
EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Distributed universal reconfiguration of 2D lattice-based modular robots

Ferran Hurtado⇤ Enrique Molina⇤ Suneeta Ramaswami† Vera Sacristán⇤

Abstract

We prove universal reconfiguration (i.e., reconfigura-
tion between any two robotic systems with the same
number of modules) of 2-dimensional lattice-based
modular robots by means of a distributed algorithm.
To the best of our knowledge, this is the first known
reconfiguration algorithm that applies in a general set-
ting to a wide variety of particular modular robotic
systems, and holds for both square and hexagonal
lattice-based 2-dimensional systems. All modules ap-
ply the same set of local rules (in a manner similar to
cellular automata), and move relative to each other.
Reconfiguration is carried out while keeping the robot
connected at all times. The total number of time
steps, moves and communication required for the re-
configuration is linear in the number of modules.

1 Introduction

1.1 Goal

We solve the following problem for 2-dimensional
lattice-based modular robotic systems: Given two
connected configurations with the same number of
modules, reconfigure one into the other by means of a
distributed algorithm. As far as we know, this is the
first general reconfiguration algorithm encompassing
both square and hexagonal regular lattices, and us-
ing a general framework that does not exploit specific
characteristics of any particular robotic system. A
large set of robotic prototypes fit this framework.
In our framework, a robot is a connected configu-

ration of homogeneous modules that are located in a
2-dimensional lattice. Each module can attach to and
detach from a neighboring module, and can change
its position to a neighboring empty grid position in
the lattice by attaching to a neighboring module and
moving with respect to it. Each module has constant
size memory, can perform constant size computations,

⇤Departament de Matemàtica Aplicada II, Uni-
versitat Politècnica de Catalunya, Barcelona, Spain.
{ferran.hurtado,vera.sacristan}@upc.edu, Enrique-
Molina@hotmail.com. F.H. and V.S. were partially supported
by projects MTM2012-30951, MTM2009-07242, Gen. Cat.
DGR 2009SGR1040, and ESF EUROCORES programme
EuroGIGA, CRP ComPoSe: MICINN Project EUI-EURC-
2011-4306, for Spain.

†Department of Computer Science, Rutgers University,
Camden, U.S.A. rsuneeta@camden.rutgers.edu. Partially sup-
ported by NSF grant CCF-0830589.

and can send or receive constant size messages to or
from its neighboring modules. One designated mod-
ule needs linear memory to store the information of
the goal shape and to perform computations required
for the reconfiguration algorithm.
Within this framework, our algorithm is distributed

and local. It consists of a set of rules, each one having
a priority, a precondition, and an action or postcon-
dition. Rules are identical for all modules, and are
simultaneously executed by all of them. The term
“local” here means that each module communicates
with modules lying within a small neighborhood in
order to execute the algorithm. In the procedure we
propose, all modules know when they have reached
their final destination.

1.2 Related work

Our approach builds on the seminal work of Beni [2],
who proposed the conceptual model of cellular robotic
systems, inspired by cellular automata. Since then,
several authors have developed distributed algorithms
for reconfiguring specific square lattice-based modu-
lar robot designs and shapes [8], as well as generic
strategies for locomotion, reconfiguration and self-
repairing for particular shapes [4, 10]. Simulta-
neously, locomotion and reconfiguration have been
proved for some class of shapes within the hexagonal
setting [6, 7, 16, 15, 9, 1], as well as for 3-dimensional
lattices [3]. Local rules have also been used in the
framework of a general metamodules’ theory [5]. Re-
cently, specific sets of rules have been proposed to
produce reconfigurations between particular shapes of
M-TRAN which are lattice-based [11]. To the best of
our knowledge, this last work presents the first execu-
tion of a distributed local rules strategy on real robot
units, hence proving its realizability beyond experi-
mental simulation.

2 The model

In the square lattice setting, a module is any robotic
unit located in a 2-dimensional square grid. We rep-
resent modules by squares occupying one grid cell,
although their actual shape need not be a square.
A module can independently attach to and detach
from each of its 4 direct grid neighboring modules, if
present. A robot is a connected set of identical mod-
ules. By “connected” we mean that the adjacency

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a

preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

139



29th European Workshop on Computational Geometry, 2013

graph of the robot configuration (a node in the cen-
ter of each module and a straight line edge for each
attachment among modules) is connected.
Modules cannot move on their own, but they can

move relative to each other. To be more precise, a
module may perform four relative motions, illustrated
in Figure 1, where the dark colored module is perform-
ing the move. The first two moves are of the change

(a) (b) (c) (d)

Figure 1: Change position moves: (a) slide (b) convex
transition. Change attachments moves: (c) concave tran-
sition (d) opposite transition. All moves may apply in
any of the 4 directions (N, S, E, W) relative to the mov-
ing module.

position type: a module performing slide or convex

transition translates itself from its current lattice po-
sition to a neighboring one. The last two moves are
of the change attachments type: a module perform-
ing concave transition or opposite transition changes
its attachment from one neighbor to another without
modifying its lattice position.
In our framework, the modules of the robot are

indistinguishable, and each module is given and ap-
plies the same set of rules. In order to do so, we as-
sume each module has a (simple) processor and some
(small) memory, knows its own orientation (N, S, E,
W) and state (active or passive), can detect whether
it is attached to a neighbor, can send and receive
(short) messages to and from neighbors, and is able to
perform (elementary) operations with a few counters
and text strings. For our reconfiguration algorithm,
only one module needs to store the final configura-
tion, which is a linear amount of information. This
module, called the leader, can be either determined
in advance or chosen by the set of modules [12].
As stated above, all modules run the same prede-

fined set of rules. Each rule has the following struc-
ture: a priority, a precondition, and an action or post-
condition. Priorities, represented as small integers,
are used by the module to decide which of possibly
several rules that apply to its situation is executed.
A precondition is any constant size boolean combina-
tion of the following: compare priorities, check neigh-
boring empty/filled positions, check own connections,
match states/text or counters/integers, and compare
calculation results with counters, messages and inte-
gers. A postcondition can be any and combination
of the following: change position (slide, convex tran-
sition), change attachments (concave transition, op-
posite transition), modify state, compute and update
counters, and send messages.
In our model, changing position only requires the

goal lattice position to be free. This assumption could
be a potential limitation because the atomic robot
units of several current prototypes need some extra
empty space to produce slide and convex transition.
Nevertheless, by appropriately grouping atomic robot
units into meta-modules, we have been able to en-
sure that our moves can be safely made without extra
free space requirements in three general models of re-
configurable robots: the expand/contract model, the
sliding model, and the rotating model.

3 Overview of Reconfiguration Strategy

The solution we present is distributed because each
module acts on its own without the need of a central
controller, other than to get the reconfiguration pro-
cess started. Our solution is parallel as all modules act
in parallel. Our solution is local because each mod-
ule only needs to communicate with modules within a
small neighborhood when checking rule preconditions.
In this context, the neighborhood of a module consists
of all modules lying in grid positions within the sec-
ond annulus around it. Finally, we should mention
that our reconfiguration strategy (and our simulator)
is intended to run in a synchronized framework. An
asynchronous version can be obtained by means of a
shaking hands strategy, at a cost of increased commu-
nication among the modules.
The overall strategy behind our algorithm is to

move modules along the boundary of the robot to
reconfigure in two stages. We first reconfigure the
robot from its initial shape into a canonical shape
(the strip configuration) and then from the canonical
to the final shape. The modules do not need to know
the robot’s complete initial shape. However, the goal
shape needs to be known at least by the leader. In
particular, our solution to reconfigure from the canon-
ical to goal shape requires the leader to assign a final
destination location for each module in the canonical
configuration. Our solution is based on the following
general operating principles:

1. A particular spanning tree of the robot’s adja-
cency graph, called the scan tree, is built so that
all leaves of the tree lie on the boundary of the
robot (see Figure 2). At the beginning, all mod-
ules are considered to be static. At any given
instant, only leaf modules can start moving, i.e.,
go from static to active. Once a module is active,
its node is cut from the spanning tree.

2. The movement of the active modules along the
boundary of the static robot always follows the
right hand rule (turn right along the robot
boundary) when reconfiguring from the initial to
canonical shape, and the left hand rule when re-
configuring from the canonical to goal shape.

140



EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

3. Moving modules are not allowed to climb (move
relative to) other moving modules. This is a rea-
sonable assumption in order to avoid unbounded
acceleration and unpredictable collisions.

4. Every module is assigned a number when con-
structing the above stated spanning tree. Gen-
erally speaking, this number corresponds to the
DFS (depth first search) order numbering of the
nodes of the scan tree of the initial shape for the
initial to canonical reconfiguration, or the goal
shape for the canonical to goal reconfiguration.
This number is used to guide the moves of the
modules and also to prove the correctness of our
solution.

Figure 2: Left: the scan tree of a configuration without
holes. Right: the scan tree of a configuration with holes.

Rules for advancing modules during reconfiguration
must take care of various types of conflicts:

Activation conflicts occur when an active module
tries to move to a position where it would attach to
a static leaf which simultaneously becomes active. In
this case, priority needs to be given either to the ac-
tivation of the leaf or to the moving module. Any
of the two choices is appropriate, as long as it stays
consistent during the reconfiguration.

Collision conflicts occur when two active modules
intend to move to the same lattice position. Priority
is given to the module with lower DFS order number.

Obstruction conflicts occur when an active mod-
ule would like to move into a lattice position which is
already occupied by an active module. In this case,
deadlocked situations could be created if the bound-
ary of the static shape forms bottlenecks. See Figure 3
for an illustration. We avoid deadlocks by means of
specific “jumping rules” that have higher priority than
the regular advancing ones. Jumping at a bottleneck
allows a module to advance more than one position
along the boundary of the static shape in one step to
avoid entrance into the “cul-de-sac” region. Deciding
which modules should jump and at which bottlenecks
is crucial in our strategy. These decisions are made
by comparing the DFS number of the static modules
that form the bottleneck. The active module uses
the DFS numbers to determine whether it is about to
enter or exit the corresponding cul-de-sac. The recon-

L L L

A

B
L

A

B

A

B

A

B

L
L

L

B

A L

B

A

A

B

A

B

Figure 3: First row: The two possible bottleneck types
in square lattices (left) and the hexagonal lattices (right).
The continuous line schematizes the boundary of the robot
shape. Second and third rows: The active module x (de-
picted as a red/dark disc) is attached to the static module
A and decides whether to jump, i.e., attach to B and de-
tach from A. The decision is based on whether B belongs
to a branch in the tree previous, in DFS order, to that
of A (second row) or the same branch as that of A (third
row). This allows x to determine if it is about to enter
or exit the cul-de-sac and consequently, whether or not to
jump at the bottleneck. L is the position of the root of
the tree, i.e., the leader. The continuous lines schematize
the branches of the tree involved in the bottleneck A, B.

figuration from the strip to the goal shape essentially
reverses the forward (initial shape to strip) reconfigu-
ration procedure. Modules march from the rightmost
end of the strip following the left hand rule and the
goal shape is constructed in a clockwise depth-first
manner. However, two additional issues need to be
addressed in the reverse reconfiguration. The main
di↵erence between the forward and backward proce-
dures is that modules in the strip must be sent to
their final goal destination in the order given by the
depth-first traversal of the final shape. Therefore, the
jumping rules need to be modified to make sure that
no jump changes the order of the active modules when
they march along the boundaries of the static struc-
ture. In addition, it is also necessary to ensure that
for robot shapes with holes, no active module gets
trapped within the wrong hole or outside its desti-
nation hole because of premature closing of the hole
during the reconfiguration procedure.

4 Main result

We state, without proof, some lemmas used to show
the final result stated in Theorem 4.

Lemma 1 At all times along the reconfiguration,

the static tree, although pruned, stays a scan-tree,

and the numbering of the modules along its external

boundary increases counterclockwise from the leader

up to the first leaf.

A deadlock loop is a sequence of active modules
a1, . . . , ak such that each ai intends to occupy the
lattice position of module ai�1 (indices are mod k).

141



29th European Workshop on Computational Geometry, 2013

Lemma 2 The algorithm outlined in Section 3 can-

not create deadlock loops.

The above lemma, together with the invariant es-
tablished in Lemma 1, is used to prove the following:

Lemma 3 The algorithm outlined in Section 3 makes

every module move past the leader when reconfiguring

to the strip.

Theorem 4 Given two robotic systems with the

same number of modules, the algorithm outlined in

Section 3 reconfigures one shape into the other.

If executed synchronously, any reconfiguration of a
robotic system of nmodules is done inO(n) time steps
with O(n) basic moves per module, using O(1) force
per module, O(1) size memory and computation per
module (except for one module, which needs O(n) size
memory to store the information of the goal shape),
and O(n) communication per module.

5 Simulations

We have implemented our rules [13] for square lat-
tices in a synchronized simulator [14], and have ap-
plied them to a large set of reconfigurations (Figure 4
shows a screen shot). We are currently working on
the hexagonal lattice simulations.

Figure 4: A screen shot of the simulation. Dark blue
modules are static, green modules are active, and the yel-
low horizontal strip on the right is being formed.

References

[1] J. Bateau, A. Clark, K. McEachern, E. Schutze, and
J. Walter. Increasing the e�ciency of distributed
goal-filling algorithms for self-reconfigurable hexag-
onal metamorphic robots. In Proc. of the Interna-
tional Conference on Parallel and Distributed Tech-
niques and Applications, 2012.

[2] G. Beni. The concept of cellular robotic system. In
Proc. of the IEEE International Symposium on Intel-
ligent Control, pages 57–62, 1988.

[3] H. Bojinov, A. Casal, and T. Hogg. Emergent struc-
tures in modular self-reconfigurable robots. In Proc.
of the IEEE International Conference on Robotics
and Automation (ICRA), pages 1734–1741, 2000.

[4] Z. Butler, K. Kotay, D. Rus, and K. Tomita.
Generic decentralized control for lattice-based self-
reconfigurable robots. Int. J. Robot. Res., 23:919–
937, 2004.

[5] D. J. Dewey, M. P. Ashley-Rollman, M. De Rosa,
S. C. Goldstein, T. C. Mowry, S. S. Srinivasa, P. Pil-
lai, and J. Campbell. Generalizing metamodules to
simplify planning in modular robotic systems. In
Proc. of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1338–
1345, 2008.

[6] A. Dumitrescu, I. Suzuki, and M. Yamashita. For-
mations for fast locomotion of metamorphic robotic
systems. Int. J. Robot. Res., 23(6):583–593, 2004.

[7] A. Dumitrescu, I. Suzuki, and M. Yamashita. Mo-
tion planning for metamorphic systems: Feasibility,
decidability, and distributed reconfiguration. IEEE
Trans. Robot. Autom., 20(3), 2004.

[8] K. Hosokawa, T. Tsujimori, T. Fujii, H. Kaetsu,
H. Asama, Y. Kuroda, and I. Endo. Self-organizing
collective robots with morphogenesis in a vertical
plane. In Proc. of the IEEE International Conference
on Robotics and Automation (ICRA), pages 2858–
2863, 1998.

[9] P. Ivanov and J. Walter. Layering algorithm
for collision-free traversal using hexagonal self-
reconfigurable metamorphic robots. In Proc. of
IEEE/RSJ International Conference on Robots and
Systems (IROS), pages 521–528, 2010.

[10] K. Kotay and D. Rus. Generic distributed assembly
and repair algorithms for self-reconfiguring robots. In
Proc. of the IEEE International Conference on Intel-
ligent Robots and Systems (IROS), volume 3, pages
2362–2369, 2004.

[11] H. Kurokawa, K. Tomita, A. Kamimura, S. Kokaji,
T. Hasuo, and S. Murata. Distributed self-
reconfiguration of M-TRAN III modular robotic sys-
tem. Int. J. Robot. Res., 27:373–386, 2008.

[12] C. Nichitiu, J. Mazoyer, and E. Rémila. Algorithms
for leader election by cellular automata. J. Algo-
rithms, 41(2):302–329, 2001.

[13] O. Rodŕıguez. Simulating distributed action of mod-
ular robots. Degree thesis, Facultat d’Informàtica
de Barcelona, Universitat Politècnica de Catalunya,
Barcelona, Spain, 2013 (in Catalan).

[14] R. Wallner. A system of autonomously self-
reconfigurable agents. Diploma thesis, Institute for
Software Technology, Graz University of Technology,
Graz, Austria, 2009.

[15] J. E. Walter, J. L. Welch, and N. M. Amato. Con-
current metamorphosis of hexagonal robot chains into
simple connected configurations. IEEE Trans. Robot.
Autom., 18(6):945–956, 2002.

[16] J. E. Walter, J. L. Welch, and N. M. Amato.
Distributed reconfiguration of metamorphic robot
chains. Distributed Computing, 17:171–189, 2004.

142


	booklet_eurocg13_Part1
	booklet_eurocg13_Part2
	booklet_eurocg13_Part3
	booklet_eurocg13_Part4
	booklet_eurocg13_Part5
	booklet_eurocg13_Part6



