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Proximity Graphs inside Large Weighted Graphs
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Abstract

Given a large weighted graph G = (V, E) and a subset
U of V , we define several graphs with vertex set U in
which two vertices are adjacent if they satisfy some
prescribed proximity rule. These rules use the short-
est path distance in G and generalize the proximity
rules that generate some of the most common proxim-
ity graphs in Euclidean spaces. We prove basic prop-
erties of the defined graphs and provide algorithms
for their computation.

1 Introduction

In Euclidean spaces, proximity graphs are a key tool
to obtain neighborhood relations in a given set of
points [5]. They have been intensively explored in
the contexts of spacial distribution analysis [9] and
graph drawing [7], among others.

In non-Euclidean settings, the Delaunay graph and
its relatives have found applications in the analysis of
networks that model real connection nets. A promi-
nent example is the network Voronoi diagram (see
Section 3.8 in [9]).

Here we deal with a complex graph G with a large
number of vertices and edges, in which it is difficult
to distinguish which are the relations of proximity
among a subset of the vertices. The edges of the graph
come with an associated positive weight. We study
relations of proximity based on shortest paths along
G = (V,E) among the vertices of a subset U ⊆ V,
which might represent the schools in the map of a
city, the corresponding stations in a huge transporta-
tion net, etc. We consider generalizations of some
well-known proximity graphs. This appears to be a
natural method to provide notions of closeness.
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‡Instituto de Matemáticas, Universidad Nacional Autónoma
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The natural and important question of defining
suitable notions of closeness among vertices of a graph
has found different kinds of answers in the literature.
However, we are only aware of one approach that uses
proximity graphs (see [6, 11]). The graphs considered
there are clearly different from ours, as proximity is
constructed by adopting a notion whose universe is
a given geometric graph, but where the relations are
given by the full Euclidean plane.

Let us mention that the set U together with
the shortest-path distance constitutes a finite metric
space, so some of the proximity graphs we consider are
not new because they can be seen as a particular case
of proximity graphs defined on general metric spaces.
Even though there exists some literature on proximity
graphs in metric spaces, to the best of our knowledge
this topic has not been deeply investigated, as only
some definitions and basic properties have been given
(see Section 4.5 in [12], and also [4]). The sphere-of-
influence graph has been further studied [3, 8], but it
is out of the scope of our work.

When using empty regions as proximity criteria
in G, such as disks, two main variations arise, since
we might allow these disks to be centered at any point
in G, or we might restrict their centers to lie only on
vertices of the graph, as in [3, 1]. Moreover, the defi-
nition of certain regions of interference might depend
on the multiplicity of paths or distances in G. Degen-
eracies that occur in the standard geometric case also
generate several possibilities. For the sake of clarity
we first present the situation where there are essen-
tially no degeneracies (Sections 2–5). In Section 6 we
drop the non-degeneracy assumptions and extend our
results to the general setting.

Proofs and descriptions of the algorithms will be
given in the full-version of this paper.

2 Definitions and Notation

We deal with a connected and edge-weighted graph
G = (V, U,E), where U ⊆ V and all edges have posi-
tive real weights assigned to them. We assume that it
is possible to consider points in the edges of G; more
precisely, for every edge e = (v1, v2) with weight w(e)
and every r ∈ (0, w(e)), we assume that there exists
a point p in e and paths from both v1 and v2 to p
such that the weight of the path from v1 to p is r,
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and the weight of the path from v2 to p is w(e) − r
(if G is embedded in the plane, these paths are sim-
ply portions of the edges). We say that p is a point
of G if p is either a vertex of G, or a point in an
edge of G. The distance dG(p, q) between two points
p and q in G is defined as the minimum total weight
of any path connecting p and q in G. The closed disk
DG(p, r) is defined as the set of points q of G for which
dG(p, q) ≤ r. We say that ui ∈ U is a nearest neigh-
bor of uj ∈ U with i 6= j if dG(uj , ui) ≤ dG(uj , uk)
for all vertices uk 6= uj , ui ∈ U . A midpoint of two
points p and q of G is a point m on one of the shortest
paths from p to q such that dG(m, p) = dG(m, q). We
denote the set of midpoints of p and q by MG(p, q).
For the remainder of this paper, we define |V | = m,
|U | = n, and |E| = e.

We first consider the case where the following non-
degeneracy assumptions hold: (A1) for all ui, uj ∈ U,
the shortest path connecting ui and uj is unique; (A2)
there do not exist three distinct vertices ui, uj ∈ U,
v ∈ V −U such that dG(v, ui) = dG(v, uj); (A3) there
do not exist vertices vi, vj ∈ V, ui, uj ∈ U such that
dG(vi, ui) = dG(vj , uj) with vi 6= ui; (A4) all paths in
G between distinct nodes in V have different lengths.

Obviously, the previous assumptions are not inde-
pendent, but considering them separately allows to
clarify and provide a more precise description of the
scenario. In Section 6, we extend the results from
Sections 3–5 to the general case where A1–A4 are not
necessarily satisfied.

We now adapt several known definitions to proxim-
ity structures in graphs G = (V, U,E).

Definition 1 The nearest neighbor graph of G =
(V, U,E), denoted by NNG(G), is the graph H =
(U,F ) such that (ui, uj) ∈ F if uj is one of the nearest
neighbors of ui in G.

Definition 2 A minimal spanning tree of G =
(V, U,E) is a tree T = (U,F ) such that the sum of
dG(ui, uj) over all edges (ui, uj) ∈ F is minimal. The
union of the minimal spanning trees of G, denoted
by UMST(G), is the graph consisting of all the edges
included in any of the minimal spanning trees of G.

If A3 holds, each vertex in U has exactly one nearest
neighbor and the minimal spanning tree of G, denoted
by MST(G), is unique.

Definition 3 The relative neighborhood graph of
G = (V,U,E), denoted by RNG(G), is the graph
H = (U,F ) such that (ui, uj) ∈ F if there exists no
vertex uk ∈ U such that dG(uk, ui) < dG(ui, uj) and
dG(uk, uj) < dG(ui, uj).

Definition 4 The free Gabriel graph of G =
(V, U,E), denoted by GGf(G), is the graph H =
(U,F ) such that (ui, uj) ∈ F if there exists no vertex

uk ∈ U (uk 6= ui, uj) such that dG(p, uk) ≤ dG(p, ui),
where p is the midpoint of ui and uj .

If A1 holds, there exists only one midpoint of ui

and uj , thus the previous graph is well-defined.

Definition 5 The constrained Gabriel graph of G =
(V,U,E), denoted by GGc(G), is the graph H =
(U,F ) such that (ui, uj) ∈ F if the smallest closed
disk centered at a vertex in V enclosing ui and uj

does not contain any other vertex from U .

The previous graph is well-defined if A3 holds.

Definition 6 The Voronoi region of a vertex ui ∈
U is the set of points p of G such that dG(p, ui) ≤
dG(p, uj) for all vertices uj ∈ U different from ui.
The Voronoi diagram of G = (V, U,E), denoted by
VD(G), is the Voronoi diagram of the vertex set U
for the distance dG.

Definition 7 The free Delaunay graph of G =
(V,U,E), denoted by DGf(G), is the graph H =
(U,F ) such that (ui, uj) ∈ F if there exists a closed
disk DG(p, r), where p is a point of G, enclosing ui

and uj and no other vertex from U .

Definition 8 The constrained Delaunay graph of
G = (V, U,E), denoted by DGc(G), is the graph
H = (U,F ) such that (ui, uj) ∈ F if there exists a
closed disk DG(v, r), with v ∈ V , enclosing ui and uj

and no other vertex from U .

3 Inclusion Sequence

The graphs just defined satisfy some inclusion rela-
tions. In this section we show which proximity graphs
are subgraphs of which other proximity graphs assum-
ing A1, A2, and A3.

Theorem 1 The relations of containment among all
classes of proximity graphs are shown in Table 1. The
symbol ⊆ means that the inclusion is satisfied for all
graphs G, and * means that there are graphs G for
which the inclusion is not satisfied.

All inclusions in the table are proper, in the sense
that there exists a graph G for which the correspond-
ing proximity subgraph does not coincide with its su-
pergraph.

4 Geometric and Combinatorial Properties

We define the dual graph of the Voronoi diagram of
G = (V, U,E) as the graph with vertex set U and
edges connecting two vertices if their Voronoi regions
share some point in G that does not belong to the
Voronoi region of any other element in U.
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Table 1: Relations of containment among proximity
graphs in the non-degenerate case.

MST RNG GGc GGf DGc DGf

NNG ⊆ ⊆ 6⊆ ⊆ ⊆ ⊆
MST ⊆ 6⊆ ⊆ 6⊆ ⊆
RNG 6⊆ ⊆ 6⊆ ⊆
GGc 6⊆ ⊆ ⊆
GGf 6⊆ ⊆
DGc ⊆

Proposition 2 Let G = (V, U,E) be a graph. Then
DGf(G) is the dual graph of VD(G).

The previous proposition allows to draw the first
analogy between the usual proximity graphs and these
new proximity structures on graphs. Moreover, it is
a key tool to prove the following result:

Corollary 3 Let G = (V, U,E) be a graph. The
number of edges of NNG(G), MST(G), RNG(G),
GGc(G), GGf(G), DGc(G), and DGf(G) is at most e.

This bound is tight up to a constant factor:

Proposition 4 There exists a graph G = (V,U,E)
such that RNG(G) = GGf(G) = DGf(G) = G. There
also exists a graph G′ = (V ′, U ′, E′) such that the
number of edges of GGc(G′) and DGc(G′) is e′/2.
Furthermore, all of these graphs have Θ(n2) edges.

In the following theorems we show that the prox-
imity graphs inherit planarity and acyclicity from the
original graph.

Theorem 5 Let G = (V,U,E) be a planar
graph. Then NNG(G), MST(G), RNG(G), GGc(G),
GGf(G), DGc(G), and DGf(G) are planar.

Theorem 6 Let G = (V, U,E) be a tree. Then
GGc(G) and DGc(G) are forests, and RNG(G) =
GGf(G) = DGf(G) = MST(G).

Next we give complete characterizations for those
graphs that are isomorphic to a certain proximity
graph of some other graph.

Proposition 7 If G = (V, E) is a graph, there exists
a graph Ḡ = (V̄ , Ū , Ē) such that G ∼= NNG(Ḡ) if
and only if G is acyclic and does not contain isolated
vertices.

Proposition 8 If G = (V, E) is a graph, there exists
a graph Ḡ = (V̄ , Ū , Ē) such that G ∼= MST(Ḡ) if and
only if G is a tree.

Table 2: Running times of the algorithms to compute
the proximity graphs on G.

proximity graph running time

NNG O(e + (m− n) log(m− n))

MST O(e α(e, n) + (m− n) log(m− n))

RNG O(APSP(G) + min{n2, e}n)

GGc O(APSP(G) + min{n2, e}m)

GGf O
(
APSP(G) + min{n2, e}m)

DGc O(e + m log m)

DGf O(e + (m− n) log(m− n))

Proposition 9 If G = (V,E) is a graph, there exists
a graph Ḡ = (V̄ , Ū , Ē) such that G ∼= RNG(Ḡ) if and
only if G is triangle-free.

Proposition 10 Let G = (V, E) be a graph. There
exists a graph Ḡ = (V̄ , Ū , Ē) such that G ∼=
GGc(Ḡ) = GGf(Ḡ) = DGc(Ḡ) = DGf(Ḡ).

5 Algorithms

We have derived algorithms to compute each of the
proximity graphs we have studied. Due to lack of
space, we omit the description of the algorithms and
only give their running times.

In some cases the algorithm computes the short-
est paths between all pairs of vertices in U .
If G is a sparse graph, we use the algorithm
in [10], which runs in O(m log m + ne log α(m, e))
time. If G is dense, we use the algorithm
in [2], which runs in O

(
m3 log3 log m/ log2 m

)
time. We define APSP(G) = min{m log m +
ne log α(m, e),m3 log3 log m/ log2 m}.

Theorem 11 For each graph G = (V,U,E), the
proximity graphs on G can be computed in the num-
ber of steps indicated in Table 2.

6 Presence of Degeneracies

In this section we generalize our results to the case in
which degeneracies arise.

First of all, we look through the definitions. The
graphs NNG(G), UMST(G), RNG(G), DGf(G), and
DGc(G) are well-defined regardless of the properties
of G, although, in contrast to the non-degenerate case,
a vertex in U might have several nearest neighbors.

In the general case there might be more than one
shortest path between two vertices of U. This gives
rise to two definitions of free Gabriel graphs:

Definition 9 The free-one Gabriel graph of G =
(V, U,E), denoted by GGf1(G), is the graph H =
(U,F ) such that (ui, uj) ∈ F if there exists p ∈
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Table 3: Relations of containment among all classes
of proximity graphs in the general case.

UMST RNG GGca GGc1 GGfa GGf1 DGc DGf

NNG ⊆ ⊆ 6⊆ 6⊆ 6⊆ 6⊆ 6⊆ 6⊆
UMST ⊆ 6⊆ 6⊆ 6⊆ 6⊆ 6⊆ 6⊆
RNG 6⊆ 6⊆ 6⊆ 6⊆ 6⊆ 6⊆
GGca ⊆ 6⊆ 6⊆ ⊆ ⊆
GGc1 6⊆ 6⊆ ⊆ ⊆
GGfa ⊆ 6⊆ ⊆
GGf1 6⊆ ⊆
DGc ⊆

MG(ui, uj) such that no vertex uk ∈ U (uk 6= ui, uj)
satisfies dG(p, uk) ≤ dG(p, ui).

Definition 10 The free-all Gabriel graph of G =
(V, U,E), denoted by GGfa(G), is the graph H =
(U,F ) such that (ui, uj) ∈ F if, for each p ∈
MG(ui, uj), no vertex uk ∈ U (uk 6= ui, uj) satisfies
dG(p, uk) ≤ dG(p, ui).

Analogously, the definition of the constrained
Gabriel graph must be replaced by the following vari-
ants:

Definition 11 The constrained-one Gabriel graph
of G = (V,U,E), denoted by GGc1(G), is the
graph H = (U,F ) such that (ui, uj) ∈ F if there
exists a closed disk DG(v, r), with v ∈ V and
r = minv∈V {r | DG(v, r) contains both ui and uj},
enclosing ui and uj and no other vertex from U .

Definition 12 The constrained-all Gabriel graph of
G = (V, U,E), denoted by GGca(G), is the graph
H = (U,F ) such that (ui, uj) ∈ F if every closed
disk DG(v, r) containing both ui and uj , and where
v ∈ V and r = minv∈V {r | DG(v, r) contains both
ui and uj}, does not contain any other vertex of U.

Now we may go through the inclusion relations of
the proximity graphs.

Theorem 12 If degenerate situations are allowed,
the relations of containment among all classes of prox-
imity graphs are shown in Table 3. Furthermore, all
classes of proximity graphs are different.

To conclude this section, we focus on the most im-
portant properties presented in Section 3.

The fact that DGf(G) is the dual graph of the
Voronoi diagram of G holds in all cases. On the other
hand, if A2 is not satisfied, some of the proximity
graphs might have more edges than the original graph:

Theorem 13 Let G = (V, U,E) be a graph. The
number of edges of GGca(G), GGc(G), GGfa(G),

GGf(G), DGc(G), and DGf(G) is at most e. The num-
ber of edges of NNG(G), UMST(G), and RNG(G)
may be greater than e.

Finally, we check whether all proximity graphs in-
herit the property of being planar or acyclic in the
degenerate case.

Theorem 14 Let G = (V, U,E) be a planar graph.
Then the graphs GGca(G), GGc1(G), GGfa(G),
GGf1(G), DGc(G), and DGf(G) are planar, whereas
NNG(G), UMST(G), and RNG(G) may not be.

Theorem 15 Let G = (V, U,E) be a tree. Then
the graphs GGca(G), GGc1(G), GGfa(G), GGf1(G),
DGc(G), and DGf(G) are acyclic, whereas NNG(G),
UMST(G), and RNG(G) may not be.

The algorithms in the preceding section can be
adapted to run under the presence of degeneracies yet
we omit here further details.
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