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Definition 1 The sum of two subspaces W1 and W2 of a vector space V is defined as

W = W1 +W2 = {w ∈ V | w = w1 + w2, w1 ∈W1, w2 ∈W2}.

If W1 ∩W2 = {0}, the sum is called direct, and we write W1 ⊕W2.

Lemma 1 The sum W1 +W2 of two subspaces of a vector space V is a subspace of V .

Proof: Immediate. �

Definition 2 Let W be a subspace of an Euclidean vector space V . The subset of V
orthogonal to W is defined as W⊥ = {v ∈ V | v⊥w ∀w ∈W}.

Lemma 2 If W is a subspace of V , then the set W⊥ is a subspace of V .

Proof: Immediate. �

Theorem 3 If W is a subspace of an Euclidean vector space V , then V = W ⊕W⊥.

Proof: The fact that W ∩W⊥ = {0} is easy to prove: if u ∈ W ∩W⊥ then u ∈ W and
u ·w = 0 forall w ∈W . In particular, then, u ·u = 0 and we get u = 0. Therefore, the sum
of W and W⊥ is direct. Trivially, W ⊕W⊥ ⊆ V . In order to prove that V ⊆ W ⊕W⊥,
consider w1, . . . , wr an orthonormal basis of W which can be obtained using Gram-Schmidt
method, for example. Let wr+1, . . . , wn be its completion to an orthonormal basis of V ,
which can also be obtained using Gram-Schmidt method. It is immediate to prove that
wr+1, . . . , wn is a basis of W⊥ due to the orthonormality of the basis w1, . . . , wn. Therefore,
every vector x ∈ V can be written as

x =
n∑

i=1

xiwi =
r∑

i=1

xiwi +
n∑

i=r+1

xiwi ∈W ⊕W⊥.

�

Lemma 4 Let f be an endomorphism in an Euclidean vector space V whose associated
matrix in some orthonormal basis is symmetric. Then f(u) · v = u · f(v) ∀u, v ∈ V .

Proof: Let e1, . . . , en be the orthonormal basis in which f is represented by the symmetric
matrix A = (aji ). Due to the bilinearity of the dot product, we only need to prove that
f(ei) · ej = ei · f(ej) ∀i, j ∈ {1, . . . , n}:

f(ei) · ej =

(
n∑

k=1

aikwk

)
· wj =

n∑
k=1

aikδk,j = aij

ei · f(ej) = ei ·

(
n∑

k=1

ajkwk

)
=

n∑
k=1

ajkδi,k = aji

Since A is symmetric, we obtain f(ei) · ej = aij = aji = ei · f(ej) ∀i, j ∈ {1, . . . , n}. �
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Proposition 5 Let A be a symmetric matrix of size n with real coefficients, and let
λ1, . . . , λr be its eigenvalues, with multiplicities k1, . . . , kr, respectively. Then λi ∈ R ∀i ∈
{1, . . . , r} and

∑r
i=1 ki = n.

Proof: Let us consider A ∈ Mn(R) ⊂ Mn(C). The Fundamental Theorem of Algebra
guarantees that the characteristic polynomial of A has complex roots λ1, . . . , λr, with
multiplicities k1, . . . , kr respectively, and

∑r
i=1 ki = n. We will prove that λi ∈ R for

all i ∈ {1, . . . , r}. Indeed, if z = (z1, . . . , zn) is a (complex) eigenvector of eigenvalue λ,
we have Az = λz. Since the coefficients of A are real numbers, when we conjugate the
previous equality we obtain that λz = Az = Az. In other words, z is an eigenvector of A
with eigenvalue λ. Then,

λ|z| = λzT z = zTλz = zTAz = zTAT z = (zTAz)T
∗
= zTAz = zTλz = λzT z = λ|z|,

where the starred equality holds because λ|z| ∈ R. Hence, λ = λ, and λ ∈ R. �

Theorem 6 Let V be an Euclidean real vector space V , and let A be a symmetric matrix.
Then V admits a basis of orthonormal eigenvectors of A.

Proof: By induction over the dimension of V , denoted n. The base case corresponds to
n = 1 and is immediate: each non null vector is an eigenvector of A and can be normalized.
The induction step is proved as follows: let λ ∈ R be an eigenvalue of A, and let v be a
unit eigenvector for λ. We know that < v > ⊕ < v >⊥= V . We will prove that < v >⊥

is invariant under the endomorphism f associated to A. If u ∈< v >⊥, then u · v = 0. As
a consequence, f(u) · v = u · f(v) = u · λv = λu · v = 0. This proves that f(u) ∈< v >⊥.
By inductive hypothesis, < v >⊥ has an orthonormal basis made of eigenvectors of f
restricted to < v >⊥. Adding v to this basis we obtain an orthonormal basis made of
eigenvectors of f . �

Corollary 7 Let V be an Euclidean real vector space V , and let A be a symmetric matrix.
Then A diagonalizes in orthonormal basis.

Proof: Immediate from Theorem 6. �
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