Real-valued symmetric matrices always diagonalize

Vera Sacristán

Definition 1 The sum of two subspaces \(W_1 \) and \(W_2 \) of a vector space \(V \) is defined as
\[
W = W_1 + W_2 = \{ w \in V \mid w = w_1 + w_2, w_1 \in W_1, w_2 \in W_2 \}.
\]
If \(W_1 \cap W_2 = \{0\} \), the sum is called direct, and we write \(W_1 \oplus W_2 \).

Lemma 1 The sum \(W_1 + W_2 \) of two subspaces of a vector space \(V \) is a subspace of \(V \).

Proof: Immediate. □

Definition 2 Let \(W \) be a subspace of an Euclidean vector space \(V \). The subset of \(V \) orthogonal to \(W \) is defined as
\[
W^\perp = \{ v \in V \mid v \perp w \forall w \in W \}.
\]

Lemma 2 If \(W \) is a subspace of \(V \), then the set \(W^\perp \) is a subspace of \(V \).

Proof: Immediate. □

Theorem 3 If \(W \) is a subspace of an Euclidean vector space \(V \), then \(V = W \oplus W^\perp \).

Proof: The fact that \(W \cap W^\perp = \{0\} \) is easy to prove: if \(u \in W \cap W^\perp \) then \(u \in W \) and \(u \cdot w = 0 \) for all \(w \in W \). In particular, then, \(u \cdot u = 0 \) and we get \(u = 0 \). Therefore, the sum of \(W \) and \(W^\perp \) is direct. Trivially, \(W \oplus W^\perp \subseteq V \). In order to prove that \(V \subseteq W \oplus W^\perp \), consider \(w_1, \ldots, w_r \) an orthonormal basis of \(W \) which can be obtained using Gram-Schmidt method, for example. Let \(w_{r+1}, \ldots, w_n \) be its completion to an orthonormal basis of \(V \), which can also be obtained using Gram-Schmidt method. It is immediate to prove that \(w_{r+1}, \ldots, w_n \) is a basis of \(W^\perp \) due to the orthonormality of the basis \(w_1, \ldots, w_n \). Therefore, every vector \(x \in V \) can be written as
\[
x = \sum_{i=1}^n x_i w_i = \sum_{i=1}^r x_i w_i + \sum_{i=r+1}^n x_i w_i \in W \oplus W^\perp.
\]

□

Lemma 4 Let \(f \) be an endomorphism in an Euclidean vector space \(V \) whose associated matrix in some orthonormal basis is symmetric. Then \(f(u) \cdot v = u \cdot f(v) \forall u, v \in V \).

Proof: Let \(e_1, \ldots, e_n \) be the orthonormal basis in which \(f \) is represented by the symmetric matrix \(A = (a_{ij}) \). Due to the bilinearity of the dot product, we only need to prove that \(f(e_i) \cdot e_j = e_i \cdot f(e_j) \forall i, j \in \{1, \ldots, n\} \):
\[
f(e_i) \cdot e_j = \left(\sum_{k=1}^n a_{ik}^j w_k \right) \cdot w_j = \sum_{k=1}^n a_{ik}^j \delta_{k,j} = a_{ij}^j
\]
\[
e_i \cdot f(e_j) = e_i \cdot \left(\sum_{k=1}^n a_{ik}^j w_k \right) = \sum_{k=1}^n a_{ik}^j \delta_{i,k} = a_{ij}^j
\]

Since \(A \) is symmetric, we obtain \(f(e_i) \cdot e_j = a_{ij}^j = a_{ji}^j = e_i \cdot f(e_j) \forall i, j \in \{1, \ldots, n\} \). □
Proposition 5 Let A be a symmetric matrix of size n with real coefficients, and let $\lambda_1, \ldots, \lambda_r$ be its eigenvalues, with multiplicities k_1, \ldots, k_r, respectively. Then $\lambda_i \in \mathbb{R}$ for all $i \in \{1, \ldots, r\}$ and $\sum_{i=1}^r k_i = n$.

Proof: Let us consider $A \in M_n(\mathbb{R}) \subset M_n(\mathbb{C})$. The Fundamental Theorem of Algebra guarantees that the characteristic polynomial of A has complex roots $\lambda_1, \ldots, \lambda_r$, with multiplicities k_1, \ldots, k_r respectively, and $\sum_{i=1}^r k_i = n$. We will prove that $\lambda_i \in \mathbb{R}$ for all $i \in \{1, \ldots, r\}$. Indeed, if $z = (z_1, \ldots, z_n)$ is a (complex) eigenvector of eigenvalue λ, we have $Az = \lambda z$. Since the coefficients of A are real numbers, when we conjugate the previous equality we obtain that $\overline{\lambda} z = A \overline{z} = \overline{A} \overline{z}$. In other words, \overline{z} is an eigenvector of A with eigenvalue $\overline{\lambda}$. Then,

$$\lambda|z| = \lambda \overline{z}^T z = \overline{z}^T A \overline{z} = \overline{z}^T A z = (z^T A \overline{z})^T = z^T \overline{A} \overline{z} = \overline{z}^T \overline{A} \overline{z} = \overline{x}^T \overline{x} = \overline{\lambda}|z|,$$

where the starred equality holds because $\lambda|z| \in \mathbb{R}$. Hence, $\lambda = \overline{\lambda}$, and $\lambda \in \mathbb{R}$. \hfill \square

Theorem 6 Let V be an Euclidean real vector space V, and let A be a symmetric matrix. Then V admits a basis of orthonormal eigenvectors of A.

Proof: By induction over the dimension of V, denoted n. The base case corresponds to $n = 1$ and is immediate: each non null vector is an eigenvector of A and can be normalized.

The induction step is proved as follows: let $\lambda \in \mathbb{R}$ be an eigenvalue of A, and let v be a unit eigenvector for λ. We know that $< v > \oplus < v >^\perp = V$. We will prove that $< v >^\perp$ is invariant under the endomorphism f associated to A. If $u \in < v >^\perp$, then $u \cdot v = 0$. As a consequence, $f(u) \cdot v = u \cdot f(v) = u \cdot \lambda v = \lambda u \cdot v = 0$. This proves that $f(u) \in < v >^\perp$.

By inductive hypothesis, $< v >^\perp$ has an orthonormal basis made of eigenvectors of f restricted to $< v >^\perp$. Adding v to this basis we obtain an orthonormal basis made of eigenvectors of f. \hfill \square

Corollary 7 Let V be an Euclidean real vector space V, and let A be a symmetric matrix. Then A diagonalizes in orthonormal basis.

Proof: Immediate from Theorem 6. \hfill \square