2. Choose w to be the best of w1 and w2.

3. You have found:

- a purple vertex w

- a purple edge viw

- a new face v1v2w

that can be added to the DCEL.

v1
v2

w

Running time: O(n)

At each step, the neighbors of vi are tested in order (Lemma 2) and ecah test takes O(1) time (Lemma 1).

Step 3: Identify the red faces, edges and vertices, and update the DCEL

In the previous step, each time a purple edge is found, its incident faces are labelled blue or red.

In this step:

1. All unlabelled faces adjacent to a red face are recursively labelled red.

2. All unlabelled edges incident to a red face are labelled red.

3. All unlabelled vertex incident to a red or purple edge is labelled red.

4. Remove all red faces, edges and vertices from the DCEL.

Running time: O(n)
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Algorithm

Input: p1, . . . , pn ∈ R3

Output: ch(p1, . . . , pn)

1. Initialization

Sort p1, . . . , pn by abscissa.

2. Division

Partition set P = {p1, . . . , pn} into two equally sized subsets P1 and P2 by means of a vertical plane h0.

3. Recursion

Compute C1 = ch(P1) and C2 = ch(P2).

4. Merging

Compute C = ch(C1 ∪ C2).
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4. Merging
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1. Find an edge of C \ C1 ∪ C2

2. Find the remaining new faces and edges in the order induced by C0

3. Identify the red faces, edges and vertices and update the DCEL
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Partition set P = {p1, . . . , pn} into two equally sized subsets P1 and P2 by means of a vertical plane h0.
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1. Find an edge of C \ C1 ∪ C2

2. Find the remaining new faces and edges in the order induced by C0

3. Identify the red faces, edges and vertices and update the DCEL

O(n)
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Algorithm

Input: p1, . . . , pn ∈ R3

Output: ch(p1, . . . , pn)

1. Initialization

Sort p1, . . . , pn by abscissa.

2. Division

Partition set P = {p1, . . . , pn} into two equally sized subsets P1 and P2 by means of a vertical plane h0.

3. Recursion

Compute C1 = ch(P1) and C2 = ch(P2).

4. Merging

Compute C = ch(C1 ∪ C2).

Theorem: The algorithm computes the convex hull of n points in E3 in O(n log n) time and O(n) space.

These bounds are optimal.
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1. Find an edge of C \ C1 ∪ C2

2. Find the remaining new faces and edges in the order induced by C0

3. Identify the red faces, edges and vertices and update the DCEL

O(n)
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