Real-valued symmetric matrices always diagonalize

Vera Sacristán

Definition 1 The sum of two subspaces W_1 and W_2 of a vector space V is defined as $W = W_1 + W_2 = \{ w \in V \mid w = w_1 + w_2, w_1 \in W_1, w_2 \in W_2 \}.$

If $W_1 \cap W_2 = \{0\}$, the sum is called direct, and we write $W_1 \oplus W_2$.

Lemma 1 The sum $W_1 + W_2$ of two subspaces of a vector space V is a subspace of V.

Proof: Immediate. \Box

Definition 2 Let W be a subspace of an Euclidean vector space V. The subset of V orthogonal to W is defined as $W^{\perp} = \{v \in V \mid v \perp w \; \forall w \in W\}$.

Lemma 2 If W is a subspace of V, then the set W^{\perp} is a subspace of V.

Proof: Immediate. \Box

Theorem 3 If W is a subspace of an Euclidean vector space V, then $V = W \oplus W^{\perp}$.

Proof: The fact that $W \cap W^{\perp} = \{0\}$ is easy to prove: if $u \in W \cap W^{\perp}$ then $u \in W$ and $u \cdot w = 0$ for all $w \in W$. In particular, then, $u \cdot u = 0$ and we get u = 0. Therefore, the sum of W and W^{\perp} is direct. Trivially, $W \oplus W^{\perp} \subseteq V$. In order to prove that $V \subseteq W \oplus W^{\perp}$, consider w_1, \ldots, w_r an orthonormal basis of W which can be obtained using Gram-Schmidt method, for example. Let w_{r+1}, \ldots, w_n be its completion to an orthonormal basis of V, which can also be obtained using Gram-Schmidt method. It is immediate to prove that w_{r+1}, \ldots, w_n is a basis of W^{\perp} due to the orthonormality of the basis w_1, \ldots, w_n . Therefore, every vector $x \in V$ can be written as

$$x = \sum_{i=1}^{n} x_i w_i = \sum_{i=1}^{r} x_i w_i + \sum_{i=r+1}^{n} x_i w_i \in W \oplus W^{\perp}.$$

Lemma 4 Let f be an endomorphism in an Euclidean vector space V whose associated matrix in some orthonormal basis is symmetric. Then $f(u) \cdot v = u \cdot f(v) \ \forall u, v \in V$.

Proof: Let e_1, \ldots, e_n be the orthonormal basis in which f is represented by the symmetric matrix $A = (a_i^j)$. Due to the bilinearity of the dot product, we only need to prove that $f(e_i) \cdot e_j = e_i \cdot f(e_j) \ \forall i, j \in \{1, \ldots, n\}$:

$$f(e_i) \cdot e_j = \left(\sum_{k=1}^n a_k^i w_k\right) \cdot w_j = \sum_{k=1}^n a_k^i \delta_{k,j} = a_j^i$$

$$e_i \cdot f(e_j) = e_i \cdot \left(\sum_{k=1}^n a_k^j w_k\right) = \sum_{k=1}^n a_k^j \delta_{i,k} = a_i^j$$

Since A is symmetric, we obtain $f(e_i) \cdot e_j = a_j^i = a_i^j = e_i \cdot f(e_j) \ \forall i, j \in \{1, \dots, n\}.$

Proposition 5 Let A be a symmetric matrix of size n with real coefficients, and let $\lambda_1, \ldots, \lambda_r$ be its eigenvalues, with multiplicities k_1, \ldots, k_r , respectively. Then $\lambda_i \in \mathbb{R} \ \forall i \in \{1, \ldots, r\}$ and $\sum_{i=1}^r k_i = n$.

Proof: Let us consider $A \in M_n(\mathbb{R}) \subset M_n(\mathbb{C})$. The Fundamental Theorem of Algebra guarantees that the characteristic polynomial of A has complex roots $\lambda_1, \ldots, \lambda_r$, with multiplicities k_1, \ldots, k_r respectively, and $\sum_{i=1}^r k_i = n$. We will prove that $\lambda_i \in \mathbb{R}$ for all $i \in \{1, \ldots, r\}$. Indeed, if $z = (z_1, \ldots, z_n)$ is a (complex) eigenvector of eigenvalue λ , we have $Az = \lambda z$. Since the coefficients of A are real numbers, when we conjugate the previous equality we obtain that $\overline{\lambda}\overline{z} = \overline{A}\overline{z} = A\overline{z}$. In other words, \overline{z} is an eigenvector of A with eigenvalue $\overline{\lambda}$. Then,

$$\lambda |z| = \lambda \overline{z}^T z = \overline{z}^T \lambda z = \overline{z}^T A z = \overline{z}^T A^T z = (z^T A \overline{z})^T \stackrel{*}{=} z^T A \overline{z} = z^T \overline{\lambda} \overline{z} = \overline{\lambda} z^T \overline{z} = \overline{\lambda} |z|,$$

where the starred equality holds because $\lambda |z| \in \mathbb{R}$. Hence, $\lambda = \overline{\lambda}$, and $\lambda \in \mathbb{R}$.

Theorem 6 Let V be an Euclidean real vector space V, and let A be a symmetric matrix. Then V admits a basis of orthonormal eigenvectors of A.

Proof: By induction over the dimension of V, denoted n. The base case corresponds to n=1 and is immediate: each non null vector is an eigenvector of A and can be normalized. The induction step is proved as follows: let $\lambda \in \mathbb{R}$ be an eigenvalue of A, and let v be a unit eigenvector for λ . We know that $\langle v \rangle \oplus \langle v \rangle^{\perp} = V$. We will prove that $\langle v \rangle^{\perp}$ is invariant under the endomorphism f associated to A. If $u \in \langle v \rangle^{\perp}$, then $u \cdot v = 0$. As a consequence, $f(u) \cdot v = u \cdot f(v) = u \cdot \lambda v = \lambda u \cdot v = 0$. This proves that $f(u) \in \langle v \rangle^{\perp}$. By inductive hypothesis, $\langle v \rangle^{\perp}$ has an orthonormal basis made of eigenvectors of f restricted to $\langle v \rangle^{\perp}$. Adding v to this basis we obtain an orthonormal basis made of eigenvectors of f.

Corollary 7 Let V be an Euclidean real vector space V, and let A be a symmetric matrix. Then A diagonalizes in orthonormal basis.

Proof: Immediate from Theorem 6. \Box