
Title: Locomotion of self-organizing robots

Author: Lorena Eleonora Lusso

Advisor: Vera Sacristán Adinolfi

Department: Applied Mathematics

Academic year: 2012/2013

Master of Science in
 Advanced Mathematics and
Mathematical Engineering

Locomotion of self-organizing robots

Lorena Eleonora Lusso

Master thesis

Supervisor: Vera Sacristán Adinol�

Department of Applied Mathemathics

Master in Advanced Mathemathics and Mathematical Engineering

Facultat de Matemàtiques i Estadística

Universitat Politècnica de Catalunya

October 7, 2013

Contents

1 Introduction 7

1.1 Goal . 7
1.2 Context . 7
1.3 Framework . 9
1.4 Related work . 11
1.5 Structure of the document . 12

2 Rectangle locomotion 13

2.1 Goal . 13
2.2 Strategy . 13
2.3 Advance rules . 13
2.4 Stop rules . 15
2.5 Correctness . 16
2.6 Complexity . 19
2.7 Rules . 21

3 Rectangle locomotion over low obstacles 27

3.1 Goal . 27
3.2 Strategy . 27
3.3 Action rules . 28
3.4 Deactivation and bridges . 28
3.5 Correctness . 30
3.6 Complexity . 34
3.7 Rules . 36

4 Rectangle locomotion over high obstacles 45

4.1 Goal . 45
4.2 Strategy . 45
4.3 Locomotion rules . 46
4.4 Correctness . 48
4.5 Complexity . 50
4.6 Rules . 54

5 Rectangle locomotion under superior obstacles 63

5.1 Goal . 63
5.2 Strategy . 63
5.3 Advance rules . 64
5.4 Overpassing the obstacle . 65

3

4 CONTENTS

5.5 Recon�guration . 66
5.6 Correctness . 68
5.7 Complexity . 68
5.8 Rules . 71

6 Tunneling of a rectangle 77

6.1 Goal . 77
6.2 Strategy . 77
6.3 Correctness . 78
6.4 Complexity . 78
6.5 Rules . 80

7 Histogram locomotion 91

7.1 Goal . 91
7.2 Locomotion strategy . 91
7.3 Activation, locomotion and bridges 92
7.4 Information exchange . 94
7.5 The case of the last column . 95
7.6 Recon�guration . 96
7.7 Correctness . 97
7.8 Complexity . 101
7.9 Rules . 104

8 Histogram locomotion with inferior obstacles 117

8.1 Goal . 117
8.2 Strategy . 117
8.3 Locomotion rules . 118
8.4 Path formation and reactivation 120
8.5 Recon�guration . 121
8.6 Case of one column . 122
8.7 Correctness . 122
8.8 Complexity . 125
8.9 Rules . 127

9 Histogram locomotion under superior obstacles 147

9.1 Goal . 147
9.2 Strategy . 147
9.3 Locomotion . 148
9.4 Recon�guration . 149
9.5 Complexity . 152
9.6 Rules . 154

10 General obstacles 167

10.1 Goal . 167
10.2 Strategy . 167
10.3 Bottlenecks of width 2 . 168
10.4 Bottlenecks of width 3: Introduction 169
10.5 Bottlenecks of width 3: �rst case 170

10.5.1 Moving bridges . 170
10.5.2 Joint bridges . 170

CONTENTS 5

10.6 Bottlenecks of width 3: trasversal bridges 172
10.7 Diagonal bridges . 173
10.8 Combinations of bridges . 175
10.9 Strategy for the implementation of the rules 176
10.10Still to be done . 178
10.11Rules . 181

11 Conclusions 219

11.1 Presented results . 219
11.2 Open problems . 219

References 221

6 CONTENTS

Chapter 1

Introduction

1.1 Goal

We present here a collection of distributed algorithms for the locomotion of
rectangular and histogram-shaped square-lattice-based modular robots, on free
ground and in the presence of obstacles.

1.2 Context

Modular robots are systems composed of several di�erent identical module
types, that can be manually or self-recon�gured to form a di�erent robot; due
to their structure, these robots have the potential to be extremely versatile in
the tasks they can perform, since they can recon�gure to adapt to di�erent
environments and tasks. Each module of the system can contain electronics,
sensors, computer processors, memory, power supplies; they can also contain
actuators that are used for manipulating their location in the environment and
in relation with each other. In some cases they present two or more connectors,
and they have the ability to automatically connect and disconnect themselves
to and from each other.

In our work we focus our interest on self-recon�guring modular systems:
robots capable of utilizing its own system of control to change their overall
structural shape, mostly consisting of a small number of �xed-shaped units
which can move relative to their neighbours, rearranging the connectivity of
their parts.

Two basic types of methods of articulation that self-recon�gurable mech-
anisms can be utilized by modular robots to reshape their structures: chain
recon�guration and lattice recon�guration. Lattice architectures have their
units connecting their docking interfaces at points into virtual cells of some
regular grid, while chain structures do not use a virtual network of docking
points for their units: the units are able to reach any point in the space; be-
cause of their con�guration, chain structure are usually more versatile, but it is
also more di�cult to accomplish a recon�guration step; moreover, such systems
are computationally di�cult to represent and analyze. Our work focuses on
lattice-based structures. Modular robotic systems are also generally classi�ed
depending on the design of their modules; in our setting, modular robots are

7

8 CHAPTER 1. INTRODUCTION

considered homogeneus, as all the modules have the same shape and dimen-
sions, in contrapposition to heterogeneous modular robot systems, which have
di�erent modules, each of which do specialized functions.

The recon�guration methods are usually classi�ed into deterministic and
stochastic. The recon�guration methods we present are completely determinis-
tic, as the exact location of each unit is known at all times, while in stochastic
methods units move around using statistical processes.

Many examples of self-recon�guring robots have been phisically built, with
a wide variety of action capabilities. We present here some examples that �t
our setting, i.e. some example of lattice-based modular robots that have been
built, in Figures 1.1, 1.2, 1.3 and 1.4.

Figure 1.1: Eight modules of the EM-Cube [1]; two modules move on three
di�erent sides of the system, recon�guring the initial shape at the end of the
movement.

Figure 1.2: Eight modules of the Crystal system [2] performing locomotion.

1.3. FRAMEWORK 9

Figure 1.3: Three modules of the Telecube [5] joint togheter.

Figure 1.4: Six modules of the Micromodules [3] joint togheter.

1.3 Framework

In our framework, a robot is a connected set of identical modules located in a
2-dimensional square lattice. Each module of the robot is assumed to occupy
one grid cell, and to be attached to its direct grid neighboring modules. The
modules are assumed to perform some basic movements relative their neighbors,
applying one of the two relative movements depicted in Figure 1.5.

In our framework we assume that each module attaches immediately to each
one of its neighboring modules as it changes its position.

Each module disposes of an internal memory, in which an internal state
(active, passive, stop...) is memorized in a short text string, and the value of
some counters can be stored and used to perform some simple operations as
comparisons, sums and subtractions.

In order to be able to apply a movement, each module needs to able to get

10 CHAPTER 1. INTRODUCTION

Movement I: Sliding Movement II: Convex transition

Figure 1.5: Advance moves: (a) slide and (b) convex transition.

some information not only about its own condition, but about some external
grid cells too: in our framework, modules are able to understand if a given grid
cell is empty or occupied, either by another module or by a physical obstacle,
to receive information about the value of the counter of other modules, and to
detect their internal states.

The communication with the rest of modules is limited by proximity restric-
tions; we assume that each module is able to get information about positions
belonging to the �rst and to the second neighborhood of grid cells (refer to
Figure 1.6); the possibility of questioning the grid cells of the second neighbor
is restricted to the essential cases, as more complicated to achieve in practical
situations; such cases are speci�ed along the document.

I

I

I

I

I

I

I

I

II

II

II

II

II II II II II

II

II

II

II

II II II

Figure 1.6: Illustration of the grid cell positions belonging to the �rst and the
second neighbor of the current module; the current module is depicted in pink
with a dot in its center, the grid cell of the �rst neighbor are yellow and indicated
with a I while II stands for the cells of the second neighbor, this last one depicted
in orange.

In each one of the algorithms presented in the following chapters, some in-
formation about the overall shape of the system (such as the height of a rectan-
gular system, the number of columns for an histogram, the height of a column)
is stored into each module; such information doesn't have to be communicated
to the modules by an external agent, but it can be obtained by the modules
alone in a separate previous phase, controlled by the rules for the bounding box
presented in [6]. For this reason we don't discuss here the process of getting
such information, and we assume that the modules have already analyzed the
shape of the system before the application of our rules. Our algorithms consist
in set of rules that all modules run at the same time, but modules can apply at
most one rule at each evaluation round; this is achieved by giving to the rules
a particular structure, that makes them pairwise incompatible, or in some way

1.4. RELATED WORK 11

ordered by priority. Each rule, in fact, has the following structure: a priority,
a precondition, and a postcondition. Priorities are represented as integers, and
assigned to di�erent rules a order of importance: any module whose situation
satis�es at the same time the precondition of two or more di�erent rule, will
apply the rule with maximal precondition among them.

A precondition is a set of conditions that need to be satis�ed by the module
and its neighbors (�rst and second neighborhood); in particular, each module
need to check its own internal state (de�ned a text string indicating if the
module is active, inactive, an obstacle...), the state of its neighboring grid cells,
the value of its internal counters and of the counter of its neighbors, to compare
its own counters to the ones of other neighbors, and to check if the neighboring
grid cells are either empty or occupied by other modules.

A postcondition is a combination of one or more of the following actions: a
change of the internal state of the module, a movement in a given direction with
a change of the attachments with of the module, and a change of the internal
counters of the module.

For each algorithm presented we illustrate the strategy of the movement, a
proof of correctness of the rules and study of the complexity of each set of rules.
Moreover, each set of rules is implemented in a simulator; such simulator applies
the set of rules memorized over a set of modules de�ned by the user; as we said,
the simulator run the entire set of rules to each module at the same time. At
each evaluation round, each module applies all the rules that are applicable to
its situation, depending on the preconditions and the priority of the rule; such
application is performed independently from the rest of modules.

Together with the presentation of the strategy of the movement then, the
detailed set of rules and visual examples of the implementation of such rules are
presented.

The detailed functioning of the simulator can be read in [7].

1.4 Related work

Our work is mostly inspired on [8], which presents some sets of rules dedicated to
the free locomotion of rectangular systems and to the overpassing of histogram-
shaped obstacles. In [8] the authors use three di�erent evaluation models which
happen to be essentially sequential; in the �rst one, the modules are evaluated
in a set cyclical ordered, with no variation in the relative delay between any
two cells. In the second execution model, a di�erent permutation is used at
each round; and in the third model, at each turn one randomly chosen module
applies the rules and turns disappear. In each of the three cases, the rules are
applied to each cell one by one in sequence, not all togheter as a set. Some
practical experiments that we have performed in the simulator [7] prove that
their essentialy sequential rules, implemented in a parallel setting, generate
disconnections and collisions. Our goal has been to design alternative algorithms
in order to e�ectively parallelize the execution of the rules by all the modules;
our modules execute then the rules in a synchronous parallel way.

12 CHAPTER 1. INTRODUCTION

1.5 Structure of the document

The document is ideally divided into three parts; the �rst part, formed by the
�rst �ve chapters, treats the in-shape locomotion of systems initially con�gured
as rectangles; in particular we present the following algorithms: rules for the
free locomotion of rectangular systems (Chapter I), locomotion of a rectangle
in the presence of inferior histogram obstacles (low obstacles in Chapter II and
high obstacles in Chapter III), and locomotion of a rectangle in the presence
of superior histogram and general-shaped obstacles (Chapter IV). Chapter V
is devoted to the tunneling of a rectangle, i.e. the locomotion of a rectangular
system in the presence of tunnels, formed by inferior and superior histogram
shaped obstacles.

The second part, from Chapter VI to Chapter VIII is devoted to the study
of the in-shape locomotion of histogram-shaped systems; in Chapter VI we treat
the free locomotion of a general histogram, in Chapter VII the locomotion of an
histogram in the presence of low and high histogram-shaped inferior obstacles,
and in Chapter VIII the locomotion under superior histogram obstacles.

The third part, formed by Chapter IV, contains an introduction to the prob-
lem of the overpassing of general shaped obstacles. The document ends with
some conclusions, a discussion about further work, and the references mentioned
along the text.

Chapter 2

Rectangle locomotion

2.1 Goal

The purpose of the set of rules presented in this chapter is to produce the
eastward locomotion of any modular robotic system initially con�gured as a
connected rectangle without holes. The locomotion is performed on a free plane
ground (a horizontal line) without obstacles. The rules are divided into two sets:
the �rst one produces the proper locomotion, while the second one recon�gures
the system into the original shape at the end of the locomotion.

2.2 Strategy

The rules produce the locomotion by making each module in turn move from
the back of the group, over the top, and locate on the front of the group to
form a new column. The �rst move is performed by the topmost module of
the leftmost column; the other modules of the column follow it until the second
column becomes the leftmost and is free to move in the same way; see Figure
2.1 for an illustration.

Along the locomotion the modules pass through two di�erent states: inactive
and active; all the modules are initially inactive, they progressively activate and
move relatively to the inactive modules while applying the rules, and deactivate
again as they settle on the front of the system. These changes of state run until
the system reaches its �nal position, when modules gradually change their state
to stop through the stop rules, and recon�gure again into a rectangle.

As the �rst module sets its state to stop no change-position rule is applicable
and the con�guration is blocked. The modules stay connected to the others
during the entire locomotion, so that the system always consists in a connected
set while moving.

2.3 Advance rules

For the locomotion the modules use �ve advance moves: North, North-east,
East, South-east and South.
Each of these rules, if applicable, has as e�ect the change of a module position

13

14 CHAPTER 2. RECTANGLE LOCOMOTION

Figure 2.1: Execution of the action rules: the leftmost column walks on the
top of the rectangle and settles on the front of the system. Active modules are
depicted in pink, inactive modules are depicted in blue.

in a di�erent direction, as illustrated in Figure 2.2.
As we can notice, the goal position is always required to be empty, and modules
are allowed to move only on inactive modules.

North North-East East

South-EastSouth

Figure 2.2: Advance rules: change position. In this graphical representation the
left picture of each rule represents the preconditions that need to be satis�ed in
order to perform the movement while, on the right, the result of the application
of the rule is depicted. The darkest modules are inactive, and the empty squares
correspond to empty positions of the grid; the module applying the rule is
depicted in a lighter color, and has a dot.

We can see in details the structure of these rules by taking as an example
the North rule, illustrated in Figure 2.3:

North

Move North
2
State6=Stop & (-1,0)=(0,1)=empty & State(1,0)=State(1,1)=Inactive
Move (0,1) & State=Active

Figure 2.3: Detailed example of the structure of one of the advance rules.

Every action rule, as the North rule, has priority equal to 2, and is applicable
only to modules that are either inactive or already active.

When the preconditions are satis�ed the rule is applied, and the state either
changes from inactive to active, or stays active if the module had already been
activated. When none of these rules is applicable to a module, a change of state
is obtained through the deactivation rule depicted in Figure 2.4.

2.4. STOP RULES 15

Deactivation

Figure 2.4: Advance rules: deactivation.

The priority of the deactivation rule is 1, so that moving has always priority
with respect to the deactivation, and a module deactivates only when it cannot
move in any direction.

The action rules presented in Figure 2.2 need to be modi�ed in the case of
a rectangular system formed by only one column of modules. In this case, to
produce the locomotion of the system a modi�cation to the South-east rule is
necessary in order to avoid disconnections. The second version of the South-east
rule is depicted in Figure 2.5.

South-East version II

Move South-east
2
State6=Stop&(-1,0)=(0,1)=(1,0)=(1,-1)=(-1,-1)=(-1,-2)=Empty&(0,-1)=Full
Move (1,-1)&State=Active

Figure 2.5: Advance rules: second version of the South-east rule for the case of
one column.

2.4 Stop rules

As we don't want the locomotion procedure to be open loop some stop rules
are needed in order to break the movement. During the action phase, the �rst
module on the top of the �rst column starts the locomotion by moving North-
east, and allows the other modules of the same column to change their state
to active and apply the other action rules. By stopping such a module we can
therefore stop the movement of the �rst column, and as a result the movement
of all the system. In fact, when the highest module on the left column is blocked,
as soon as the active modules have completed the rightmost column no other
rule di�erent from the stop rules is applicable. In order to make use of these
facts, before starting the locomotion we �x a value and store it in the counter
C01, which is memorized into each module of the system. This value will control
the number of rounds the modules will move. Along the locomotion, each time
a module moves North-east a second counter C00 is increased by 1; as long as
this second counter is smaller than the �xed one C01, the action continues. As
some module reaches the desired value of C00 and happens to be in the correct
position, the stop rule may be applied, as we can see in Figure 2.6. Notice
that this rule has higher priority than any of the priorly described ones. This
guarantees that it will be applied whenever the preconditions are ful�lled.

As the �rst module changes its state to stop, the others can detect its new
condition and change their own state to stop; this is done through four stop rules
that are represented in Figure 2.7. No other rule is applicable to a module which

16 CHAPTER 2. RECTANGLE LOCOMOTION

Stop

Stop
3
State=Inactive & (0,1)=(0,-1)=(1,1)=Empty & State(1,0)=Inactive &
Counter0=Fixed value
State=Stop

Figure 2.6: Stop rule for the �rst module.

is set in the stop state, so the locomotion ends, and the system is recon�gured
into a rectangle as soon as the last active modules change their state to inactive,
once settled in the last column, and then stop.

Stop 1 Stop 2

Stop 3
Stop 4

Figure 2.7: Stop rules for the rest of the modules: any inactive module meeting
the preconditions and with a neighbor in the stop phase (dark red in the picture)
changes its own state from inactive to stop. Dark gray cells are occupied cells.

2.5 Correctness

In this section we prove that the rules presented in this chapter serve our pur-
poses, that is to make a rectangular robotic system advance from east to west
over a �at ground without obstacles, and recon�gure after a given number of
rounds. In particular, we prove the following:

1. No collisions are produced during the movement.

2. The system stays connected during the whole movement.

3. There is always at least one rule that is applicable to some module of the
system.

4. The rules actually produce a locomotion of the system from west to east.

5. The stop rules block the locomotion and recon�gure the system into a
rectangle.

Lemma 1 Each module can apply at most one action rule at a time.

Proof: The result is easily seen by a comparison between the preconditions of
the �ve action rules, which turn out to be pairwise incompatible. Without loss
of generality, we can examine the rules North and North-east: notice that one of
the requirements for the application of North is that the cell grid with relative
coordinates (1, 1) has to be occupied by an inactive module, while North-east

2.5. CORRECTNESS 17

requires the same cell to be empty in order perform the change of position.
This incompatibility stands for any pair of these rules, so each module either
can apply one action rule, or can't apply any of them. �

Proposition 1 No collisions are produced during the movement.

Proof: We want to prove that two di�erent modules cannot satisfy the precon-
ditions for moving to the same grid cell at the same time. Due to Lemma 1 we
only need to worry about con�icts created by the application of one rule at a
time, and not by changes of position resulting from combinations of di�erent
movements. The case of con�icts between the North and the South rule is easily
excluded: any module able to apply North is a module attached to the left side
of the system, while any module applying South is attached to the right, and
the two movements cannot con�ict. The only other type of con�ict which could
occur is the one that would be generated by rules with a common direction such
as North-east and North, North-east and East, South-east and East, South-east
and South or North-east and South-East, but we can easily discard these pos-
sibilities too: without loss of generality we can examine the case of North-east
and North. Let's suppose that A is a module that intends to occupy the grid
cell with relative coordinates (0, 1) by moving North. A precondition for the
movement is that the cell grid in relative position (−1, 0) is empty. But any
module B willing to occupy the same grid cell by applying North-east would
occupy exactly such position, and this is a contradiction (see Figure 2.8). The
rest of the possible mentioned con�icts present the same contradictions, and
therefore can be excluded. �

AB

Figure 2.8: The module A cannot move North, as B is occupying the cell grid
(−1, 0).

Lemma 2 Any module able to apply either the East or the South rule is an
active module, as it has already been activated by the application of previous
rules.

Proof: Neither the East nor the South rule can be the �rst rule applied by a
module as the initial con�guration of the system is a rectangle, and the pre-
conditions of both rules clearly show that a module which is able to apply one
of these two rules cannot be part of a rectangular system. The only possibility
left is that a module has been deactivated by the deactivation rule, and restarts
the movement applying East or South; we will see that this is impossible too.
As the priority of the deactivation rule is smaller than the priority of any other
rule, modules only deactivate when no action rule is applicable. As Lemma 1
guarantees that no collisions occur during the locomotion, any active module
is free to move until it reaches the rightmost column on the front and settles
on top of another deactivated module. In this case it will activate again only
when it will be able to apply the North rule again, so this last possibility can
be discarded too. �

18 CHAPTER 2. RECTANGLE LOCOMOTION

Proposition 2 The system stays connected during the whole movement, i.e.
no rule produces a disconnection between the module applying it and the system.

Proof: Due to Lemma 1, the only cases to study are the ones originated by the
application of one rule at a time. All the post-conditions of the action rules
guarantee that the current module is connected to one of its neighbors after the
movement, we will call it the `support module' of the rule; the only situation in
which a disconnection could occur is the one in which while a module applies
a rule and intends to connect to the support module, this last one applies an
action rule itself, leaving its grid cell empty. The only way to exclude this
possibility is to analyze the possible support modules, and prove that there is
no rule that they could be applying. We can notice that the support module
is always supposed to be inactive, therefore Lemma 2 guarantees that it cannot
be applying neither the East nor the South rule. Inactive modules able to apply
the South-east rule can only be found in the particular case in which the initial
con�guration consists in a rectangle formed by only one column. In this case,
the topmost module would activate directly by applying the South-east rule,
while the other modules cannot apply any rule; so this module cannot play
the role of support module for any other, and this situation cannot generate
disconnections. Inactive modules able to apply North and North-east rules can
only be found in the leftmost column, in the case of a rectangle formed by more
than one column. The only inactive module able to apply the North-east rule
is the module which starts the movement of its own column; we can easily see
that this module cannot be the support module of any rule, as no one of its
neighbors satisfy the preconditions of any of the rules, as illustrated in Figure
2.9.a. The inactive modules able to apply North are the modules which follow
the movement of the �rst one of their column, activating by moving North. As
in the last case, no one of their neighbors is able to move (see Figure 2.9.b), so
we can discard this last case too. �

A B

(a) (b)

Figure 2.9: (a) The inactive module A applying the North-east rule cannot be
the support module for any of its neighbors. (b) The inactive module B moves
North, and no other neighboring module can move.

Proposition 3 There is always at least one rule that is applicable to some
module of the system, so the system cannot get stuck during the movement.

Proof: We can analyze the movement of the leftmost column and proceed by
induction. From the initial con�guration of a rectangle, there is a one and
unique module able to apply a rule: the �rst module on the top of the leftmost
column; as it applies the North-east rule, it leaves space to the other modules
of its column to activate and move North and North-East progressively. The

2.6. COMPLEXITY 19

�rst module, followed by the others of its column, moves East on the top of the
system, South-East, and South along the rightmost column. As these modules
make their way to the end of the rectangle, they form a new rightmost column;
the second leftmost column becomes the �rst, its topmost module is free to
move and the motion is repeated. As there is always a leftmost column which
is at some moment free to restart the movement, the system can always move
further and there is always some rule applicable. �

Proposition 4 The rules produce a locomotion of the system from west to east.

Proof: As there is always one rule applicable to the system because of Lemma
3, and each one of the rules North-east, East and South-east has a component
in the east direction, the only thing we need to prove is that the rules don't
produce an alternation of opposite movements without moving the system in
any direction. The only two rules that don't produce a movement in the east
direction are the North and the South rules, but we can easily notice that any
module which performs a movement in the North direction cannot produce one
in the South direction until it has reached the opposite side of the rectangular
system; this locomotion of the modules from the back to the front produces an
overall movement towards east without any risk of oscillations. �

We have proved the following:

Theorem 1 The rules described in section 2.3 allow any rectangular con�gu-
ration of modules to advance eastwards while keeping the system connected.

A last comment is to be given about the stop rules described in section 2.4.
Given the strategy of the locomotion movement, it is straightforward that by
stopping the topmost module of the leftmost column the locomotion is blocked.
As soon as the remaining active modules have moved from the top of the rect-
angle to the right and have formed the new rightmost column, the system is
recon�gured into a rectangle. The following result is then immediate:

Proposition 5 The rules proposed in section 2.4 produce the interruption of
the locomotion and the recon�guration of the system into a rectangle.

2.6 Complexity

Neighbourhood During the locomotion each module is only able to check if
any grid cell sharing either an edge or a vertex with it is empty or occupied
by another module; in this last case, it can obtain information about the
state of such module. No information about any other position is needed.

Memory and computation Locomotion only requires O(1) memory for each
module, and a O(1) computation at each step, as modules only need to
memorize a �xed value in a counter, and to check if preconditions of rules
are ful�lled.

Number of moves For an advance length of k rounds, and a rectangular
system of dimension h× b, each module performs O(k(h+ b)) changes of
position, O(k) deactivations (it deactivates once at each round) and stops
once, therefore each module performs at most O(kn) rules, where n is the

20 CHAPTER 2. RECTANGLE LOCOMOTION

number of modules of the system; the number of rounds k depends linearly
on the distance covered by the system during the locomotion.

Communication A constant size communication is performed during the ap-
plication of each rule, so the communication performed by each module is
O(n).

Number of time steps In a synchronized execution, for an advance length
of k rounds and a rectangular system of dimension h × b, locomotion is
performed in O(k(2hb)) steps; this can be seen by charging to each column
the steps starting from the activation of the topmost module of the column
to the �rst movement of the topmost module of the following column, and
multiplying by the number of rounds. Notice that the number of rounds
k is directly proportional to the distance between the starting and the
goal position. As recon�guration too only requires O(n) steps, the overall
number of time steps is O(kn).

2.7. RULES 21

2.7 Rules

The algorithm is based on 11 di�erent rules; before the locomotion the number
of rounds needs to be stored in counter C01.

Rule name: North
Priority: 2
Preconditions: !SSTOPP N001* T1,1,INACT
Postconditions: P0,1 SACTIV A****

- Rule: North
- Priority: 2 (the priority is the same for each action rule).
- Preconditions:
!SSTOPP: the rule is not applicable to modules set in the stop state.
N001*: concerns only the modules of the leftmost column, without a North
neighbor.
T1,1,INACT: the support module needs to exists and to be set on inactive.
- Postconditions:
P0,1: the module moves north.
SACTIV: the module changes its state to active.
A****: the module attaches afterwards if was attached before, when possible.

Rule name: North-east
Priority: 2
Preconditions: !SSTOPP N001* T1,0,INACT E1,1
Postconditions: P1,1 SACTIV A***1 C000 + C000 0001

- Rule: North-east
- Priority: 2 (the priority is the same for each action rule).
- Preconditions:
!SSTOPP: it is not applicable to modules set in the stop state.
N001*: concerns only the modules of the leftmost column, without a North
neighbor.
T1,0,INACT: the east neighbor needs to be set on inactive.
E1,1: the goal grid cell needs to be empty.
- Postconditions:
P1,1: the module moves north-east.
SACTIV: the module changes its state to active.
A***1: the module attaches to its new south neighbor; if it was attached
before and if still possible, it attaches to the other neighbors.
C000 + C000 0001: the counter C000 is increased by 1 each time the rule is
applied.

Rule name: East
Priority: 2
Preconditions: !SSTOPP N0*01 T1,-1,INACT
Postconditions: P1,0 A***1

- Rule: East
- Priority: 2 (the priority is the same for each action rule).

22 CHAPTER 2. RECTANGLE LOCOMOTION

- Preconditions:
!SSTOPP: it is not applicable to modules set in the stop state.
N0*01: the rule concerns only the modules without north nor west neighbors,
but with a south neighbor; the presence of a module on the east is not
important.
T1,-1,INACT: the support module needs to exist and to be set on inactive.
- Postconditions:
P1,0: the module moves east.
A***1: the module attaches to its new south neighbor; if it was attached
before and if still possible, it attaches to the other neighbors.

Rule name: South-east
Priority: 2
Preconditions: !SSTOPP N0001 E1,-1
Postconditions: P1,-1 SACTIV A*1**

- Rule: South-east
- Priority: 2 (the priority is the same for each action rule).
- Preconditions:
!SSTOPP: it is not applicable to modules set in the stop state.
N0001: concerns the modules with a south attachment and no other neighbor.
E1,-1: the goal position needs to be empty.
- Postconditions:
P1,-1: the module moves south-east.
SACTIV: the module changes its state to active.
A*1**: the module attaches to its new west neighbor; if it was attached before
and if still possible, it attaches to the other neighbors.

Rule name: South
Priority: 2
Preconditions: !SSTOPP N*100 T-1,-1,INACT
Postconditions: P0,-1 A***1

- Rule: South
- Priority: 2 (the priority is the same for each action rule).
- Preconditions:
!SSTOPP: it is not applicable to modules set in the stop state.
N*100: concerns the modules with a west neighbor, without a module on the
east and on the south. The presence of a north neighbor is not important.
T-1,-1,INACT: the support module needs to exist and to be set on inactive.
- Postconditions:
P0,-1: the module moves south.
A***1: the module attaches to its new south neighbor, if present; if it was
attached before and where still possible, it attaches to the other neighbors.

2.7. RULES 23

Rule name: Deactivation
Priority: 1
Preconditions: !SSTOPP N**0*
Postconditions: SINACT

- Rule: Deactivation
- Priority: 1 (the priority is smaller than the priority of any action rule;
modules deactivate only if no action rule is applicable).
- Preconditions:
!SSTOPP: it is not applicable to modules set in the stop state.
N**0*: concerns the modules without a module on the east. The presence of a
north, west or south neighbor is not important.
- Postconditions:
SINACT: the module changes its state to inactive.

Rule name: Stop
Priority: 3
Preconditions: SINACT N001* T1,0,INACT E1,1 = C000 C001
Postconditions: SSTOPP

- Rule: Stop
- Priority: 3 (the priority is greater than the priority of any action rule).
- Preconditions:
SINACT: it is applicable only to modules set in the inactive state.
N001*: concerns the modules with a east neighbor and without a module on
the north and on the west. The presence of a south neighbor is not important.
T1,0,INACT: the east neighbor needs to be an inactive module.
E1,1: the grid cell of relative coordinates 1,1 needs to be empty.
= C000 C001: the value of the counter C000 needs to meet the value of the
counter C001, this last one �xed before starting the locomotion. This last
precondition controls the number of rounds.
- Postconditions:
SSTOPP: the module changes its state to stop.

Rule name: Stop 1
Priority: 3
Preconditions: SINACT N*1** T-1,0,STOPP
Postconditions: SSTOPP

- Rule: Stop 1
- Priority: 3 (the priority is greater than the priority of any action rule).
- Preconditions:
SINACT: it is applicable only to modules set in the inactive state.
N*1**: the module needs to have a east neighbor T-1,0,STOPP: the east
neighbor needs to be set in the stop state.
- Postconditions:
SSTOPP: the module changes its own state to stop.

24 CHAPTER 2. RECTANGLE LOCOMOTION

Rule name: Stop 2
Priority: 3
Preconditions: SINACT N1*** T0,1,STOPP
Postconditions: SSTOPP

- Rule: Stop 2
- Priority: 3 (the priority is greater than the priority of any action rule).
- Preconditions:
SINACT: it is applicable only to modules set in the inactive state.
N1***: the module needs to have a north neighbor T0,1,STOPP: the north
neighbor needs to be set in the stop state.
- Postconditions:
SSTOPP: the module changes its own state to stop.

Rule name: Stop 3
Priority: 3
Preconditions: SINACT N11** T-1,1,STOPP
Postconditions: SSTOPP

- Rule: Stop 3
- Priority: 3 (the priority is greater than the priority of any action rule).
- Preconditions:
SINACT: it is applicable only to modules set on the inactive state.
N11**: the module needs to have a north neighbor and a west neighbor.
T-1,1,STOPP: the grid cell with relative coordinates (−1, 1) needs to be
occupied by a module set on stop.
- Postconditions:
SSTOPP: the module changes its own state to stop.

Rule name: Stop 4
Priority: 3
Preconditions: SINACT N*10* T-1,0,STOPP
Postconditions: SSTOPP

- Rule: Stop 4
- Priority: 3 (the priority is greater than the priority of any action rule).
- Preconditions:
SINACT: it is applicable only to modules set on the inactive state.
N*10*: the module needs to have a west neighbor and no module on the east.
T-1,0,STOPP: the west neighbor needs to be set in the stop state.
- Postconditions:
SSTOPP: the module changes its own state to stop.

Rule name: South-east version II
Priority: 2
Preconditions:!SSTOPP N0001 E1,-1 E-1,-1
Postconditions: P1,-1 SACTIV A*1**

2.7. RULES 25

- Rule: South-east version II: case of one column.
- Priority: 2
- Preconditions:
!SSTOPP: it is not applicable to modules set in the stop state.
N0001: concerns the modules with a south attachment and no other neighbor.
E1,-1: the goal position needs to be empty.
E-1,-1: the grid cell in position (−1,−1) needs to be empty; notice that this is
the only modi�cation needed to treat the case of one column.
- Postconditions:
P1,-1: the module moves south-east.
SACTIV: the module changes its state to active.
A*1**: the module attaches to its new west neighbor; if it was attached before
and if still possible, it attaches to the other neighbors.

26 CHAPTER 2. RECTANGLE LOCOMOTION

Chapter 3

Rectangle locomotion over

low obstacles

3.1 Goal

In this chapter we discuss the eastward locomotion of a rectangular system in the
presence of obstacles. In our setting, obstacles lay on the ground (a horizontal
line) and are con�gured as histograms; the maximum height of the obstacles is
one unit less than the height of the rectangle in the initial con�guration. We
refer to this kind of obstacles as `low obstacles'. As in the free locomotion case,
the rules are divided into locomotion rules and recon�guration rules. As the
recon�guration is performed after the obstacles are traversed, it is performed
exactly as illustrated in Chapter 2, and we will not discuss it another time.

3.2 Strategy

The strategy is similar to the one of the free locomotion, but with some adjust-
ments that make it possible to crawl over the obstacles. Modules always move
from the back of the group, over the top, and down on the front of the group.
Before reaching an obstacle, the rectangle moves under the original locomotion
rules described in Chapter 2; as the rectangle encounters an obstacle, the system
�lls the free spaces over the obstacle and �ows over it until it reaches the ground
another time. A third state is introduced in order to make the movement more

Figure 3.1: Crawling over a low obstacle: as the obstacle is reached, the modules
move on the top of it through the use of bridges. Active modules are depicted
in pink, inactive modules are blue, obstacles are black and bridges are the red
modules.

27

28 CHAPTER 3. RECTANGLE LOCOMOTION OVER LOW OBSTACLES

�uid and faster, so modules pass now through three di�erent states: inactive,
active and bridge; this new state allows the system to avoid �lling the bottle-
necks of width 1 formed between the obstacle and the system itself, as we can
observe in Figure 3.1. Each module set on "bridge" allows the other modules
to pass by without having to �ll all the spaces over the obstacles, and it does
not move until all of them have passed.

During the locomotion, columns start the movement from their topmost
module, and the other modules progressively activate by the a North rule until
the last one is active and able to follow the others. This process is reversed for
the column immediately on the left of a bridge as we can observe in Figure 3.2.
During the whole movement the system maintains its height constantly equal
to the initial one.

Figure 3.2: The order of activation of the modules of the column is reversed
for the one preceding the bridge, and for the bridge itself: as the other columns
have made their way and overpassed the obstacles, and no other inactive modules
are left on the left of the obstacles, the strategy has to be inverted in order to
avoid disconnections; the �rst module to move is now the bottommost, which
activates moving North-west, and is followed by the others; as the possibility of
disconnection is avoided the movement starts again from the topmost module.

3.3 Action rules

To perform locomotion in the presence of low obstacles, modules apply a set of
nine action rules, depicted in Figure 3.3. Each of the action rules, if applicable,
changes the position of a module in a di�erent direction.

All the action rules, except for the South-East II rule, have priority equal to
3, as the North rule illustrated in Figure 3.3; the South-East II rule has priority
2, in order to prevent situations in which the same module is able to apply both
South East and South-East II.

NM

IN

North

North
3
State6=Obstacle & (0,1)=empty & (1,0)=Full & State(-1,0)6= (Inactive,Active)
Move to (0,1) & State=Active

Figure 3.3: Detailed example of the structure of one of the advance rules.

3.4 Deactivation and bridges

Along with the action rules, two other rules are used in order to achieve loco-
motion over low obstacles: a rule for the creation of bridges and a deactivation

3.4. DEACTIVATION AND BRIDGES 29

NAI NAI

NO

NAI

NM

IN

IN

North North-East I North-East II

East South South-East

IN/B IN

NAI NAI

South-East II

NO

NM

NAI

North-west

IN

South-west

IN

IN

NAI

NM = No module NO = No obstacle IN = Inactive NAI = Not active nor Inactive B = Bridge

Figure 3.4: Action rules for the locomotion over low obstacles. In this graphical
representation a colored square always indicates cells of the grid which need to
be occupied; empty squares without any legend correspond to positions which
need to be empty; the module applying the rule is the one marked with a dot
and the crossed cells indicate cells occupied by obstacles. Legends denote some
additional conditions that are required for the movement.

rule; both of these rules have the e�ect of changing the state of the module,
without changing its position. Figure 3.5 illustrates the rule for the formation
of a bridge.

Bridge

Bridge
6
State=Active & (0,1)=(0,-1)=empty & State(1,0)=State(1,-1)=Obstacle & (-1,-1)=Full
State=Bridge

Figure 3.5: Rule for the creation of bridges. The additional condition
�State(1,−1) =Obstacle� prevents the formation of bridges by modules lying
on the �oor.

Every time the �rst module encounters a obstacle, it changes its state into
`bridge' and stays still until the other modules have moved over the top of it;

30 CHAPTER 3. RECTANGLE LOCOMOTION OVER LOW OBSTACLES

no action rule is applicable to a bridge apart from the North-East rule. As soon
as all the modules have overpassed it, the bridge can apply the North-East rule
and changes its state to active again.

The Bridge rule has priority greater than the priority of any other rule, so a
module meeting the preconditions always creates a bridge.

The Deactivation rule, conversely, has priority smaller than any other rule,
so a module deactivates only when it cannot apply any other rule. We can see
the detailed Deactivation rule in Figure 3.6.

Deactivation

Deactivation
1
State=Active
State=Inactive

Figure 3.6: Deactivation rule

As in the case of free locomotion, if the system is formed by only one column
of modules the rules presented need some modi�cations. In this particular case
the use of bridges is not useful, as the system needs to attach to the obstacle
and climb on it in order to maintain its stability and avoid disconnections.
Therefore in this circumstance we eliminate the Bridge rule, and apply some
further modi�cation to the North-West rule, while all the other rules remain
unvaried; we can observe the new North-West rule in Figure 3.7.

North-west version II
3
State6=(Obstacle, Stop) & (-1,0)=(-1,1)=empty & (0,1)=(1,0)=Full &
State(1,0)= Obstacle & State(0,-1) 6=(Inactive, Active)
Move to (-1,1) & State=Active

NM

NAI

North-west version II

IN

Figure 3.7: Advance rules: second version of the North-West rule for the case
of one column.

3.5 Correctness

In this section we prove that the described rules actually produce an eastward
locomotion of a rectangular robotic system in the presence of low obstacles. As
in the case of free locomotion, we prove that:

1. No collisions are produced during the movement.

2. The system stays connected during the whole movement.

3.5. CORRECTNESS 31

3. There is always at least one rule that is applicable to some module of the
system.

4. The rules actually produce a locomotion of the system from West to East,
on free ground and over low obstacles.

In order to prove these results, we �rstly state and prove some preliminary
results:

Lemma 3 Each module can apply at most one action rule at a time.

Proof: As the priorities of the South-East II rule and the Deactivation rule are
smaller than the priorities of all the other rules, they don't need to be taken
into account in this proof, as they cannot generate any problem. As all the
other action rules have equal priorities, we need to check that they are pairwise
incompatible, i.e. that a module cannot satisfy the preconditions of two of them
at the same time. This is easily seen by analyzing the preconditions depicted in
Figure 3.3.

Without loss of generality, we can examine the North and the North-East I
rule: a requirement for the application of North is that the cell grid with relative
coordinates (0,1) is occupied by an inactive module, while North-East I requires
the same cell to be empty in order to change the position, so no module can
satisfy both sets of preconditions at the same time.

We �nd a similar contradiction by analyzing each pair of these rules, so the
rules are pairwise incompatible and modules can apply only one rule at a time.

�

Proposition 6 No collisions are produced during the movement.

Proof: We want to prove that two di�erent modules never move to the same
grid cell at the same time while applying the rules. Due to Lemma 3 we only
need to worry about con�icts created by the application of one action rule at
a time, and not by changes of position resulting from combinations of di�erent
movements. The case of con�icts between the North and the South rule is easily
excluded, as in the case of the free locomotion: any module able to apply North
is a module attached to the left side of the system, while any module applying
South is attached to the right, and the two movements cannot con�ict. The case
of con�icts generated by rules which produce the same change of position as
North-East I and North-East II, or as South-East I and South-East II, is clearly
impossible: two modules willing to move to the same grid cell performing the
same movement need to occupy the same position in the �rst place, and this is
not allowed in our con�guration.

The only other type of con�ict which could occur is the one that would be
generated by rules with a common direction, such as North-East (I or II) with
East, North-East (I or II) with North, South-East (I or II) and East and so
on, but we can discard these possibilities too: without loss of generality we
can examine the case of North-East I (II) and East. Let's suppose that A is
a module that intends to occupy the grid cell with relative coordinates (1,1)
by moving North-East I (II). A precondition for the movement is that the cell
grid in relative position (0,1) is empty, but any module B willing to occupy the
same grid cell by applying East would occupy exactly such position, and this

32 CHAPTER 3. RECTANGLE LOCOMOTION OVER LOW OBSTACLES

A

B

Figure 3.8: Module B wants to move East and occupy (1, 0), while A cannot
move to occupy the same grid cell, as it does not ful�ll the preconditions of
North-East I (II).

is a contradiction (see Figure 3.8). The rest of the possible mentioned con�icts
present the same contradictions, and therefore can be excluded.

�

Proposition 7 The system stays connected during the whole movement, i.e.
no rule produces a disconnection between the module applying it and the system.

Proof: Due to Lemma 3, the only cases to study are the ones originated by the
application of one rule at a time. All the post-conditions of the action rules
guarantee that the current module is connected to one of its neighbors (the
support module) after the movement, so we can immediately discard the case in
which a module disconnects from the rest of the system by the application of an
action rule. The second case to study is the case in which a module that is the
only connection between two connected parts of the system moves and creates
a disconnection between such parts. We can reasonably assume in this proof
that before the current module applies the rule the system is connected, as in
the initial con�guration the system is connected. To prove that such kind of
disconnection cannot occur, we can examine the case of the North rule without
loss of generality.

Observing the precondition of the North rule in Figure 3.3 we can notice that
the module with relative coordinates (−1, 0) cannot be a module, as it cannot
be neither inactive nor active according to the preconditions, and it cannot be
a bridge, because of the preconditions of the Bridge rule (see Figure 3.5); the
only possibility for the current module to be the only connection of two di�erent
parts of the system is the situation depicted in Figure 3.9. We can easily see
that this situation cannot occur. Let's suppose that module B occupying the cell
grid in position (0,−1) is free to move, i.e. it does not have a south neighbor; in
this case, the free grid cells between module A and module B imply that even
when free to apply the North-West rule, module B stopped while A continued
the movement towards east, and this goes against our settings. In the case
where module B has a south neighbor we can repeat the same reasoning for
this neighbor. So the situation cannot occur and no disconnection is produced
by the application of the North rule by one module. The rest of rules can be
analyzed in an analogous way.

The last possible case of disconnection to analyze is the one in which while
a module applies a rule and intends to connect to the support module, this last
one applies an action rule itself, leaving its grid cell empty.

We can exclude this possibility analyzing the possible support modules, and
proving that there is no rule that they could be applying.

3.5. CORRECTNESS 33

A

B

Figure 3.9: The current module disconnects the system with the application
of the North rule, as it is the only connection between two di�erent connected
parts of the system.

Without loss of generality we can study the support module of the North-
East I rule, and prove that it cannot apply any rule while the current module is
moving. We can immediately see that the support module of the North-East I
rule does not ful�ll the preconditions of North, North-East I and II, East, South-
East nor North-West; the only possible action rules left are South, South-West
and South-East II. As the support module of North-East I needs to be inactive,
we can easily exclude these possibilities too, as it can be proved that any module
able to apply one of these rules has to be active, as it has already been activated
by the application of previous rules. The support modules of the other rules
can be studied in the same way, so this kind of disconnection cannot occur, and
the system stays connected during the whole locomotion. �

Proposition 8 There is always at least one rule that is applicable to some
module of the system.

Proof: The proof is analogous to the case of the free locomotion; we can analyze
the movement of the leftmost column and proceed by induction. Among the
modules of the leftmost column there is always a module able to apply a rule:
either its topmost module, or the bottommost module in the case an obstacle is
encountered. If the topmost is free to move, as soon as it applies the North-East
I rule it leaves space to the other modules of its column to activate and move
North and North-East progressively; the �rst module, followed by the others
of its column, moves East on the top of the system, South-East, and South
along the rightmost column, and deactivates. If the bottommost moves �rst,
it applies North-West and moves North until it reaches the top of the system,
followed by the other modules of the column, and continues in the same way
leaving the new leftmost column free to move. As soon as these modules make
their way to the right, the second leftmost column becomes the �rst, either its
topmost or its bottommost module is free to move and the motion is repeated.
As there is always a leftmost column, by induction on the number of columns
we can conclude that there is always some rule applicable to some module of
the system. �

Proposition 9 The rules actually produce a locomotion of the system from west
to east, on free ground and over low obstacles.

Proof: As there is always one rule applicable to the system because of Lemma
8, the only thing we need to prove is that the rules don't produce an alternation
of opposite movements without moving the system in any direction. The action
rules that don't produce a movement in the East direction are North, South,

34 CHAPTER 3. RECTANGLE LOCOMOTION OVER LOW OBSTACLES

North-West and South-West; we can easily notice from the preconditions of
the rules that any module which performs a movement in the North direction
cannot produce one in the South direction until it has reached the opposite
side of the system; the same can be said about North-west and South-West:
no module can oscillate applying North-West and South-West, as any module
which performs North-west has to reach the right side of the system before
being able to move South-West, so we cannot have an oscillation produced by
the application of these rules. As all the other action rules have a component on
the East direction, the application of these rules produces an overall movement
towards East, with and without low obstacles, without any risk of oscillations.

�

We have proved the following:

Theorem 2 The rules described in Section 3.3 allow any rectangular con�gu-
ration of modules to advance eastwards on a free ground and in presence of low
obstacles, while keeping the system connected.

We have already commented the stop rules and their correctness in Section
2.4; in the presence of low obstacles the same rules produce a recon�guration of
the system into a rectangle at the end of the locomotion, as long as the value
of the counter of the number of rounds is big enough to allow the system to
traverse the obstacles before recon�guring.

3.6 Complexity

Neighbourhood During the locomotion each module is only able to check
if any grid cell sharing either an edge or a vertex with him is empty or
occupied by another module; in this last case, it can obtain information
about the state of such module. No information about any other position
is needed.

Memory and computation Locomotion only requires O(1) memory for each
module, and a O(1) computation at each step, as modules only need to
memorize a �xed value in a counter, and to check if preconditions of rules
are ful�lled.

Number of moves For an advance length of k rounds, and a rectangular sys-
tem of dimension h×b, each module performs in the worst caseO(k(2h+b))
changes of position, O(k) deactivations (it deactivates once at each round)
and stops once, therefore each module performs at most O(kn) rules. The
number k of rounds of the system depends linearly on the number of mod-
ules of the obstacle, supposing that the system starts its locomotion just
before the obstacle starts, and ends it as soon as it overpasses the obstacle.

Communication A constant size communication is performed during the ap-
plication of each rule, so the communication performed by each module is
linear in the number of moves, i.e. O(kn).

Number of time steps Let's suppose that the execution of the rules is syn-
chronized, with an advance of k rounds and a rectangular system of di-
mension h × b. As in the case of free locomotion we can compute the

3.6. COMPLEXITY 35

number of time steps by charging to each column the steps starting from
the activation of the topmost module of the column to the �rst movement
of the topmost module of the following column, and multiplying by the
number of columns; if the movement of a column starts from the topmost
module the number of time steps to be charged to the column is O(2h),
as in the case of the free locomotion; this behavior is modi�ed when the
following column activates inverting the order of activation of its module.

For any column which starts its movement from the bottommost module,
the number increases to O(3h), as the delay between the activation of two
modules of the same column is increased in this case; these columns start
to move as soon as the last module of the previous column moves North,
h steps before the others. We can charge then only h steps to the previous
column and 3h to the column which inverts the movement, obtaining an
average of O(2h) for column.

When the system moves on the top of the obstacle, the number of modules
of each column is less than h, and the time steps to charge to each column
decrease with the number of modules; locomotion over low obstacles is
then performed in at most O(k(2hb)) steps. The number of rounds k de-
pends linearly on the number of modules of the obstacle. Recon�guration
only requires O(n) steps, so the overall number of time steps is at most
O(kn).

36 CHAPTER 3. RECTANGLE LOCOMOTION OVER LOW OBSTACLES

3.7 Rules

The algorithm is based on 16 di�erent rules; before starting the locomotion, the
number of rounds needs to be stored in counter C01.

Rule name: North
Priority: 3
Preconditions: !SOBSTA !SSTOPP N0*1* T1,1,INACT !T-1,0,INACT !T-1,0,ACTIV
Postconditions: P0,1 SACTIV A****

- Rule: North
- Priority: 3
- Preconditions:
!SSTOPP: the rule is not applicable to modules set in the stop state.
!SOBSTA: the rule is not applicable to modules set in the obstacle state.
N0*1*: the rule concerns the module without a north neighbor and with a east
neighbor.
T1,1,INACT: the support module needs to exists and to be set on inactive.
!T-1,0,INACT: the module in position (−1, 0) cannot be set on inactive.
!T-1,0,ACTIV: the module in position (−1, 0) cannot be set on active.
- Postconditions:
P0,1: the module moves north.
SACTIV: the module changes its state to active.
A****: the module attaches afterward if was attached before, when possible.

Rule name: North-east I
Priority: 3
Preconditions: !SOBSTA !SSTOPP N0*1* T1,0,INACT E1,1 !T-1,0,INACT
!T-1,0,ACTIV !T1,-1,OBSTA
Postconditions: P1,1 SACTIV A***1 C000 + C000 0001

- Rule: North-east I
- Priority: 3
- Preconditions:
!SSTOPP: it is not applicable to modules set in the stop state.
!SOBSTA: the rule is not applicable to modules set in the obstacle state.
N0*1*: concerns only the modules without a North neighbor and with a east
neighbor.
T1,0,INACT: the east neighbor needs to be set on inactive.
E1,1: the goal grid cell needs to be empty.
!T-1,0,INACT: the module in position (−1, 0) cannot be set on inactive.
!T-1,0,ACTIV: the module in position (−1, 0) cannot be set on active.
!T1,-1,OBSTA: the module in position (1,−1) cannot be set on obstacle.
- Postconditions:
P1,1: the module moves north-east.
SACTIV: the module changes its state to active.
A***1: the module attaches to its new south neighbor; if it was attached
before and if still possible, it attaches to the other neighbors.
C000 + C000 0001: the counter C000 is increased by 1 each time the rule is
applied.

3.7. RULES 37

Rule name: North-east II
Priority: 3
Preconditions:!SOBSTA !SSTOPP N0*1* T1,0,INACT E1,1 !T-1,0,INACT
!T-1,0,ACTIV T1,-1,OBSTA !T0,-1,ACTIV !T0,-1,INACT !T0,-1,BRIDG
Postconditions:P1,1 SACTIV A***1

- Rule: North-East II
- Priority: 3
- Preconditions:
!SSTOPP: it is not applicable to modules set in the stop state.
!SOBSTA: the rule is not applicable to modules set in the obstacle state.
N0*1*: the rule concerns only the modules without a north neighbor, but with
a east neighbor.
T1,0,INACT: the support module needs to exist and to be set on inactive.
E1,1: the goal grid cell needs to be empty.
!T-1,0,INACT: the module in position (−1, 0) cannot be set on inactive.
!T-1,0,ACTIV: the module in position (−1, 0) cannot be set on active.
!T0,-1,INACT: the module in position (0,−1) cannot be set on inactive.
!T0,-1,ACTIV: the module in position (0,−1) cannot be set on active.
!T0,-1,BRIDG: the module in position (0,−1) cannot be set on bridge.
- Postconditions:
P1,1: the module moves north-east.
SACTIV: the module changes its state to active.
A***1: the module attaches to its new south neighbor; if it was attached
before and if still possible, it attaches to the other neighbors.

Rule name: East
Priority: 3
Preconditions: !SOBSTA !SSTOPP N0*01 !T1,-1,ACTIV !T1,-1,OBSTA !E1,-1 !T-
1,0,ACTIV !T-1,0,INACT
Postconditions:P1,0 SACTIV A***1

- Rule: East
- Priority: 3
- Preconditions:
!SSTOPP: it is not applicable to modules set in the stop state.
!SOBSTA: the rule is not applicable to modules set in the obstacle state.
N0*01: the rule concerns only the modules without north or west neighbors,
but with a south neighbor.
!T-1,0,INACT: the module in position (−1, 0) cannot be set on inactive.
!T-1,0,ACTIV: the module in position (−1, 0) cannot be set on active.
!T1,-1,ACTIV: the module in position (1,−1) cannot be set on active.
!T1,-1,OBSTA: the module in position (1,−1) cannot be set on obstacle.
!E1,-1: the grid cell in position (1,−1) cannot be empty.
- Postconditions:
P1,0: the module moves east.
SACTIV: the module changes its state to active.
A***1: the module attaches to its new south neighbor; if it was attached
before and if still possible, it attaches to the other neighbors.

38 CHAPTER 3. RECTANGLE LOCOMOTION OVER LOW OBSTACLES

Rule name: South
Priority: 3
Preconditions: !SOBSTA !SBRIDG !SSTOPP N*1*0 T-1,-1,INACT !T1,0,INACT
!T1,0,ACTIV
Postconditions: P0,-1 SACTIV A**11

- Rule: South
- Priority: 3
- Preconditions:
!SSTOPP: it is not applicable to modules set on stop.
!SOBSTA: the rule is not applicable to modules set on obstacle.
!SBRIDG: the rule is not applicable to modules set on bridge.
N*1*0: concerns the modules with a west neighbor, without a module on the
south.
!T1,0,INACT: the module in position (−1, 0) cannot be set on inactive.
!T1,0,ACTIV: the module in position (−1, 0) cannot be set on active.
T-1,-1,INACT: the support module needs to exist and to be set on inactive.
- Postconditions:
P0,-1: the module moves south.
SACTIV: the module changes its state to active.
A**11: the module attaches to its new west and south neighbors; if it was
attached before and where still possible, it attaches to the other neighbors.

Rule name: South-east
Priority: 3
Preconditions: !SOBSTA !SSTOPP N0*01 E1,-1 !T-1,0,INACT !T-1,0,ACTIV
Postconditions: P1,-1 SACTIV A*1**

- Rule: South-east
- Priority: 3
- Preconditions:
!SSTOPP: it is not applicable to modules set in the stop state.
!SOBSTA: the rule is not applicable to modules set in the obstacle state.
N0*01: the rule concerns only the modules without north or west neighbors,
but with a south neighbor.
!T-1,0,INACT: the module in position (−1, 0) cannot be set on inactive.
!T-1,0,ACTIV: the module in position (−1, 0) cannot be set on active.
E1,-1: the grid cell in position (1,−1) needs to be empty.
- Postconditions:
P1,-1: the module moves south-east.
SACTIV: the module changes its state to active.
A*1*1: the module attaches to its new west and south neighbor; if it was
attached before and if still possible, it attaches to the other neighbors.

3.7. RULES 39

Rule name: North-west
Priority: 3
Preconditions: !SOBSTA !SSTOPP N10** E-1,1 !T1,0,INACT !T1,0,ACTIV
!T0,-1,INACT !T0,-1,ACTIV T0,1,INACT !T0,-1,BRIDG
Postconditions: P-1,1 SACTIV A*11*

- Rule: North-west
- Priority: 3
- Preconditions:
!SSTOPP: it is not applicable to modules set in the stop state.
!SOBSTA: the rule is not applicable to modules set in the obstacle state.
N10**: the rule concerns only the modules with a north and without a west
neighbors.
!T1,0,INACT: the module in position (1, 0) cannot be set on inactive.
!T1,0,ACTIV: the module in position (1, 0) cannot be set on active.
!T0,-1,INACT: the module in position (1, 0) cannot be set on inactive.
!T0,-1,ACTIV: the module in position (1, 0) cannot be set on active.
T0,1,INACT: the module in position (0, 1) needs to be set on inactive.
!T0,-1,BRIDG: the module in position (0,−1) cannot be set on bridge.
E-1,1: the grid cell in position (−1, 1) needs to be empty.
- Postconditions:
P-1,1: the module moves north-west.
SACTIV: the module changes its state to active.
A*11*: the module attaches to its new east and west neighbor; if it was
attached before and if still possible, it attaches to the other neighbors.

Rule name: South-west
Priority: 3
Preconditions: !SOBSTA !SBRIDG !SSTOPP N*1*0 T-2,-1,OBSTA E-1,-1
T-1,0,INACT
Postconditions: P-1,-1 SACTIV A11*1

- Rule: South-west
- Priority: 3
- Preconditions:
!SSTOPP: it is not applicable to modules set in the stop state.
!SOBSTA: the rule is not applicable to modules set in the obstacle state.
!SBRIDG: the rule is not applicable to modules set on bridge.
N*1*0: the rule concerns only the modules with a west neighbor and without
a south neighbor.
T-2,-1,OBSTA: the module in position (−2,−1) needs to be set on obstacle
T-1,0,INACT: the module in position (−1, 0) needs to be set on inactive.
!T0,-1,BRIDG: the module in position (0,−1) cannot be set on bridge.
E-1,-1: the grid cell in position (−1,−1) needs to be empty.
- Postconditions:
P-1,-1: the module moves south-west.
SACTIV: the module changes its state to active.
A11*1: the module attaches to its new north, west and south neighbor; if it
was attached before and still possible, it attaches to the other neighbor.

40 CHAPTER 3. RECTANGLE LOCOMOTION OVER LOW OBSTACLES

Rule name: South-east II
Priority: 2
Preconditions: !SOBSTA !SSTOPP N0101 E1,-1 E0,-2 !E-1,-1 T-1,-2,OBSTA !T-1,-
1,OBSTA
Postconditions: P1,-1 SACTIV A*11*

- Rule: South-east II
- Priority: 2
- Preconditions:
!SSTOPP: it is not applicable to modules set in the stop state.
!SOBSTA: the rule is not applicable to modules set in the obstacle state.
N0101: the rule concerns only the modules with a west and south neighbor,
without a north and a east neighbor.
T-1,-2,OBSTA: the module in position (−1,−2) needs to be set on obstacle
!T-1,-1,OBSTA: the module in position (−1,−1) needs to be set on obstacle
E1,-1: the grid cell in position (1,−1) needs to be empty.
E0,-2: the grid cell in position (0,−2) needs to be empty.
!E-1,-1: the grid cell in position (−1,−1) cannot be empty.
- Postconditions:
P1,-1: the module moves south-east.
SACTIV: the module changes its state to active.
A*11*: the module attaches to its new west and east neighbor; if it was
attached before and still possible, it attaches to the other neighbors.

Rule name: Deactivation
Priority: 1
Preconditions: SACTIV
Postconditions: SINACT

- Rule: Deactivation
- Priority: 1 (the priority is smaller than the priority of any action rule;
modules deactivate only if no action rule is applicable).
- Preconditions:
SACTIV: it is applicable only to modules set in the inactive state.
- Postconditions:
SINACT: the module changes its state to inactive.

Rule name: Bridge
Priority: 4
Preconditions: SACTIV N0110 T1,0,OBSTA T1,-1,OBSTA
Postconditions: SBRIDG

- Rule: Bridge
- Priority: 4
- Preconditions:
SACTIV: it is applicable only to modules set in the inactive state.
N0110: the rule concerns only the modules with a west and east neighbor,
without a north and a south neighbor.

3.7. RULES 41

T1,0,OBSTA: the module in position (1, 0) needs to be set on obstacle
T1,-1,OBSTA: the module in position (1,−1) needs to be set on obstacle -
Postconditions:
SBRIDG: the module changes its state to bridge.

Rule name: Stop
Priority: 5
Preconditions: SINACT N001* T1,0,INACT E1,1 = C000 C001
Postconditions: SSTOPP

- Rule: Stop
- Priority: 5 (the priority is greater than the priority of any action rule).
- Preconditions:
SINACT: it is applicable only to modules set in the inactive state.
N001*: concerns the modules with a east neighbor and without a module on
the north and on the west. The presence of a south neighbor is not important.
T1,0,INACT: the east neighbor needs to be an inactive module.
E1,1: the grid cell of relative coordinates 1,1 needs to be empty.
= C000 C001: the value of the counter C000 needs to meet the value of the
counter C001, this last one �xed before starting the locomotion. This last
precondition controls the number of rounds.
- Postconditions:
SSTOPP: the module changes its state to stop.

Rule name: Stop 1
Priority: 5
Preconditions: SINACT N*1** T-1,0,STOPP
Postconditions: SSTOPP

- Rule: Stop 1
- Priority: 5 (the priority is greater than the priority of any action rule).
- Preconditions:
SINACT: it is applicable only to modules set in the inactive state.
N*1**: the module needs to have a east neighbor T-1,0,STOPP: the east
neighbor needs to be set in the stop state.
- Postconditions:
SSTOPP: the module changes its own state to stop.

Rule name: Stop 2
Priority: 5
Preconditions: SINACT N1*** T0,1,STOPP
Postconditions: SSTOPP

- Rule: Stop 2
- Priority: 5 (the priority is greater than the priority of any action rule).
- Preconditions:
SINACT: it is applicable only to modules set in the inactive state.
N1***: the module needs to have a north neighbor T0,1,STOPP: the north
neighbor needs to be set in the stop state.
- Postconditions:
SSTOPP: the module changes its own state to stop.

42 CHAPTER 3. RECTANGLE LOCOMOTION OVER LOW OBSTACLES

Rule name: Stop 3
Priority: 5
Preconditions: SINACT N11** T-1,1,STOPP
Postconditions: SSTOPP

- Rule: Stop 3
- Priority: 5 (the priority is greater than the priority of any action rule).
- Preconditions:
SINACT: it is applicable only to modules set on the inactive state.
N11**: the module needs to have a north neighbor and a west neighbor.
T-1,1,STOPP: the grid cell with relative coordinates (−1, 1) needs to be
occupied by a module set on stop.
- Postconditions:
SSTOPP: the module changes its own state to stop.

Rule name: Stop 4
Priority: 5
Preconditions: SINACT N*10* T-1,0,STOPP
Postconditions: SSTOPP

- Rule: Stop 4
- Priority: 5 (the priority is greater than the priority of any action rule).
- Preconditions:
SINACT: it is applicable only to modules set on the inactive state.
N*10*: the module needs to have a west neighbor and no module on the east.
T-1,0,STOPP: the west neighbor needs to be set in the stop state.
- Postconditions:
SSTOPP: the module changes its own state to stop.

Rule name: North-west version II
Priority: 3
Preconditions: !SOBSTA !SSTOPP N101* E-1,1 T1,0,OBSTA
!T0,-1,INACT !T0,-1,ACTIV T0,1,INACT
Postconditions: P-1,1 SACTIV A*11*

- Rule: North-west version II
- Priority: 3
- Preconditions:
!SSTOPP: it is not applicable to modules set in the stop state.
!SOBSTA: the rule is not applicable to modules set in the obstacle state.
N101*: the rule concerns only the modules with a north and a east neighbor,
and without a west neighbor.
T1,0,OBSTA: the module in position (1, 0) need to be set on obstacle.
!T0,-1,INACT: the module in position (1, 0) cannot be set on inactive.
!T0,-1,ACTIV: the module in position (1, 0) cannot be set on active.
T0,1,INACT: the module in position (0, 1) needs to be set on inactive.
E-1,1: the grid cell in position (−1, 1) needs to be empty.
- Postconditions:
P-1,1: the module moves north-west.

3.7. RULES 43

SACTIV: the module changes its state to active.
A*11*: the module attaches to its new east and west neighbor; if it was
attached before and if still possible, it attaches to the other neighbors.

44 CHAPTER 3. RECTANGLE LOCOMOTION OVER LOW OBSTACLES

Chapter 4

Rectangle locomotion over

high obstacles

4.1 Goal

In this chapter we discuss the eastward locomotion of a rectangular system in the
presence of high obstacles. In this case obstacles are con�gured as histograms,
and are not subject to height restrictions: we call them "high obstacles" in order
to di�erentiate them from the low obstacles of the previous chapter.

The rules are divided into locomotion rules and recon�guration rules, and we
will not discuss here the recon�guration of the system again, as it is performed
as in the other cases.

4.2 Strategy

Before reaching an obstacle, the rectangle moves under the original locomotion
rules discussed in Chapter 2: modules always move from the back of the group,
over the top, and down on the front of the group. As the system encounters
an obstacle, the behavior of the modules depends on the vertical height of the
part of the obstacle that they are traversing; in the parts that do not reach the
initial height of the rectangle, the strategy is exactly the same as in the case of
low obstacles discussed in Chapter 3: the system �lls the free spaces and �ows
over until it reaches the ground another time, maintaining its initial height in
every moment. As soon as the height of the obstacle reaches or exceeds the
initial height of the system, such strategy is not applicable anymore without
generating disconnections; in this cases instead, the system continues its loco-
motion creating what we call a �worm� of inactive modules over the obstacle,
and making active modules walk over it; we can observe an example of such
strategy in Figure 4.1. As in the case of low obstacles, the formation of bridges
during the locomotion allows the system to avoid �lling the bottlenecks of width
1 formed between the obstacle and the system itself (refer to Chapter 3). Such
bridges are formed in the same way both in the low and the high parts of the
obstacle. Once the obstacle is overpassed, the system recovers its initial shape
and stops the locomotion through the usual stop rules.

45

46CHAPTER 4. RECTANGLE LOCOMOTION OVER HIGH OBSTACLES

Figure 4.1: Crawling over a high obstacle: the system starts con�gured as a
rectangle; in (b) we can see that as the �rst part of the obstacle does not reach
the height of the system, and the overpassing is done as in the low obstacles
case. In (c) and (d) the system changes its shape in order to overpass the high
parts of the obstacle; the last part is low, so the system in (e) recovers its shape,
and stops the locomotion recon�guring in (f). Active modules are depicted in
pink, inactive modules are blue, obstacles are black and bridges are the red
modules.

While the modules are con�gured as a worm over an high part of an obstacle,
the fact that in the initial con�guration the system was formed by one or by more
than one column is not relevant; the modi�cations to be done for the case of
one column are then analogous to the modi�cations applied for the overpassing
of low obstacles, and we do not discuss them here again.

4.3 Locomotion rules

The locomotion of the system in the presence of high obstacles is mostly per-
formed through the application of the rules used in the low case, with some
adjustments and additions that deal with the high parts. The distinction be-
tween high and low obstacles is obtained through the use of counters; before the
locomotion starts, a value is stored in the counter C00 of each module, repre-
senting its vertical position, measured considering the line of the ground as the
x-axis; each time a movement with a north (south) component is performed,
such counter is increased (decreased) by 1. Moreover, the height of the system
is stored into the C02 counter of each module before the movement starts. Such
counters are used in order to distinguish, in some cases, which of the rules are
applicable in the low parts of the obstacles and which are applicable only in the

4.3. LOCOMOTION RULES 47

high parts, while the system is con�gured as a worm. Examples of such method
are the two east rules depicted in Figure 4.2.

East I
3
State 6=(Obsta,Bridge,Stop)&(0,1)=(-1,0)=(1,0)=empty&(0,-1)=(1,-1)=full&State(1,-1)6=(Active,Obsta)
Move to (1,0) & State = (Active)

East II
3
State 6=(Obsta,Bridge,Stop)&(0,1)=(1,0)=empty&(0,-1)=(-1,0)=(1,-1)=full&State(1,-1)6=
(Active,Obsta)&State(-1,1) 6=Active&State(0,-1) 6=Obsta&Not(State(-1,-1)=Obsta&State(-1,0)6=Obsta)
& C00 > C02
Move to (1,0) & State = (Active)

NAO

NAONO

East I

East II

Figure 4.2: East rules for the locomotion with high obstacles: the East I rule is
analogous to the East rule of low obstacles, and is applicable for any height; the
East II rule deals with the new situations that can be generated in the high parts
of the obstacle, and it can be applied only in such cases (see the precondition
C00 > C02). Active modules are pink, empty squares are empty grid cells, and
colored grid cells are full positions; NAO indicates that if a module occupies the
grid cell it cannot be set in the active nor in the obstacle state. Notice that the
most complex preconditions are only presented in the details of the text rules
and not in their graphic representation.

The recon�guration of the rectangle in the high part of the obstacle is avoided
through the application of the same method: we can notice in Figure 4.3 that
the two depicted south-east rules are only applicable to the case of C00 > C02;
a module with a lower height cannot apply the rules, and deactivates over its
south neighbor, while a module which is walking on a high part of the obstacle
continues its locomotion moving south-east.

The formation of the worm over the high parts is achieved through the
deactivation rules, depicted in Figure 4.4. The details of the rest of the rules
are presented in Section 4.6.

48CHAPTER 4. RECTANGLE LOCOMOTION OVER HIGH OBSTACLES

4.4 Correctness

The modi�cations applied to the previous rules for the low obstacles are operated
in order to adapt the same rules to the new states of the modules and to some
particular new situation; all the results proved in the previous chapter are still
valid for the new version of the rules, and we will not prove them again here. In
this section we will use such results and examine the impact of the new de�ned
rules on the correctness conclusions.

As always, we will prove that:

1. The system stays connected during the whole movement.

2. The new rules do not produce collisions during the movement.

3. There is always at least one rule that is applicable to some module of the
system.

4. The rules produce a locomotion of the system from West to East in the
presence of high obstacles.

Proposition 10 The system stays connected during the whole movement, i.e.
no rule produces a disconnection between the module applying it and the system.

Proof: We have already proved that the free locomotion and the low obstacle
rules do not generate any disconnection; we want now to exclude the case of a
disconnection generated during the overpassing of the high parts obstacle.

We analyze the South-East II rule depicted in Figure 4.3, and assume that
the system is connected before the application of the rule. As any module able
to apply this rule has a South neighbor, and does not have any North nor East
neighbor, the only possibility for the module to create a disconnection is that
the grid cell in relative position (−1, 0) is occupied by a module of the system,
and that the current module is the only connection between such East neighbor
and its South neighbor. This is possible only in the case in which the relative
position (−1,−1) is either empty or occupied by an obstacle. The case of the
position (−1,−1) being empty can be easily discarded, as such con�guration
cannot be reached by a rectangular system which locomotes under our strategy
of movement, as in our setting modules continue their locomotion until they �nd
either an obstacle or the ground blocking their way. The second possibility is
explicitly excluded by the precondition !(!T-1,0,OBSTA !E-1,0 T-1,-1,OBSTA).
Such contradictions can be found in all the new rules, so no disconnections are
produced. �

Lemma 4 Each module can apply at most one action rule at a time.

Proof: We have already proved in the previous chapter that the set of rules
that produce the overpassing of low obstacles satis�es this property; the only
thing to check now is that none of the new action rules interferes with the
preexistent rules, nor with another new rule. In order to prove this result, we
can analyze the details of the new advance rule North II depicted in Figure 4.5
and prove that it cannot interfere with any other rule. The rest of rules can
be treated in the same way. We can easily see that any module that satis�es
the preconditions of North II cannot perform any movement in the North-East,

4.4. CORRECTNESS 49

East, South-East nor South direction, due to the presence of modules blocking
the way; the North-West rule requires the presence of a North neighbor, and the
South-East rule is applicable only if the grid cell in position (0,−1) is empty, so
they are both incompatible with North II. As there is no rule that produces a
movement towards west, the only rules left to check are North I and North II;
North I is applicable only by modules without a South neighbor, and North III
requires the grid cell in relative position (1,−1) to be empty; we can conclude
then that any module able to apply such rule cannot satisfy the preconditions
of any other. As all the rules present such properties, we can conclude that each
module can apply at most one action rule at a time. �

Proposition 11 No collisions are produced during the movement.

Proof: We want to prove that two di�erent modules never move to the same
grid cell at the same time while applying the rules; the proof is analogous to the
case of low obstacles. Due to Lemma 4 we only need to worry about con�icts
created by the application of one action rule at a time. The case of con�icts
between the North and the South rules can be easily excluded, as in the case
of the free locomotion and of low obstacles: any module able to apply North
is a module attached to the left side of the system, while any module applying
South is attached to the right, and the two movements cannot con�ict, as we
avoid entering in bottlenecks of width 1. The case of con�icts generated by rules
which produce the same change of position as North-East I and North-East II,
or as South-East I and South-East II, is clearly impossible: two modules willing
to move to the same grid cell performing the same movement need to occupy
the same position in the �rst place, and this is not allowed in our con�guration.
The only other type of con�ict which could occur is the one generated by rules
with a common direction, such as North-East (I or II) with East, North-East
(I or II) with North (I,II,III), South-East (I or II) and East (I or II) and so
on, but we can discard these possibilities too: without loss of generality we can
examine the case of North-East I (II) and East I (II). Any module that intends
to occupy the grid cell with relative coordinates (1,1) by moving North-East I
(II) cannot have a North neighbor; any module willing to occupy the same grid
cell by applying East would occupy exactly the North neighbor position, and
this is a contradiction. The rest of the possible mentioned con�icts present the
same contradictions, and therefore can be excluded. �

Proposition 12 There is always at least one rule that is applicable to some
module of the system.

Proof: We have already proved in the previous chapters that during the free
locomotion and the overpassing of low obstacles there is always a module that
is able to apply some rule, so the modules are always able to reach the high
parts of the obstacle at some moment. On the high part, in the same way, there
is always a module able to apply a rule: this is either an active module walking
on the inactive worm, either an active module which inactivates in front of the
worm, either is the tail module of the worm, able to activate again as all the
active modules of the system have passed over it. �

Proposition 13 The rules actually produce a locomotion of the system from
west to east, on free ground and over histogram obstacles.

50CHAPTER 4. RECTANGLE LOCOMOTION OVER HIGH OBSTACLES

Proof: As there is always one rule applicable to the system because of Propo-
sition 12, the only thing we need to prove is that the rules do not produce an
alternation of opposite movements without moving the system in any direction.
We have already proved in chapters 2 and 3 that the free locomotion and the
locomotion over low obstacles is correctly performed in this sense, and we prove
now that there is no oscillation produced by the new rules introduced. As an
example of pair of rules which could produce an oscillation of the system, we
analyze the pair North (I, II or III) and South. We can easily see that any mod-
ule which performs a movement in the North direction through the application
of a North rule cannot produce one in the South direction until it has reached
the opposite side of the column of the obstacle which is being overpassed, as
it is clearly shown by the preconditions of the rules (see Section RulesRecthigh
for the detailed rules). All the other pairs present the same behavior and can
be analyzed in the same way. �

4.5 Complexity

Neighbourhood During the locomotion each module is only able to check if
any grid cell sharing either an edge or a vertex with it is empty or occupied
by another module; in this last case, it can obtain information about the
state of such module. No information about any other position is needed.
In some situations the same information is needed for some of the grid
cells of the second neighbor; such extension is restricted to the case in
which the stability of the system could be compromised.

Memory and computation Locomotion only requires O(1) memory for each
module, and a O(1) computation at each step, as modules only need to
memorize a �xed value in a counter, to perform some simple operations
with counters, and to check if preconditions of rules are ful�lled.

Number of moves As we have already analyzed the case of the low obstacles,
we can now focus on the overpassing of the high parts.

As modules deactivate one by one in a worm shape during the overpassing
of the high parts, the worst case possible for the number of moves of a
module, from the moment of activation to the moment of inactivation,
is the case in which the rest of n − 1 modules are all inactive forming
the worm, and the current module needs to walk over each one of them
before being able to inactivate again; so, in the worst case, a module
performs O(n) moves during this phase of the locomotion. The overall
number of moves performed by a module during the overpassing of the
obstacle is O(kn), where k is the number of rounds performed by the
system during the locomotion, and is directly proportional to the number
M of the modules of the obstacle.

Communication A constant size communication is performed during the ap-
plication of each rule, so the communication performed by each module is
O(kn).

Number of time steps Given the results of the low obstacle case, we can now
ideally divide the obstacle into its high and low parts, and study separately

4.5. COMPLEXITY 51

the number of moves needed for the overpassing of the high ones; we
suppose here, as always, that the execution of the rules is synchronized.

In Figure 4.6 we can see an example of an high obstacle ideally divided
into its low and high part; we recall that an obstacle is considered low if
its height is at most h−1, where h is the initial height of the rectangle. In
the computation we charge to the high part of the obstacles all the moves
made in order to reach and overpass grid cells with vertical height bigger
than h. In particular then, we need to consider all the moves applied to
reach, occupy and clear all the grid cells forming the boundary of the high
modules of the obstacle that need to be overpassed due to the presence of
the high part (the grid cells numbered from 1 to M in Figure 4.6). Let M
be the number of grid cells of the boundary of the high part in exam; if
we charge to each module of the system the time steps starting from its
deactivation in the worm to the inactivation of the following module of the
worm, we can easily see that, as module moves together with a distance
of 1 grid cell, the number of time steps needed in order to create a worm
over such part of the obstacle is O(M), independently from the number
of modules of the system.

If the number n of modules of the system is less than M , an additional
O(n) time steps will be needed in order to clear such cells and complete
the traversing.

If the number of modules is bigger than M , an additional O(n − M)
number of time steps is needed as, before starting the reactivation of its
modules, the worm needs to wait until all the modules that are not part
of the worm have walked over.

As in the case of low obstacles then, the overall number of time steps is
directly proportional to the number n of modules of the system and to
the number of modules of the obstacle; this last dependency is re�ected
in the number k of complete rounds that the system needs to perform in
order to overpass the obstacle.

52CHAPTER 4. RECTANGLE LOCOMOTION OVER HIGH OBSTACLES

South-east I
6
State 6=(Obsta,Bridge,Stop)&(0,1)=(1,0)=(1,-1)=empty&(0,-1)=full&State(-1,0)6=(Active,Inact)&C00>C02
Move to (1,-1) & State=Active&Add -1 to C00

South-east II
5
State 6=(Obsta,Bridge,Stop)&(0,1)=(1,0)=(1,-1)=empty&(0,-1)=full&State(0,-1)6=Obsta
&Not(State(-1,0)6=Obsta&(-1,0)=empty&State(-1,-1)=Obsta) & C00 > C02
Move to (1,-1) & State = Active& Add -1 to C00

South-east I

South-east II

NAI

Figure 4.3: South-East rules for the locomotion with high obstacles: the South-
East I rule is analogous to the South-East rule of low obstacles, with the addi-
tional condition C00 > C02; the South-East II rule deals with the new situations
that can be generated in the high parts of the obstacle; both rules, as we can
notice, can be applied only in the case C00 > C02. Active modules are pink,
empty squares are empty grid cells, and colored grid cells are full positions; NAI
indicates that if a module occupies the grid cell it cannot be set in the active
nor in the inactive state. In this case too some preconditions are only presented
in the details of the text version of the rules as they are di�cult to depict in
their graphic representation.

4.5. COMPLEXITY 53

NA

Deactivation I

NAI

Deactivation II

Deactivation I
2
State=Active&(-1,0)=full&State(0,-1) 6=Active
State=Inact

Deactivation II
1
State=Active&(0,1)=empty&State(1,0) 6=(Active,Inact)
State=Inact

Figure 4.4: Deactivation rules for the locomotion with high obstacles: the rules
produce both the deactivation in the recon�guration of the rectangle, in the
free locomotion and in the low obstacle, and the formation of the worm on the
higher parts. As always, active modules are pink, blue modules are inactive,
empty squares are empty grid cells, and colored grid cells are full positions; NAI
indicates that if a module occupies the grid cell it cannot be set in the active
nor in the inactive state.

NAI

North II
North II
3
State 6=(Obsta,Bridge,Stop)&(0,1)=empty&(1,-1)=(1,0)=full&State(1,1)=Inact&State(-1,0)6=(Inact,Active)
Move to (0,1)&State=Active&Add 1 to counter C00

Figure 4.5: Details of the North II rule.

i

h
M1

2

Figure 4.6: Time steps for the overpassing of an high obstacle: the obstacle
can be ideally divided into the low part (cyan in the Picture) and the high part
(gray in the Picture); the horizontal line represents the initial height h of the
system. The empty grid cells numbered from 1 to M are the boundary cells of
the high part of the obstacle.

54CHAPTER 4. RECTANGLE LOCOMOTION OVER HIGH OBSTACLES

4.6 Rules

The algorithm is based on 20 di�erent rules; before starting the locomotion each
module has the following information stored in its counters: the vertical heigh
of the module (C01), the initial heigh of the system (C02) and the number of
rounds (C03).

Rule name: North I
Priority:3
Preconditions:!SOBSTA !SBRIDG !SSTOPP N0*10 T1,1,INACT !T-1,0,INACT !T-1,0,ACTIV
Postconditions:P0,1 SACTIV A1*1* C000 + C000 0001

- Rule: North I
- Priority: 3
- Preconditions:
!SSTOPP !SOBSTA !SBRIDG: the rule is not applicable to modules set in the
stop, bridge or obstacle state.
N0*10: the rule concerns the module without a north neighbor and with a east
neighbor.
T1,1,INACT: the support module needs to exists and to be set on inactive.
!T-1,0,INACT: the module in position (−1, 0) cannot be set on inactive.
!T-1,0,ACTIV: the module in position (−1, 0) cannot be set on active.
- Postconditions:
P0,1: the module moves north.
SACTIV: the module changes its state to active.
A1*1*: the module attaches afterward if was attached before, when possible.
C000 + C000 0001: the counter C00 is increased by one.

Rule name: North II
Priority:3
Preconditions:!SOBSTA !SBRIDG !SSTOPP N0*11 !E1,-1 !(T1,-1,OBSTA !T0,-1,OBSTA) T1,1,INACT
!T-1,0,INACT !T-1,0,ACTIV
Postconditions:P0,1 SACTIV A1*1* C000 + C000 0001

- Rule: North II
- Priority: 3
- Preconditions:
!SSTOPP !SOBSTA !SBRIDG: the rule is not applicable to modules set in the
stop, bridge or obstacle state.
N0*11: the rule concerns the module without a north neighbor and with a east
and a south neighbor.
!E1,-1: the grid cell in position (1,−1) needs to be occupied.
T1,1,INACT: the support module needs to exists and to be set on inactive.
!T-1,0,INACT: the module in position (−1, 0) cannot be set on inactive.
!T-1,0,ACTIV: the module in position (−1, 0) cannot be set on active.
!(T1,-1,OBSTA !T0,-1,OBSTA): the rule is not applicable when the module in
position (1,−1) is an obstacle and the module in (0,−1) is not an obstacle.
- Postconditions:
P0,1: the module moves north.
SACTIV: the module changes its state to active.
A1*1*: the module attaches afterward if was attached before, when possible.
C000 + C000 0001: the counter C00 is increased by one.

4.6. RULES 55

Rule name: North III
Priority:3
Preconditions:!SOBSTA !SBRIDG !SSTOPP N0*11 E1,-1 T1,1,INACT !T-1,0,INACT !T-1,0,ACTIV
T0,-1,OBSTA
Postconditions:P0,1 SACTIV A1*1* C000 + C000 0001

- Rule: North III
- Priority: 3
- Preconditions:
!SSTOPP !SOBSTA !SBRIDG: the rule is not applicable to modules set in the
stop, bridge or obstacle state.
N0*11: the rule concerns the module without a north neighbor and with a east
and a south neighbor.
E1,-1: the grid cell in position (1,−1) needs to be empty.
T1,1,INACT: the support module needs to exists and to be set on inactive.
!T-1,0,INACT: the module in position (−1, 0) cannot be set on inactive.
!T-1,0,ACTIV: the module in position (−1, 0) cannot be set on active.
T0,-1,OBSTA: the module in position (0,−1) needs to be set on obstacle.
- Postconditions:
P0,1: the module moves north.
SACTIV: the module changes its state to active.
A1*1*: the module attaches afterward if was attached before, when possible.
C000 + C000 0001: the counter C00 is increased by one.

Rule name: North-east I
Priority:3
Preconditions:!SOBSTA !SSTOPP N0*1* T1,0,INACT E1,1 !T-1,0,INACT !T-1,0,ACTIV !T1,-1,OBSTA
Postconditions:P1,1 SACTIV A**11 C000 + C000 0001 C004 + C004 0001

- Rule: North-east I
- Priority: 3
- Preconditions:
!SSTOPP !SOBSTA: it is not applicable to modules set in the stop or obstacle
state.
N0*1*: concerns only the modules without a North neighbor and with a east
neighbor.
T1,0,INACT: the east neighbor needs to be set on inactive.
E1,1: the goal grid cell needs to be empty.
!T-1,0,INACT: the module in position (−1, 0) cannot be set on inactive.
!T-1,0,ACTIV: the module in position (−1, 0) cannot be set on active.
!T1,-1,OBSTA: the module in position (1,−1) cannot be set on obstacle.
- Postconditions:
P1,1: the module moves north-east.
SACTIV: the module changes its state to active.
A**11: the module attaches to its new south neighbor; if it was attached
before and if still possible, it attaches to the other neighbors.
C000 + C000 0001: the counter C000 is increased by 1 each time the rule is
applied.
C004 + C004 0001: the counter C004 is increased by 1 each time the rule is
applied.

56CHAPTER 4. RECTANGLE LOCOMOTION OVER HIGH OBSTACLES

Rule name: North-east II
Priority:3
Preconditions:!SOBSTA !SSTOPP N0*1* T1,0,INACT E1,1 !T-1,0,INACT !T-1,0,ACTIV T1,-1,OBSTA
!T0,-1,ACTIV !T0,-1,INACT
Postconditions:P1,1 SACTIV A**11 C000 + C000 0001

- Rule: North-east II
- Priority: 3
- Preconditions:
!SSTOPP !SOBSTA: it is not applicable to modules set in the stop or obstacle
state.
N0*1*: concerns only the modules without a North neighbor and with a east
neighbor.
T1,0,INACT: the east neighbor needs to be set on inactive.
E1,1: the goal grid cell needs to be empty.
!T-1,0,INACT: the module in position (−1, 0) cannot be set on inactive.
!T-1,0,ACTIV: the module in position (−1, 0) cannot be set on active.
!T0,-1,INACT: the module in position (0,−1) cannot be set on inactive.
!T0,-1,ACTIV: the module in position (0,−1) cannot be set on active.
T1,-1,OBSTA: the module in position (1,−1) needs to be set on obstacle.
- Postconditions:
P1,1: the module moves north-east.
SACTIV: the module changes its state to active.
A**11: the module attaches to its new south neighbor; if it was attached
before and if still possible, it attaches to the other neighbors.
C000 + C000 0001: the counter C000 is increased by 1 each time the rule is
applied.

Rule name: East I
Priority:3
Preconditions:!SOBSTA !SBRIDG !SSTOPP N0101 !T1,-1,ACTIV !T1,-1,OBSTA !T-1,1,ACTIV !E1,-1
!T0,-1,OBSTA !(T-1,-1,OBSTA !T-1,0,OBSTA) ¿ C000 C002
Postconditions:P1,0 SACTIV A**11

- Rule: East I
- Priority: 3
- Preconditions:
!SSTOPP !SOBSTA !SBRIDG: the rule is not applicable to modules set in the
stop, bridge or obstacle state.
N0101: the rule concerns only the modules without north or west neighbors,
but with a west and a south neighbor.
!T1,-1,ACTIV: the module in position (1,−1) cannot be set on active.
!T1,-1,OBSTA: the module in position (1,−1) cannot be set on obstacle.
!T-1,1,ACTIV: the module in position (−1, 1) cannot be set on active.
!E1,-1: the grid cell in position (1,−1) cannot be empty.
!T0,-1,OBSTA: the module in position (0,−1) cannot be an obstacle.
!(T-1,-1,OBSTA !T-1,0,OBSTA): the rule is not applicable when the module in
position (−1,−1) is an obstacle and the module in (−1, 0) is not an obstacle.
> C000 C002: the value of the counter C00 needs to be bigger than the value
of C02.
- Postconditions:
P1,0: the module moves east.
SACTIV: the module changes its state to active.

4.6. RULES 57

A**11: the module attaches to its new south and east neighbor; if it was
attached before and if still possible, it attaches to the other neighbors.

Rule name: East II
Priority:3
Preconditions:!SOBSTA !SBRIDG !SSTOPP N0001 !T1,-1,ACTIV !T1,-1,OBSTA !E1,-1
Postconditions:P1,0 SACTIV A***1

- Rule: East II
- Priority: 3
- Preconditions:
!SSTOPP !SOBSTA !SBRIDG: the rule is not applicable to modules set in the
stop, bridge or obstacle state.
N0001: the rule concerns only the modules without north, west or east
neighbors, but with a south neighbor.
!T1,-1,ACTIV: the module in position (1,−1) cannot be set on active.
!T1,-1,OBSTA: the module in position (1,−1) cannot be set on obstacle.
!E1,-1: the grid cell in position (1,−1) cannot be empty.
!T1,-1,OBSTA: the module in position (1,−1) cannot to be an obstacle.
!T1,-1,ACTIV: the module in position (1,−1) cannot to be active.
- Postconditions:
P1,0: the module moves east.
SACTIV: the module changes its state to active.
A**11: the module attaches to its new south and east neighbor; if it was
attached before and if still possible, it attaches to the other neighbors.

Rule name: South
Priority:3
Preconditions:!SOBSTA !SBRIDG !SSTOPP N*1*0 T-1,-1,INACT !T1,0,INACT !T1,0,ACTIV
Postconditions:P0,-1 SACTIV A**11 C000 - C000 0001

- Rule: South
- Priority: 3
- Preconditions:
!SSTOPP !SOBSTA !SBRIDG: the rule is not applicable to modules set in the
stop, bridge or obstacle state.
N*1*0: concerns the modules with a west neighbor, without a module on the
south.
!T1,0,INACT: the module in position (−1, 0) cannot be set on inactive.
!T1,0,ACTIV: the module in position (−1, 0) cannot be set on active.
T-1,-1,INACT: the support module needs to exist and to be set on inactive.
- Postconditions:
P0,-1: the module moves south.
SACTIV: the module changes its state to active.
A**11: the module attaches to its new west and south neighbors; if it was
attached before and where still possible, it attaches to the other neighbors.
C000 - C000 0001: the counter C000 is decreased by 1 each time the rule is
applied.

58CHAPTER 4. RECTANGLE LOCOMOTION OVER HIGH OBSTACLES

Rule name:South-east I
Priority:6
Preconditions:!SOBSTA !SBRIDG !SSTOPP N0*01 E1,-1 !T-1,0,ACTIV !T-1,0,INACT > C000 C002
Postconditions:P1,-1 SACTIV A*1** C000 - C000 0001

- Rule: South-east I
- Priority: 6
- Preconditions:
!SSTOPP !SOBSTA !SBRIDG: the rule is not applicable to modules set in the
stop, bridge or obstacle state.
N0*01: the rule concerns only the modules without north or west neighbors,
but with a south neighbor.
!T-1,0,INACT: the module in position (−1, 0) cannot be set on inactive.
!T-1,0,ACTIV: the module in position (−1, 0) cannot be set on active.
E1,-1: the grid cell in position (1,−1) needs to be empty.
> C000 C002: the value of the counter C00 needs to be bigger than the value
of C02.
- Postconditions:
P1,-1: the module moves south-east.
SACTIV: the module changes its state to active.
A*1*1: the module attaches to its new west and south neighbor; if it was
attached before and if still possible, it attaches to the other neighbors.
C000 - C000 0001: the counter C000 is decreased by 1 each time the rule is
applied.

Rule name: South-east II
Priority:5
Preconditions:!SOBSTA !SBRIDG !SSTOPP N0*01 E1,-1 !T0,-1,OBSTA
!(!T-1,0,OBSTA !E-1,0 T-1,-1,OBSTA) > C000 C002
Postconditions:P1,-1 SACTIV A*11* C000 - C000 0001

- Rule: South-east II
- Priority: 5
- Preconditions:
!SSTOPP !SOBSTA !SBRIDG: the rule is not applicable to modules set in the
stop, bridge or obstacle state.
N0*01: the rule concerns only the modules without north or west neighbors,
but with a south neighbor.
E1,-1: the grid cell in position (1,−1) needs to be empty.
!T0,-1,OBSTA: the module in position (0,−1) cannot be an obstacle.
!(!T-1,0,OBSTA !E-1,0 T-1,-1,OBSTA): the rule is not applicable when the
grid cell in position (−1, 0) is not occupied by an obstacle nor empty, and the
module in (−1,−1) is an obstacle.
> C000 C002: the value of the counter C00 needs to be bigger than the value
of C02.
- Postconditions:
P1,-1: the module moves south-east.
SACTIV: the module changes its state to active.
A*1*1: the module attaches to its new west and south neighbor; if it was
attached before and if still possible, it attaches to the other neighbors.
C000 - C000 0001: the counter C000 is decreased by 1 each time the rule is
applied.

4.6. RULES 59

Rule name: South-east III
Priority:3
Preconditions:!SOBSTA !SBRIDG !SSTOPP N0101 E1,-1 E0,-2 T-1,-2,OBSTA
!(!T-1,0,OBSTA T-1,-1,OBSTA)
Postconditions:P1,-1 SACTIV A*11* C000 - C000 0001

- Rule: South-east III
- Priority: 3
- Preconditions:
!SSTOPP !SOBSTA !SBRIDG: the rule is not applicable to modules set in the
stop, bridge or obstacle state.
N0101: the rule concerns only the modules without north or west neighbors,
but with a south and a east neighbor.
E0,-2: the grid cell in position (0,−2) needs to be empty.
!T-1,-2,OBSTA: the module in position (−1,−2) cannot be an obstacle.
!(!T-1,0,OBSTA T-1,-1,OBSTA): the rule is not applicable when the grid cell
in position (−1, 0) is not occupied by an obstacle nor empty, and the module
in (−1,−1) is an obstacle.
- Postconditions:
P1,-1: the module moves south-east.
SACTIV: the module changes its state to active.
A*11*: the module attaches to its new west and south neighbor; if it was
attached before and if still possible, it attaches to the other neighbors.
C000 - C000 0001: the counter C000 is decreased by 1 each time the rule is
applied.

Rule name: North-west
Priority:3
Preconditions:!SOBSTA !SSTOPP N10** E-1,1 !T1,0,INACT !T1,0,ACTIV !T0,-1,INACT !T0,-1,ACTIV
T0,1,INACT !T0,-1,BRIDG
Postconditions:P-1,1 SACTIV A*11* C000 + C000 0001

- Rule: North-west
- Priority: 3
- Preconditions:
!SSTOPP !SOBSTA: the rule is not applicable to modules set in the stop,
bridge or obstacle state.
N10**: the rule concerns only the modules with a north neighbor, but without
a west neighbor.
E-1,1: the grid cell in position (−1, 1) needs to be empty.
!T1,0,INACT: the module in position (1, 0) cannot be set on inactive.
!T1,0,ACTIV: the module in position (1, 0) cannot be set on active.
!T0,-1,INACT: the module in position (0,−1) cannot be set on inactive.
!T0,-1,ACTIV: the module in position (0,−1) cannot be set on active.
!T0,-1,BRIDG: the module in position (0,−1) cannot be set on active.
T0,1,INACT: the module in position (0, 1) needs to be set on inactive.
- Postconditions:
P-1,1: the module moves north-west.
SACTIV: the module changes its state to active.
A*11*: the module attaches to its new west and south neighbor; if it was
attached before and if still possible, it attaches to the other neighbors.
C000 + C000 0001: the counter C000 is increased by 1 each time the rule is
applied.

60CHAPTER 4. RECTANGLE LOCOMOTION OVER HIGH OBSTACLES

Rule name: South-west
Priority:3
Preconditions:!SOBSTA !SSTOPP !SBRIDG N*1*0 T-2,-1,OBSTA E-1,-1 T-1,0,INACT
Postconditions:P-1,-1 SACTIV A1111 C000 - C000 0001

- Rule: South-west
- Priority: 3
- Preconditions:
!SSTOPP !SOBSTA !SBRIDG: the rule is not applicable to modules set in the
stop, bridge or obstacle state.
N*1*0: the rule concerns only the modules without a south neighbor, but with
a west neighbor.
E-1,-1: the grid cell in position (−1,−1) needs to be empty.
T-1,0,INACT: the module in position (−1, 0) needs to be set on inactive.
T-2,-1,OBSTA: the module in position (−2,−1) needs to be set on obstacle.
- Postconditions:
P-1,-1: the module moves south-west.
SACTIV: the module changes its state to active.
A*11*: the module attaches to its new south, east and west neighbors; if it
was attached before and if still possible, it attaches to the other neighbors.
C000 - C000 0001: the counter C000 is decreased by 1 each time the rule is
applied.

Rule name: Deactivation I
Priority:2
Preconditions:SACTIV N*1** !T0,-1,ACTIV
Postconditions:SINACT

- Rule: Deactivation I
- Priority: 2
- Preconditions:
SACTIV: it is applicable only to modules set in the inactive state.
N*1**: the rule concerns only the modules with a west neighbor.
!T0,-1,ACTIV: the module in position (0,−1) cannot be set on active.
- Postconditions:
SINACT: the module changes its state to inactive.

Rule name: Deactivation II
Priority:1
Preconditions:SACTIV N0*** !T1,0,INACT !T1,0,ACTIV
Postconditions:SINACT

- Rule: Deactivation II
- Priority: 1
- Preconditions:
SACTIV: it is applicable only to modules set in the inactive state.
N0***: the rule concerns only the modules without a north neighbor.
!T1,0,INACT: the module in position (1, 0) cannot be set on inactive.
!T1,0,ACTIV: the module in position (1, 0) cannot be set on active.
- Postconditions:
SINACT: the module changes its state to inactive.

4.6. RULES 61

Rule name: Formation of bridges
Priority:6
Preconditions:SACTIV N0110 T1,0,OBSTA
Postconditions:SBRIDG

- Rule: Formation of bridges
- Priority: 6
- Preconditions:
SACTIV: the module changes its state to active.
N0110: the rule concerns only the modules without a north and south
neighbor, but with a west and a east one.
T1,0,OBSTA: the module in position (1, 0) needs to be set on obstacle.
- Postconditions:
SBRIDG: the module changes its state to bridge.

Rule name: Stop I
Priority:10
Preconditions:SINACT N0011 = C004 C003 = C000 C002
Postconditions:SSTOPP

- Rule: Stop I
- Priority: 10
- Preconditions:
SINACT: it is applicable only to modules set in the inactive state.
N0011: the rule concerns only the modules without a north and east neighbor,
but with a west and a south one.
= C004 C003: counter C04 needs to meet the value of C03.
= C000 C002: counter C00 needs to meet the value of C02.
- Postconditions:
SSTOPP: the module changes its own state to stop.

Rule name: Stop II
Priority:10
Preconditions:SINACT T-1,0,STOPP
Postconditions:SSTOPP

- Rule: Stop II
- Priority: 10
- Preconditions:
SINACT: the module changes its state to inactive.
T-1,0,STOPP: the module in position (−1, 0) needs to be set on stop.
- Postconditions:
SSTOPP: the module changes its state to stop.

Rule name: Stop III
Priority:10
Preconditions:SINACT T0,1,STOPP
Postconditions:SSTOPP

- Rule: Stop III
- Priority: 10
- Preconditions:
SINACT: the module changes its state to inactive.
T0,1,STOPP: the module in position (0, 1) needs to be set on stop.
- Postconditions:
SSTOPP: the module changes its state to stop.

62CHAPTER 4. RECTANGLE LOCOMOTION OVER HIGH OBSTACLES

Rule name: Stop IV
Priority:10
Preconditions:SINACT T-1,-1,STOPP
Postconditions:SSTOPP

- Rule: Stop IV
- Priority: 10
- Preconditions:
SINACT: the module changes its state to inactive.
T-1,-1,STOPP: the module in position (−1,−1) needs to be set on stop.
- Postconditions:
SSTOPP: the module changes its state to stop.

Chapter 5

Rectangle locomotion under

superior obstacles

5.1 Goal

In this chapter we discuss the eastward locomotion of a modular robotic system
initially con�gured as a rectangle in the presence of superior obstacles.

We call superior an obstacle formed by connected modules hanging down
from the �ceiling�; the minimum distance between the obstacle and the �oor is
of two grid cells.

As in the free locomotion case, the rules are divided into locomotion and
recon�guration rules.

5.2 Strategy

The strategy is analogue to the one of the free locomotion, but with some
modi�cations that make it possible to crawl under the obstacles.

Before they encounter the obstacle, modules move from the back of the
group, over the top, and down on the front of the group, recon�guring into the
original shape at each round. As the presence of an obstacle is detected, the
system gradually �attens as much as it is necessary in order to be able to crawl
and reach its right part; under the obstacle, columns are recon�gured entirely
when possible, and divided into di�erent subcolumns if the total con�guration
is not achievable due to the height restrictions.

We can observe an example of the overpassing of a superior obstacle in
Figure 5.1. As the overpassing is complete, the system recon�gures into the
initial shape and stops the locomotion.

We can notice how the same rules produce the overpassing of superior general
obstacles; the system does not detect any di�erence between the case of an
histogram and a general shaped obstacle, as the rules do not use, nor explicitly
nor in an implicit way, the fact that the obstacle modules are con�gured as an
histogram. In Figure 5.2 we can see an example of the overpassing of a general
obstacle.

63

64CHAPTER 5. RECTANGLE LOCOMOTION UNDER SUPERIOR OBSTACLES

Figure 5.1: Crawling under a superior obstacle con�gured as an histogram: in
(a) we can see that the system is con�gured as a rectangle when it starts the
locomotion. As the obstacle is detected, in (b) and (c) modules move south-east,
�attening the system and decreasing its height in order to be able to pass by.
After the overpassing of the obstacle, the system recon�gures again and stops
the locomotion in (d). Active modules are depicted in pink, inactive modules
are blue, obstacles are black and stopped modules are red.

5.3 Advance rules

In order to perform locomotion in the presence of superior obstacles, modules
apply a set of six action rules. The locomotion of the system before the over-
passing of the obstacle is mostly produced through the �ve advance rules used
in the free locomotion of the rectangle; such rules are adjusted to the intro-
duction of the new obstacle state, and to the new con�gurations that can be
produced by the presence of a superior obstacle; some operations with counters
are introduced too in order to control the position of each module; an example
of such modi�cations can be observed in the details of the North rule, depicted
in Figure 5.3.

As the obstacle is encountered, an additional rule is needed in order to �atten
the system and decrease its height: the South-East I rule; such rule prevents
the modules from inactivating where they could create bottlenecks with the
obstacle, and forces them to continue the movement, avoiding the complete
recon�guration of the columns when it is not possible; we can see its details in
Figure 5.4.

As in the locomotion case, the advance rules created for the general rectangle
need to be modi�ed in the case of a rectangular system formed by only one
column of modules.

In this case, to produce the locomotion of the system is enough to modify
the South-East rule to avoid disconnections.

The second version of the South-East rule is depicted in Figure 5.5.

5.4. OVERPASSING THE OBSTACLE 65

Figure 5.2: Crawling under a superior general obstacle: the system behaves
as in the previous cases. Inactive modules are blue, active modules are pink,
stopped modules are red and obstacles are black.

NAI

North

North
4
State 6=(Obstacle,Stop)&(0,1)=empty&(1,0)=Full&State(-1,0)6=(Inactive,Active)&State(1,1)=Inactive
Move to (0,1)&State=Active&Add 1 to counter C00

Figure 5.3: Detailed example of the structure of the North rule.

5.4 Overpassing the obstacle

Before the locomotion starts, the value of the counter C00 is stored in the mem-
ory of each one of the modules of the system, indicating the vertical position of
the module (if we consider the line representing the ground as the x-axis). Each
time a module performs a rule that produces a movement with a component in
the north or the south direction, the C00 counter is modi�ed, adding 1 when
its vertical height is increased and subtracting 1 when it decreases, as we can
observe in the postconditions of the North rule in Figure 5.3. Moreover, the
counter C01 is �xed before the locomotion, and stores the initial height of the
rectangle. The complete or partial recon�guration of the columns during the
free locomotion and during the overpassing of the obstacle makes use of these
counters, and is obtained through the application of two deactivation rules. The
�rst deactivation rule is a simple adaptation of the deactivation rule used in the
free locomotion of the obstacle; we can see it depicted in Figure 5.6.

The Deactivation II rule is introduced in order to produce the correct recon-

66CHAPTER 5. RECTANGLE LOCOMOTION UNDER SUPERIOR OBSTACLES

South-east II
5
State 6=(Obstacle,Stop)&(0,1)=empty&(1,0)=empty&(0,-1)=full&(1,-1)=empty&State(1,1)=Obstacle
Move to (1,-1)&State=Active&Add 1 to counter C00

South-east II

Figure 5.4: As the obstacle is detected, the module applies the South-West II
rule and continues the movement, without blocking the way to the others. The
current module is depicted in pink, the obstacle in red; full grid cells are colored
and empty grid cells are not.

South-west II
4
State 6=(Obstacle,Stop)&(-1,0)=empty&(1,0)=empty&(0,-1)=full&(1,-1)=empty&State(0,1) 6= Active&
State(0,1) 6=Inactive&State(-1,-1) 6=Inactive&Not(State= Inactive&(-1,-1)=full)
Move to (1,-1)&State=Active&Add -1 to counter C00

Figure 5.5: Advance rules: second version of the South-East rule for the case of
one column.

�guration of the columns during the overpassing of the obstacle; its details are
presented in Figure 5.7; this rule, when possible, produces the recon�guration
of a column with the same height as the initial height of the rectangle; when
a deactivation implies a block of the way for the rest of the modules the rule
is not applicable, so the columns only recon�gure partially in order to let the
locomotion continue.

5.5 Recon�guration

We recall that the recon�guration strategy of the free locomotion case is based
on the counting of the rounds of the system; such rounds are controlled by
the counter C04, which counts the number of times each module applies the
North-East rule. In the case of the free locomotion, this counter is indicative
for the rounds of the system, as modules of the same column cross the system
by the application of the North-East rule the same number of times during the
locomotion, and no di�erences can be produced between modules of the same
column. In the case of superior obstacles, however, it can happen that modules
of the same column apply such rule a di�erent number of times, due to the
divisions into subcolumns operated by the system while overpassing the obstacle.
As the system always conserves its rectangular shape during the locomotion,
the idea of the recon�guration is to stop the locomotion after a given horizontal
position is reached by the leftmost column of the system.

5.5. RECONFIGURATION 67

NO

Deactivation

Deactivation
6
State=Active&(1,0)=empty&(0,1)=full&State(0,1) 6=Obstacle
State = Inactive

Figure 5.6: First deactivation rule: the condition NO (Not an Obstacle) is
introduced for the grid cell in relative position (0, 1) in order to deal with the
new possible con�gurations; notice that we do not have the same precondition
for the relative position (1, 1); this is because the South-East II rule has a higher
priority than the Deactivation rule, so a module which encounters a bottleneck
will always move, even if the Deactivation preconditions are ful�lled.

NO NO

Deactivation II

Deactivation II
6
State=Active&(0,1)=(-1,0)=(1,0)=(1,-1)=empty&(0,-1)=full&State(-1,1) 6=Obstacle&State(1,1)6=Obstacle&C00≤C01
State = Inactive

Figure 5.7: Second deactivation rule: the condition NO (Not an Obstacle) for
grid cells (−1, 1) and (1, 1) and the lack of a north neighbor prevent the current
module to inactivate and block the bottlenecks formed between the system and
the obstacle; the condition C00≤C01 permits the recon�guration of the columns
only until the initial height of the rectangle is reached.

The counters used for the new recon�guration process are the counters C03
and C04. The counter C03 is a measure of the position of the modules on the
x-axis; initially set as equal to the column counter (1 for the �rst column, 2 for
the second and so on), C03 is increased by one each time a movement with an
east component is performed; the position of each module is then controlled by
its horizontal distance from the initial position of the �rst column of the system.

The C04 counter, �xed before the locomotion starts, stores the x-axis posi-
tion in which the system will start its recon�guration. As soon as the counter
C03 of the topmost module of the leftmost column is bigger than C04, such
module sets its state to stop, blocking the locomotion.

68CHAPTER 5. RECTANGLE LOCOMOTION UNDER SUPERIOR OBSTACLES

5.6 Correctness

As the strategy of the movement produced by the set of rules presented in this
chapter is analogous to the one of the free locomotion, all the results proved in
Chapter 2 can be repeated in an analogous way for this new case.

Notice that the only di�erence between the free locomotion and the over-
passing of a superior obstacle is that when the system detects the presence of
the obstacle it recon�gures its modules into smaller columns; it is easy to see
that this modi�cation cannot generate any con�ict nor disconnection, as long as
the priorities and preconditions are correctly adapted to the new con�gurations.

As in the case of the free locomotion, we can then state that:

Theorem 3 The rules described in Section 5.3 allow any rectangular con�gura-
tion to move eastward on free ground and in the presence of superior obstacles,
without producing any disconnection of the system.

5.7 Complexity

Neighbourhood As in the case of the free locomotion, each module is only
able to check if any grid cell sharing either an edge or a vertex with him
is empty or occupied by another module; in this last case, it can obtain
information about the state of such module. No information about any
other position is required.

Memory and computation The application of this set of rules requires O(1)
memory for each module, and a O(1) computation at each step, as modules
only need to check if preconditions of rules are ful�lled, to memorize �xed
values in some counters, and to make a simple operation with some counter
at each step.

Number of moves As we have already analyzed the case of free locomotion,
we focus here on the maximal number of moves performed by a module
from the moment of its activation on the left of the system, to its inac-
tivation on the right. In the following h will be the initial height of the
rectangle and n the total number of modules.

In Figure 5.8 we can observe how, due to the presence of the obstacle, a
system initially con�gured as a rectangle reaches the worst possible shape
for the number of moves for a module; in such con�guration, in fact, the
number of inactive modules over which the current one needs to walk two
or more times is maximal: both sides of each column of height h are free,
and the number of columns that reach the maximal height is maximal,
given that a separation of at least three cells between them is required
in order to avoid an obstruction of the way. In addition, the current
module can reach all the rest of the system, so even the modules used as
a separation between the maximal columns generate the maximal number
of moves, and no bridge is generated during the locomotion.

While the system is con�gured as described, each active module that ac-
tivates on the left need to walk twice (three times in the case of the
topmost modules) over the modules forming the columns of height h, and
once over the rest of the modules (twice for the rightmost module) before

5.7. COMPLEXITY 69

Figure 5.8: The rectangle reaches the worst con�guration for the number of
moves of a module while crawling under a superior obstacle; notice that the
highest columns of the system under the superior obstacle are as high as the
system in its initial con�guration.

inactivating again; this means that in the worst case possible an active
module performs O(n) moves from the moment of its activation until it
inactivates again. Indicating as k the number of rounds performed by the
module during the locomotion of the system, a module performs at most
O(kn) moves, where k is directly proportional to the number of modules
of the obstacle.

Communication A constant size communication is performed during the ap-
plication of each rule, so the communication performed by each module is
linear in the number of rules applied by the module.

Number of time steps The maximal number of time steps needed for the
overpassing of a superior obstacle can be deduced by the examination
of the best possible case, depicted in Figure 5.9: in this con�guration,
each time a module moves it performs a movement in the east direction,
contributing to an overall movement towards east; in the case of the free
locomotion, on the contrary, for each round, modules had to climb the
system moving north, walk over the system and then reach their position
moving south, exploiting time steps for the recon�guration of the columns.
We can conclude that the more the columns divide themselves under the

1 2 n-1

M

Figure 5.9: Best case for the number of time steps: the current module walks
over all the other modules, and then deactivates again on the right. The current
module is the module depicted in pink, and the inactive modules are blue; the
obstacle modules are gray.

obstacle, the faster is the overpassing of the obstacle; the worst case for

70CHAPTER 5. RECTANGLE LOCOMOTION UNDER SUPERIOR OBSTACLES

the number of time steps is then the case in which the distance between
the obstacle and the ground is big, and the system moves recon�guring its
columns completely as in the free locomotion; the overall number of time
steps is then O(kn) in the worst case, where k is the number of rounds of
the system which is directly proportional to the width of the obstacle.

In the best case, with an obstacle of widthM and a system with nmodules
always con�gured as a worm during the overpassing, the number of time
steps needed for the overpassing is the number of steps from the moment
in which the �rst module of the system is under the �rst column of the
obstacle to the moment in which the last module of the system is under
the last column of the obstacle; as a constant delay of 3 time steps is
produced between the inactivation of a module and the inactivation of the
following one in the worm, the overall number of time steps is O(3(M+n))
in the best case.

5.8. RULES 71

5.8 Rules

The algorithm is based on 12 di�erent rules; before starting the locomotion each
module has the following information stored in its counters: the vertical heigh of
the module (C00), the initial heigh of the system (C01), the horizontal position
of the module (C03) and the number of rounds (C04).

Rule name: North
Priority: 4
Preconditions:!SOBSTA !SSTOPP N0*1* T1,1,INACT !T-1,0,INACT !T-1,0,ACTIV
Postconditions: P0,1 SACTIV A**1* C000 + C000 0001

- Rule: North
- Priority: 4.
- Preconditions:
!SSTOPP !SOBSTA: the rule is not applicable to modules set in the stop or in
the obstacle state.
N0*1*: concerns only the modules without a north neighbor and with a east
neighbor.
T1,1,INACT: the support module needs to exists and to be set on inactive.
!T-1,0,ACTIV: the module in position (−1, 0) cannot be set on active.
!T-1,0,INACT: the module in position (−1, 0) cannot be set on inactive.
- Postconditions:
P0,1: the module moves north.
SACTIV: the module changes its state to active.
A**1*: the module attaches afterward if was attached before, when possible.
C000 + C000 0001: the value of the counter C01 is increased by 1.

Rule name: North-east
Priority: 4
Preconditions:!SOBSTA !SSTOPP N0*1* T1,0,INACT E1,1 !T-1,0,INACT !T-1,0,ACTIV
Postconditions: P1,1 SACTIV A**11 C000 + C000 0001 C003 + C003 0001

- Rule: North-east
- Priority: 4.
- Preconditions:
!SSTOPP !SOBSTA: the rule is not applicable to modules set in the stop or in
the obstacle state.
N0*1*: concerns only the modules without a North neighbor and with a east
neighbor.
T1,0,INACT: the east neighbor needs to be set on inactive.
E1,1: the goal grid cell needs to be empty.
!T-1,0,ACTIV: the module in position (−1, 0) cannot be set on active.
!T-1,0,INACT: the module in position (−1, 0) cannot be set on inactive.
- Postconditions:
P1,1: the module moves north-east.
SACTIV: the module changes its state to active.
A**11: the module attaches to its new south neighbor; if it was attached
before and if still possible, it attaches to the other neighbors.
C000 + C000 0001: the counter C00 is increased by 1.
C003 + C003 0001: the counter C03 is increased by 1.

72CHAPTER 5. RECTANGLE LOCOMOTION UNDER SUPERIOR OBSTACLES

Rule name: East
Priority: 5
Preconditions:!SOBSTA !SSTOPP N**01 !T1,-1,ACTIV !T1,-1,OBSTA !E1,-1 !T0,1,INACT
!T0,1,ACTIV
Postconditions: P1,0 SACTIV A0**1 C003 + C003 0001

- Rule: East
- Priority: 5.
- Preconditions:
!SSTOPP !SOBSTA: the rule is not applicable to modules set in the stop or in
the obstacle state.
N**01: the rule concerns only the modules without a west neighbors, but with
a south neighbor
T1,-1,INACT: the support module needs to exist and to be set on inactive.
T1,-1,OBSTA: the support module needs to exist and to be set on obstacle.
!E1,-1: the grid cell in position (1,−1) cannot be empty.
!T0,1,ACTIV: the module in position (0, 1) cannot be set on active.
!T0,1,INACT: the module in position (0, 1) cannot be set on inactive.
- Postconditions:
P1,0: the module moves east.
SACTIV: the module changes its state to active.
A***1: the module attaches to its new south neighbor; if it was attached
before and if still possible, it attaches to the other neighbors.
C003 + C003 0001: the counter C03 is increased by 1.

Rule name: South-east
Priority: 4
Preconditions: !SOBSTA !SSTOPP N*001 E1,-1 !T0,1,INACT !T0,1,ACTIV !T-1,-1,ACTIV
Postconditions: P1,-1 SACTIV A*1*1 C000 - C000 0001 C003 + C003 0001

- Rule: South-east
- Priority: 4.
- Preconditions:
!SSTOPP !SOBSTA: the rule is not applicable to modules set in the stop or in
the obstacle state.
N*001: concerns the modules with a south neighbor and without a west nor a
east neighbor.
E1,-1: the goal position needs to be empty.
!T0,1,ACTIV: the module in position (0, 1) cannot be set on active.
!T0,1,INACT: the module in position (0, 1) cannot be set on inactive.
!T-1,-1,ACTIV: the module in position (−1,−1) cannot be set on active.
- Postconditions:
P1,-1: the module moves south-east.
SACTIV: the module changes its state to active.
A*1*1: the module attaches to its new west neighbor; if it was attached before
and if still possible, it attaches to the other neighbors.
C000 - C000 0001: the value of the counter C00 is decreased by 1. C003 +
C003 0001: the counter C03 is increased by 1.

5.8. RULES 73

Rule name: South-east II
Priority: 5
Preconditions: !SOBSTA !SSTOPP N0*01 T1,1,OBSTA E1,-1
Postconditions: P1,-1 SACTIV A0101 C000 - C000 0001 C003 + C003 0001

- Rule: South-east II
- Priority: 5.
- Preconditions:
!SSTOPP !SOBSTA: the rule is not applicable to modules set in the stop or in
the obstacle state.
N0*01: concerns the modules with a south neighbor and without a north nor a
east neighbor.
E1,-1: the goal position needs to be empty.
T1,1,OBSTA: the module in position (1, 1) needs to be set on obstacle.
- Postconditions:
P1,-1: the module moves south-east.
SACTIV: the module changes its state to active.
A0101: the module attaches to its new west neighbor but it does not attach to
its new north and east neighbor; if it was attached before and if still possible,
it attaches to the other neighbor.
C000 - C000 0001: the value of the counter C00 is decreased by 1. C003 +
C003 0001: the counter C03 is increased by 1.

Rule name: South
Priority: 4
Preconditions: !SOBSTA !SSTOPP N01*0 T-1,-1,INACT !T1,0,INACT !T1,0,ACTIV
Postconditions: P0,-1 SACTIV A**11 C000 - C000 0001

- Rule: South
- Priority: 4.
- Preconditions:
!SSTOPP !SOBSTA: the rule is not applicable to modules set in the stop or in
the obstacle state.
N01*0: concerns the modules with a west neighbor, without a module on the
north and on the south.
T-1,-1,INACT: the support module needs to exist and to be set on inactive.
!T1,0,ACTIV: the module in position (0, 1) cannot be set on active.
!T1,0,INACT: the module in position (0, 1) cannot be set on inactive.
- Postconditions:
P0,-1: the module moves south.
A**11: the module attaches to its new south neighbor, if present; if it was
attached before and where still possible, it attaches to the other neighbors.
C000 - C000 0001: the value of the counter C00 is decreased by 1.

Rule name: Deactivation
Priority: 1
Preconditions: SACTIV N*10* !T0,1,OBSTA
Postconditions: SINACT

- Rule: Deactivation
- Priority: 1
- Preconditions:
SACTIV: it is applicable only to modules set in the active state.

74CHAPTER 5. RECTANGLE LOCOMOTION UNDER SUPERIOR OBSTACLES

N*10*: concerns the modules with a west neighbor and without a module on
the east. The presence of a north and a south neighbor is not important.
!T0,1,OBSTA: the module in position (0, 1) cannot be set on the obstacle state.
- Postconditions:
SINACT: the module changes its state to inactive.

Rule name: Deactivation II
Priority: 6
Preconditions: SACTIV N0001 !T-1,1,OBSTA !T1,1,OBSTA E1,-1 < C000 C001
Postconditions: SINACT

- Rule: Deactivation II
- Priority: 6
- Preconditions:
SACTIV: it is applicable only to modules set in the active state.
N0001: concerns the modules with a south neighbor and without any other
neighbor.
!T-1,1,OBSTA: the module in position (−1, 1) cannot be set on the obstacle
state.
!T1,1,OBSTA: the module in position (1, 1) cannot be set on the obstacle state.
E1,-1: the grid cell in position (1,−1) needs to be empty.
! >C000 C001: the value of the counter C00 has to be bigger than the value of
C01.
- Postconditions:
SINACT: the module changes its state to inactive.

Rule name: Stop
Priority: 10
Preconditions: SINACT N0011 > C003 C004 = C000 C001
Postconditions: SSTOPP

- Rule: Stop
- Priority: 10.
- Preconditions:
SINACT: it is applicable only to modules set in the inactive state.
N0011: concerns the modules with a west and a south neighbor, and without a
module on the north and on the west.
= C000 C001: the value of the counter C00 needs to meet the value of the
counter C01
> C003 C004: the value of the counter C03 needs to be bigger than the value
of the counter C04
- Postconditions:
SSTOPP: the module changes its state to stop.

5.8. RULES 75

Rule name: Stop II
Priority: 10
Preconditions: SINACT T-1,0,STOPP
Postconditions: SSTOPP

- Rule: Stop 2
- Priority: 10.
- Preconditions:
SINACT: it is applicable only to modules set in the inactive state.
T-1,0,STOPP: the east neighbor needs to be set in the stop state.
- Postconditions:
SSTOPP: the module changes its own state to stop.

Rule name: Stop III
Priority: 10
Preconditions: SINACT T-1,-1,STOPP
Postconditions: SSTOPP

- Rule: Stop 3
- Priority: 10.
- Preconditions:
SINACT: it is applicable only to modules set on the inactive state.
T-1,1,STOPP: the grid cell with relative coordinates (−1, 1) needs to be
occupied by a module set on stop.
- Postconditions:
SSTOPP: the module changes its own state to stop.

Rule name: Stop IV
Priority: 10
Preconditions: SINACT T0,1,STOPP
Postconditions: SSTOPP

- Rule: Stop 4
- Priority: 10.
- Preconditions:
SINACT: it is applicable only to modules set on the inactive state.
T0,1,STOPP: the north neighbor needs to be set in the stop state.
- Postconditions:
SSTOPP: the module changes its own state to stop.

76CHAPTER 5. RECTANGLE LOCOMOTION UNDER SUPERIOR OBSTACLES

Chapter 6

Tunneling of a rectangle

6.1 Goal

In this chapter we discuss the eastward locomotion of a rectangular system in
the presence of both superior and inferior obstacles (i.e. both low and high ob-
stacles); we refer to this kind of situation as `tunneling', as superior and inferior
obstacles can combine together to form tunnels. In our setting, obstacles are
con�gured as histograms and are not subject to height restrictions; the mini-
mum vertical distance between a superior obstacle and the �oor, and between a
superior and an inferior obstacle, is of two grid cells; moreover, the �rst neighbor
of a superior obstacle module cannot overlap with the one of an inferior obsta-
cle module, i.e. there has to be at minimum a 2-grid-cells diagonal distance
between the two types of obstacles. As will be seen, this restriction is necessary
in order to guarantee the connection of the system.

6.2 Strategy

The set of rule presented is the union of the rules of the rectangle locomotion
under superior obstacles and the rules of the locomotion in presence of high ob-
stacles, with some adaptations and changes that make the rules work together
properly. New states are assigned to the di�erent types of obstacle, in order to
make the system able to decide how to behave in the di�erent cases; the obsth
and the obstl states are assigned respectively to the superior and the inferior
obstacles. During the locomotion, when the system encounters an inferior ob-
stacle, it overpasses it following the strategy of the rules for general histogram
obstacles presented in Chapter 4; in the presence of superior obstacles, and in
the case in which the two kinds of obstacles are combined forming a tunnel, the
system continues its locomotion just limiting its height when necessary, follow-
ing the strategy of the locomotion under superior obstacles presented in Chapter
5. Due to the distance conditions between the obstacles, each module of the
system deals separately with superior and inferior obstacle modules without any
interference between the two di�erent strategies of movement. We can see an
example of the tunneling of a rectangle in Figure 6.1.

77

78 CHAPTER 6. TUNNELING OF A RECTANGLE

Figure 6.1: Tunneling of a rectangular system: the di�erent colors for the supe-
rior and the inferior obstacles indicate the two di�erent states assigned; in (a)
we can see that the system is con�gured as a rectangle before the start of the
locomotion; in (b) and (c) the overpassing of the tunnel is performed, maintain-
ing the initial height in the low parts of the obstacle, and con�guring as a worm
in the high parts. In (d), the system recon�gures after the overpassing.

6.3 Correctness

As the strategy is only a combination of the di�erent approaches explained in the
previous chapters, we skip here the proofs of the correctness of the rules, and we
present directly the detailed rules in the following section. Notice that the fact
that the �rst neighborhood of a superior obstacle module cannot overlap with
the one of an inferior obstacle module assures that there are no compatibility
problems between the rules; no module can �nd itself in a situation in which
the rules for the overpassing of an inferior obstacle are not applicable because
of the presence of the superior obstacle, or viceversa, if this distance restriction
is respected. Moreover, the priorities of the rules are reestablished in order to
avoid the application of two or more rules at a time, so each module can still
apply at most one rule at each time steps.

6.4 Complexity

Neighbourhood During the locomotion each module is able to check if any
grid cell sharing either an edge or a vertex with it is empty or occupied by
another module; the in this last case, it can obtain information about the

6.4. COMPLEXITY 79

state of such module. In some situations the same information is needed for
some of the grid cells of the second neighbor; such extension is restricted
to the case in which the stability of the system could be compromised,
and to prevent disconnection in the case of a 2 columns rectangle.

Memory and computation The application of this set of rules only requires
O(1) memory for each module, and a O(1) computation at each step, as
modules only need to memorize a �xed value in a counter, to perform some
simple operations with counters, and to check if preconditions of rules are
ful�lled.

Number of moves For the locomotion of a rectangle in the presence of high
obstacles, the worst case possible for the number of moves of a module
from its activation to its �rst following inactivation is O(n), reached in a
con�guration in which the module needs to walk over all the rest of mod-
ules before inactivating again. Such case cannot be worsen by the presence
of superior obstacles over the system, as the only e�ect superior obstacles
have is the �attening of the system, which in the worse case is already �at
(i.e. con�gured as a worm). The total maximum number of moves for a
module is then O(kn), where k is the number of rounds performed by the
system during the locomotion, and is directly proportional to the number
M of the modules of the inferior obstacle.

Communication A constant size communication is performed during the ap-
plication of each rule, so the communication performed by each module is
linear in the number of moves.

Number of time steps As we have already explained, the presence of superior
obstacles cannot increase the number of time steps of the locomotion, as
the more the columns divides themselves under the obstacle, the faster
is the overpassing of the obstacle; the worst case for the number of time
steps for the tunneling is then the case in which the distance between the
superiors obstacles and the high obstacles is big, and superior obstacles
are not perceived by the system; the number of time steps is then at most
the one computed for the case of high obstacles: O(kn), where n is the
total number of time steps, and k is the number of rounds of the system,
which is directly proportional to the number of modules M of the inferior
obstacle.

80 CHAPTER 6. TUNNELING OF A RECTANGLE

6.5 Rules

The algorithm is based on 23 di�erent rules; before starting the locomotion each
module has the following information stored in its counters: the vertical heigh
of the module (C00), the initial heigh of the system (C02), the nuber of columns
of the system in its initial con�guration (C03) and the number of rounds (C05).

Rule name: North I
Priority: 4
Preconditions: !SOBSTH !SOBSTL !SBRIDG !SSTOPP N0*10 T1,1,INACT !T-1,0,INACT !T-1,0,ACTIV
Postconditions: P0,1 SACTIV A1*1* C000 + C000 0001

- Rule: North I
- Priority: 4
- Preconditions:
!SSTOPP !SOBSTL !SOBSTH !SBRIDG: the rule is not applicable to modules
set in the stop, bridge, obstl or obsth state.
N0*10: the rule concerns the module without a north neighbor and with a east
neighbor.
T1,1,INACT: the support module needs to exists and to be set on inactive.
!T-1,0,INACT: the module in position (−1, 0) cannot be set on inactive.
!T-1,0,ACTIV: the module in position (−1, 0) cannot be set on active.
- Postconditions:
P0,1: the module moves north.
SACTIV: the module changes its state to active.
A1*1*: the module attaches afterward if was attached before, when possible.
C000 + C000 0001: the counter C00 is increased by one.

Rule name: North II
Priority: 4
Preconditions: !SOBSTH !SOBSTL !SBRIDG !SSTOPP N0*11 !E1,-1 T1,1,INACT !T-1,0,INACT !T-1,0,ACTIV
!(T1,-1,OBSTL !T0,-1,OBSTL)
Postconditions: P0,1 SACTIV A1*1* C000 + C000 0001

- Rule: North II
- Priority: 4
- Preconditions:
!SSTOPP !SOBSTL !SOBSTH !SBRIDG: the rule is not applicable to modules
set in the stop, bridge, obstl or obsth state.
N0*11: the rule concerns the module without a north neighbor and with a east
and a south neighbor.
!E1,-1: the grid cell in position (1,−1) needs to be occupied.
T1,1,INACT: the support module needs to exists and to be set on inactive.
!T-1,0,INACT: the module in position (−1, 0) cannot be set on inactive.
!T-1,0,ACTIV: the module in position (−1, 0) cannot be set on active.
!(T1,-1,OBSTL !T0,-1,OBSTL): the rule is not applicable when the module in
position (1,−1) is an inferior obstacle and the module in (0,−1) is not an
inferior obstacle.
- Postconditions:
P0,1: the module moves north.
SACTIV: the module changes its state to active.

6.5. RULES 81

A1*1*: the module attaches afterward if was attached before, when possible.
C000 + C000 0001: the counter C00 is increased by one.

Rule name: North III
Priority: 4
Preconditions: !SOBSTH !SOBSTL !SBRIDG !SSTOPP N0*11 E1,-1 T1,1,INACT !T-1,0,INACT
!T-1,0,ACTIV T0,-1,OBSTL
Postconditions: P0,1 SACTIV A1*1* C000 + C000 0001

- Rule: North III
- Priority: 4
- Preconditions:
!SSTOPP !SOBSTL !SOBSTH !SBRIDG: the rule is not applicable to modules
set in the stop, bridge, obstl or obsth state.
N0*11: the rule concerns the module without a north neighbor and with a east
and a south neighbor.
E1,-1: the grid cell in position (1,−1) needs to be empty.
T1,1,INACT: the support module needs to exists and to be set on inactive.
!T-1,0,INACT: the module in position (−1, 0) cannot be set on inactive.
!T-1,0,ACTIV: the module in position (−1, 0) cannot be set on active.
T0,-1,OBSTL: the module in position (0,−1) needs to be set on obstl.
- Postconditions:
P0,1: the module moves north.
SACTIV: the module changes its state to active.
A1*1*: the module attaches afterward if was attached before, when possible.
C000 + C000 0001: the counter C00 is increased by one.

Rule name: North-east
Priority: 4
Preconditions: !SOBSTH !SOBSTL !SBRIDG !SSTOPP N0*1* T1,0,INACT E1,1 !T-1,0,INACT !T-1,0,ACTIV
! (= C003 0002 T2,1,OBSTH E2,0)
Postconditions: P1,1 SACTIV A***1 C000 + C000 0001 C004 + C004 0001

- Rule: North-east
- Priority: 4
- Preconditions:
!SSTOPP !SOBSTL !SOBSTH !SBRIDG: the rule is not applicable to modules
set in the stop, bridge, obstl or obsth state.
N0*1*: concerns only the modules without a North neighbor and with a east
neighbor.
T1,0,INACT: the east neighbor needs to be set on inactive.
E1,1: the goal grid cell needs to be empty.
!T-1,0,INACT: the module in position (−1, 0) cannot be set on inactive.
!T-1,0,ACTIV: the module in position (−1, 0) cannot be set on active.
!(= C003 0002 T2,1,OBSTH E2,0): the rule cannot be applied if the value of
the counter C03 is 2, the module in position (2,1) is set on obsth and the grid
cell in position (2,0) is empty.
- Postconditions:
P1,1: the module moves north-east.
SACTIV: the module changes its state to active.
A**11: the module attaches to its new south neighbor; if it was attached
before and if still possible, it attaches to the other neighbors.
C000 + C000 0001: the counter C000 is increased by 1 each time the rule is
applied.

82 CHAPTER 6. TUNNELING OF A RECTANGLE

C004 + C004 0001: the counter C004 is increased by 1 each time the rule is
applied.

Rule name: East
Priority: 5
Preconditions: !SOBSTH !SOBSTL !SBRIDG !SSTOPP N**01 !T1,-1,ACTIV !T1,-1,OBSTL !E1,-1
!T0,1,INACT !T0,1,ACTIV !T0,-1,OBSTH !T0,-1,OBSTL
Postconditions: P1,0 SACTIV A**11

- Rule: East
- Priority: 5
- Preconditions:
!SSTOPP !SOBSTL !SOBSTH !SBRIDG: the rule is not applicable to modules
set in the stop, bridge, obstl or obsth state.
N**01: the rule concerns only the modules without a west neighbors, but with
a south neighbor.
!T1,-1,ACTIV: the module in position (1,−1) cannot be set on active.
!T1,-1,OBSTL: the module in position (1,−1) cannot be set on obstacle.
!E1,-1: the grid cell in position (1,−1) cannot be empty.
!T0,-1,OBSTL: the module in position (0,−1) cannot be set on obstl.
!T0,-1,OBSTH: the module in position (0,−1) cannot be an obsth.
!T0,1,INACT: the module in position (0, 1) cannot be set on inactive.
!T0,1,ACTIV: the module in position (0, 1) cannot be set on active.
- Postconditions:
P1,0: the module moves east.
SACTIV: the module changes its state to active.
A**11: the module attaches to its new south and east neighbor; if it was
attached before and if still possible, it attaches to the other neighbors.

Rule name: South
Priority: 4
Preconditions: !SOBSTH !SOBSTL !SBRIDG !SSTOPP N*1*0 T-1,0,INACT T-1,-1,INACT
!T1,0,INACT !T1,0,ACTIV
Postconditions: P0,-1 SACTIV A**11 C000 - C000 0001

- Rule: South
- Priority: 4
- Preconditions:
!SSTOPP !SOBSTL !SOBSTH !SBRIDG: the rule is not applicable to modules
set in the stop, bridge, obstl or obsth state.
N*1*0: concerns the modules with a west neighbor, without a module on the
south.
!T1,0,INACT: the module in position (1, 0) cannot be set on inactive.
!T1,0,ACTIV: the module in position (1, 0) cannot be set on active.
T-1,0,INACT: the module in position (−1, 0) needs to be set on inactive.
T-1,-1,INACT: the module in position (−1,−1) needs to be set on inactive.
- Postconditions:
P0,-1: the module moves south.
SACTIV: the module changes its state to active.
A**11: the module attaches to its new west and south neighbors; if it was
attached before and where still possible, it attaches to the other neighbors.
C000 - C000 0001: the counter C000 is decreased by 1 each time the rule is
applied.

6.5. RULES 83

Rule name: South-east I
Priority: 4
Preconditions: !SOBSTH !SOBSTL !SBRIDG !SSTOPP N*001 E1,-1 !T0,1,INACT !T0,1,ACTIV
!T-1,-1,ACTIV
Postconditions: P1,-1 SACTIV A*1*1 C000 - C000 0001

- Rule: South-east I
- Priority: 4
- Preconditions:
!SSTOPP !SOBSTL !SOBSTH !SBRIDG: the rule is not applicable to modules
set in the stop, bridge, obstl or obsth state.
N*001: the rule concerns only the modules without north or west neighbors,
but with a south neighbor.
!T0,1,INACT: the module in position (0, 1) cannot be set on inactive.
!T0,1,ACTIV: the module in position (0, 1) cannot be set on active.
E1,-1: the grid cell in position (1,−1) needs to be empty.
!T-1,-1,ACTIV: the module in position (−1,−1) cannot be set on active.
- Postconditions:
P1,-1: the module moves south-east.
SACTIV: the module changes its state to active.
A*1*1: the module attaches to its new west and south neighbor; if it was
attached before and if still possible, it attaches to the other neighbors.
C000 - C000 0001: the counter C000 is decreased by 1 each time the rule is
applied.

Rule name: South-east II
Priority: 10
Preconditions: !SOBSTH !SOBSTL !SBRIDG !SSTOPP N0*01 T1,1,OBSTH E1,-1
Postconditions: P1,-1 SACTIV A010* C000 - C000 0000

- Rule: South-east II
- Priority: 10
- Preconditions:
!SSTOPP !SOBSTL !SOBSTH !SBRIDG: the rule is not applicable to modules
set in the stop, bridge, obstl or obsth state.
N0*01: the rule concerns only the modules without north or west neighbors,
but with a south neighbor.
E1,-1: the grid cell in position (1,−1) needs to be empty.
T1,1,OBSTH: the grid cell in position (1, 1) needs to be set to obsth.
- Postconditions:
P1,-1: the module moves south-east.
SACTIV: the module changes its state to active.
A0101: the module attaches to its new west and south neighbor; it doesn't
attach to its north neighbor and east neighbors.
C000 - C000 0001: the counter C000 is decreased by 1 each time the rule is
applied.

84 CHAPTER 6. TUNNELING OF A RECTANGLE

Rule name: South-east III
Priority: 6
Preconditions: !SOBSTH !SOBSTL !SBRIDG !SSTOPP N0*01 E1,-1 !T-1,0,ACTIV !T-1,0,INACT
> C000 C002
Postconditions: P1,-1 SACTIV A*1*1 C000 - C000 0001

- Rule: South-east III
- Priority: 6
- Preconditions:
!SSTOPP !SOBSTL !SOBSTH !SBRIDG: the rule is not applicable to modules
set in the stop, bridge, obstl or obsth state.
N0*01: the rule concerns only the modules without north or east neighbors,
but with a south neighbor.
E1,-1: the grid cell in position (1,−1) needs to be empty.
!T-1,0,INACT: the module in position (−1, 0) cannot be set on inactive.
!T-1,0,ACTIV: the module in position (−1, 0) cannot be set on active.
> C000 C002: the value of the counter C00 needs to be bigger than the value
of C02.
- Postconditions:
P1,-1: the module moves south-east.
SACTIV: the module changes its state to active.
A*11*: the module attaches to its new west and south neighbor; if it was
attached before and if still possible, it attaches to the other neighbors.
C000 - C000 0001: the counter C000 is decreased by 1 each time the rule is
applied.

Rule name: South-east IV
Priority: 5
Preconditions: !SOBSTH !SOBSTL !SBRIDG !SSTOPP N0*01 E1,-1 !T0,-1,OBSTL !T0,-1,OBSTH
> C000 C002
Postconditions: P1,-1 SACTIV A*11* C000 - C000 0001

- Rule: South-east IV
- Priority: 5
- Preconditions:
!SSTOPP !SOBSTL !SOBSTH !SBRIDG: the rule is not applicable to modules
set in the stop, bridge, obstl or obsth state.
N0*01: the rule concerns only the modules without north or east neighbors,
but with a south neighbor.
E1,-1: the grid cell in position (1,−1) needs to be empty.
!T0,-1,OBSTL: the module in position (0,−1) cannot be set on obstl.
!T0,-1,OBSTH: the module in position (0,−1) cannot be an obsth.
> C000 C002: the value of the counter C00 needs to be bigger than the value
of C02.
- Postconditions:
P1,-1: the module moves south-east.
SACTIV: the module changes its state to active.
A*11*: the module attaches to its new west and south neighbor; if it was
attached before and if still possible, it attaches to the other neighbors.
C000 - C000 0001: the counter C000 is decreased by 1 each time the rule is
applied.

6.5. RULES 85

Rule name: South-east V
Priority: 9
Preconditions: !SOBSTH !SOBSTL !SBRIDG !SSTOPP N0101 E1,-1 E0,-2
!(!T-1,-2,OBSTH !T-1,-2,OBSTL)
Postconditions: P1,-1 SACTIV A*11* C000 - C000 0001

- Rule: South-east IV
- Priority: 9
- Preconditions:
!SSTOPP !SOBSTL !SOBSTH !SBRIDG: the rule is not applicable to modules
set in the stop, bridge, obstl or obsth state.
N0101: the rule concerns only the modules without north or east neighbors,
but with a west and a south neighbor.
E1,-1: the grid cell in position (1,−1) needs to be empty.
E0,-2: the grid cell in position (0,−2) needs to be empty.
!(!T-1,-2,OBSTL !T-1,-2,OBSTH): the module in position (1,−2) has to be set
either on obstl or obsth.
- Postconditions:
P1,-1: the module moves south-east.
SACTIV: the module changes its state to active.
A*11*: the module attaches to its new west and south neighbor; if it was
attached before and if still possible, it attaches to the other neighbors.
C000 - C000 0001: the counter C000 is decreased by 1 each time the rule is
applied.

Rule name: North-west
Priority: 3
Preconditions: !SOBSTH !SOBSTL !SSTOPP N10** E-1,1 !(!T1,0,OBSTL !T1,0,OBSTH) !T0,-1,INACT
!T0,-1,BRIDG !T0,-1,ACTIV
Postconditions: P-1,1 SACTIV A*11* C000 + C000 0001

[h]
- Rule: North-west
- Priority: 3
- Preconditions:
!SSTOPP !SOBSTL !SOBSTH: the rule is not applicable to modules set in the
stop, obstl or obsth state.
N10**: the rule concerns only the modules with a north neighbor, but without
a west neighbor.
E-1,1: the grid cell in position (−1, 1) needs to be empty.
!T0,-1,INACT: the module in position (0,−1) cannot be set on inactive.
!T0,-1,ACTIV: the module in position (0,−1) cannot be set on active.
!T0,-1,BRIDG: the module in position (0,−1) cannot be set on active.
!(!T1,0,OBSTL !T1,0,OBSTH): the module in position (1, 0) has to be set
either on obstl or obsth.
- Postconditions:
P-1,1: the module moves north-west.
SACTIV: the module changes its state to active.
A*11*: the module attaches to its new west and south neighbor; if it was
attached before and if still possible, it attaches to the other neighbors.
C000 + C000 0001: the counter C000 is increased by 1 each time the rule is
applied.

86 CHAPTER 6. TUNNELING OF A RECTANGLE

Rule name: North-west II
Priority: 3
Preconditions: !SOBSTH !SOBSTL !SSTOPP !SBRIDG N100* !T1,1,ACTIV !T1,1,INACT !T1,1,OBSTH
!T1,1,OBSTL E-1,1 !T0,-1,INACT !T0,-1,ACTIV !T0,-1,BRIDG
Postconditions: P-1,1 SACTIV A**1* C000 + C000 0001

- Rule: North-west II
- Priority: 3
- Preconditions:
!SSTOPP !SOBSTL !SOBSTH !SBRIDG: the rule is not applicable to modules
set in the stop, bridge, obstl or obsth state.
N100*: the rule concerns only the modules with a north neighbor, but without
a west or east neighbor.
E-1,1: the grid cell in position (−1, 1) needs to be empty.
!T1,1,INACT: the module in position (1, 1) cannot be set on inactive.
!T1,1,ACTIV: the module in position (1, 1) cannot be set on active.
!T1,1,OBSTL: the module in position (1, 1) cannot be set on obstl.
!T1,1,OBSTH: the module in position (1, 1) cannot be set on obsth.
!T0,-1,INACT: the module in position (0,−1) cannot be set on inactive.
!T0,-1,ACTIV: the module in position (0,−1) cannot be set on active.
!T0,-1,BRIDG: the module in position (0,−1) cannot be set on active.
- Postconditions:
P-1,1: the module moves north-west.
SACTIV: the module changes its state to active.
A**1*: the module attaches to its new west neighbor; if it was attached before
and if still possible, it attaches to the other neighbors.
C000 + C000 0001: the counter C000 is increased by 1 each time the rule is
applied.

Rule name: South-west
Priority: 3
Preconditions: !SOBSTH !SOBSTL !SSTOPP !SBRIDG N*1*0 !(!T-2,-1,OBSTL !T-2,-1,OBSTH)
!T-1,0,OBSTL !T-1,0,OBSTH E-1,-1 T-1,0,INACT
Postconditions: P-1,-1 SACTIV A11** C000 - C000 0001

- Rule: South-west
- Priority: 3
- Preconditions:
!SSTOPP !SOBSTL !SOBSTH !SBRIDG: the rule is not applicable to modules
set in the stop, bridge, obstl or obsth state.
N*1*0: the rule concerns only the modules without a south neighbor, but with
a west neighbor.
E-1,-1: the grid cell in position (−1,−1) needs to be empty.
T-1,0,INACT: the module in position (−1, 0) needs to be set on inactive.
!T-1,0,OBSTL: the module in position (−1, 0) cannot be set on obstl.
!T-1,0,OBSTH: the module in position (−1, 0) cannot be set on obsth.
!(!T-2,-1,OBSTL !T-2,-1,OBSTH): the module in position (−2,−1) needs to be
set either on obstl or on obsth.
- Postconditions:
P-1,-1: the module moves south-west.
SACTIV: the module changes its state to active.
A11**: the module attaches to its new north and west neighbors; if it was
attached before and if still possible, it attaches to the other neighbors.

6.5. RULES 87

C000 - C000 0001: the counter C000 is decreased by 1 each time the rule is
applied.

Rule name: Formation of bridges
Priority: 6
Preconditions: SACTIV N0110 T1,0,OBSTL != C000 0001
Postconditions: SBRIDG

- Rule: Formation of bridges
- Priority: 6
- Preconditions:
SACTIV: the module changes its state to active.
N0110: the rule concerns only the modules without a north and south
neighbor, but with a west and a east one.
T1,0,OBSTL: the module in position (1, 0) needs to be set on obstl.
!C000 0001: the value of the counter C000 needs to be di�erent than 1.
- Postconditions:
SBRIDG: the module changes its state to bridge.

Rule name: Deactivation I
Priority: 2
Preconditions: SACTIV N*10* !T0,1,OBSTH !T0,-1,ACTIV
Postconditions: SINACT

- Rule: Deactivation I
- Priority: 2
- Preconditions:
SACTIV: it is applicable only to modules set in the inactive state.
N*10*: the rule concerns only the modules with a west neighbor.
!T0,-1,ACTIV: the module in position (0,−1) cannot be set on active.
!T0,1,OBSTH: the module in position (0, 1) cannot be set on obsth.
- Postconditions:
SINACT: the module changes its state to inactive.

Rule name: Deactivation II
Priority: 7
Preconditions: SACTIV N0001 !T-1,1,OBSTL !T-1,1,OBSTH !T1,1,OBSTL !T1,1,OBSTH !T0,1,OBSTL
!T0,1,OBSTH
E1,-1 !> C000 C002
Postconditions: SINACT

- Rule: Deactivation II
- Priority: 7
- Preconditions:
SACTIV: it is applicable only to modules set in the inactive state.
N0001: the rule concerns only the modules without a north, east or west
neighbor, but with a south neighbor.
!T-1,1,OBSTL: the module in position (−1, 1) cannot be set on obstl.
!T-1,1,OBSTH: the module in position (−1, 1) cannot be set on obsth.
!T1,1,OBSTL: the module in position (1, 1) cannot be set on obstl.
!T1,1,OBSTH: the module in position (1, 1) cannot be set on obsth.
!T0,1,OBSTL: the module in position (0, 1) cannot be set on obsth.
!T0,1,OBSTL: the module in position (0, 1) cannot be set on obsth.
E1,-1: the grid cell in position (1,−1) needs to be empty.

88 CHAPTER 6. TUNNELING OF A RECTANGLE

!>C000 C002: the value of the counter C00 cannot be bigger than the value of
C02.
- Postconditions:
SINACT: the module changes its state to inactive.

Rule name: Deactivation III
Priority: 1
Preconditions: SACTIV N0*** !T1,0,INACT !T1,0,ACTIV
Postconditions: SINACT

- Rule: Deactivation III
- Priority: 1
- Preconditions:
SACTIV: it is applicable only to modules set in the inactive state.
N0***: the rule concerns only the modules without a north neighbor.
!T1,0,ACTIV: the module in position (1, 0) cannot be set on active.
!T1,0,INACT: the module in position (1, 0) cannot be set on inactive.
- Postconditions:
SINACT: the module changes its state to inactive.

Rule name: Deactivation IV
Priority: 1
Preconditions: SACTIV T-1,0,INACT T1,0,INACT
Postconditions: SINACT

- Rule: Deactivation IV
- Priority: 1
- Preconditions:
SACTIV: it is applicable only to modules set in the inactive state.
N0***: the rule concerns only the modules without a north neighbor.
T-1,0,INACT: the module in position (−1, 0) cannot be set on inactive.
T1,0,INACT: the module in position (1, 0) cannot be set on inactive.
- Postconditions:
SINACT: the module changes its state to inactive.

Rule name: Stop I
Priority: 10
Preconditions: SINACT N0011 = C004 C005 = C000 C002
Postconditions: SSTOPP

- Rule: Stop I
- Priority: 10
- Preconditions:
SINACT: it is applicable only to modules set in the inactive state.
N0011: the rule concerns only the modules without a north and east neighbor,
but with a west and a south one.
= C004 C005: counter C04 needs to meet the value of C05.
= C000 C002: counter C00 needs to meet the value of C02.
- Postconditions:
SSTOPP: the module changes its own state to stop.

6.5. RULES 89

Rule name: Stop II
Priority: 10
Preconditions: SINACT T-1,0,STOPP
Postconditions: SSTOPP

- Rule: Stop II
- Priority: 10
- Preconditions:
SINACT: the module changes its state to inactive.
T-1,0,STOPP: the module in position (−1, 0) needs to be set on stop.
- Postconditions:
SSTOPP: the module changes its state to stop.

Rule name: Stop III
Priority: 10
Preconditions: SINACT T0,1,STOPP
Postconditions: SSTOPP

- Rule: Stop III
- Priority: 10
- Preconditions:
SINACT: the module changes its state to inactive.
T0,1,STOPP: the module in position (0, 1) needs to be set on stop.
- Postconditions:
SSTOPP: the module changes its state to stop.

Rule name: Stop IV
Priority: 10
Preconditions: SINACT T-1,-1,STOPP
Postconditions: SSTOPP

- Rule: Stop IV
- Priority: 10
- Preconditions:
SINACT: the module changes its state to inactive.
T-1,-1,STOPP: the module in position (−1,−1) needs to be set on stop.
- Postconditions:
SSTOPP: the module changes its state to stop.

90 CHAPTER 6. TUNNELING OF A RECTANGLE

Chapter 7

Histogram locomotion

7.1 Goal

The purpose of the set of rules presented in this chapter is to produce the
eastward locomotion of any modular robotic system initially con�gured as a
connected histogram. The locomotion is performed on a free plane ground (a
horizontal line) without obstacles.

7.2 Locomotion strategy

The rules produce the locomotion by making the modules of the leftmost column
in turn move from the back of the group, over the top, and locate on the front
of the group to reform a new column with the same height; the height and the
relative position of the columns are invariant during the whole locomotion. All
modules are initially state to stop; the modules of the leftmost column of the
system are the �rst to move; as a module happens to be the bottommost of the
leftmost column, it changes its state from stop to inactive; the other modules
of the column do the same, until the topmost one changes its state to inactive
and then activates, free to apply an action rule. As the topmost module moves,
the others of its column activate and move, walking over the stopped modules
until they reach the right of the system. As the second column becomes the
leftmost, it is free to move in the same way.

During the locomotion some bridges are created in order to avoid �lling the
bottlenecks of width 1 formed between the columns, as we can observe in Figure
7.1. Each module set on bridge allows other modules to pass by without having
to �ll all the spaces over the system.

A bridge activates again as the modules of the column on its left change
their state to inactive.

In order to recreate a column with the right height and position, the order
among the modules has to be preserved during the locomotion, and modules
of the same column have to reach together the right part of the system; in
order to achieve this, some information has to be stored in each module, such
as the height of the column and its relative position, and this information has
to be transmitted between the modules along the locomotion; this transmission
is realized by the introduction of a new state: the rinfo state: as two modules

91

92 CHAPTER 7. HISTOGRAM LOCOMOTION

Figure 7.1: Histogram locomotion: in (a) the modules of the �rst column change
their state from stop to inactive. In (b) they activate, starting the locomotion;
in (c) and (d) we can observe that the same column is reformed on the right
part of the system, with the same height. In (b), (c) and (d) the formation of
bridges in the bottlenecks of width 1 is shown. Active modules are depicted in
pink, inactive modules are blue, bridges are orange; the green modules are set
in the rinfo state, exchanging information about the columns.

need to exchange some information they set to the rinfo state, communicate,
and go back to the original state. The only moment in which the order between
the modules is altered is when a module surpasses a bridge, so the exchange of
information along the locomotion is always performed between a bridge and an
active module. As the system always mantains the order and the height of the
column during the locomotion, the recon�guration of the system mostly consists
in stopping the locomotion when the �rst column of the initial con�guration of
the histogram is the leftmost column.

7.3 Activation, locomotion and bridges

The initial con�guration of the system is an histogram with all the modules set
to the stop state.

The shape of the histogram is stored into the modules, codi�ed through the
counters C01 and C02. The counter C01 memorized in each module stores
the value indicating the relative position of the column of the module: starting

7.3. ACTIVATION, LOCOMOTION AND BRIDGES 93

from 1 for the �rst column on the left, the columns are numbered from the
left to right. The counter C02 stores the height of its column, so that each
module knows the number of modules of the column it belongs to. The change
of state from stop to inactive is done through the application of one of the 3
rules depicted in Figure 7.2.

NA

NANA

NA

NA

NA

IN

IN

NA

NA

NA

(b) Other modules inactivation

NA

IN

IN

NA

IN

NA

NA

NA

(c) Topmost module inactivation

IN

IN

NA

NA

(a) Bottommost module inactivation

Figure 7.2: Inactivation rules for the modules: the current module is indicated
with a dot, and empty grid cells are indicated with an empty square. Colored
grid cells are occupied cells, red cells are modules set in the stop state. NA
indicates that if a module occupies that grid cell, it cannot be active, while IN
indicates that it has to be inactive.

As can be noticed, these rules apply only to the modules of the leftmost
column, changing their states from the bottommost to the topmost of the col-
umn. As soon as the topmost module changes its state to inactive, it is able to
apply one of 5 action rules (North, North-East, South, South-East and East),
activating and moving on the top of the system, leaving the other modules free
to move. As an example of action rule, we can see Figure 7.3 which depicts the
North rule. For the details of the other action rules, see Section 7.9.

Once all the modules of the �rst column have activated and moved, the
second column becomes the �rst, and the process is repeated.

While walking over the other modules of the system, any active module that
encounters a bottleneck of width 1 formed by two di�erent columns applies the
Bridge Rule depicted in Figure 7.4, changes its state to bridge and blocks the
bottleneck in order to prevent obstruction.

Bridges may move during the locomotion of the system, as we can observe
in Figure 7.5; the rule for the movement of bridges is depicted in Figure 7.6.

A module which is set on bridge activates and moves again as the modules
of the column on its left are ready to move. The rules for the the activation and
movement of a bridge are depicted in Figure 7.7

94 CHAPTER 7. HISTOGRAM LOCOMOTION

NA

NA

North

North
6
State6=(Stop,Still,Bridge)&(0,1)=empty&(1,0)=Full&State(0,2) 6=Active&State(1,2) 6=Active& State(1,1)=Stop
Move (0,1) & State=Active& C007 = 0000 & C017 = 0000

Figure 7.3: Detailed example of the structure of one of the advance rules; notice
that not all the preconditions of the rule are included in the graphic represen-
tation. The preconditions over the second neighborhood of modules are intro-
duced to generate a delay between the active modules while they are moving,
as the elimination of the gap between them may cause collisions between active
modules and moving bridges.

Formation of a Bridge

Figure 7.4: Rule for the formation of a bridge.

7.4 Information exchange

As the active modules of one column walk over the system and reach the right
part, they recon�gure through the application of two speci�c rules. The �rst
rule stops the �rst active module that arrives at the bottommost position on
the right of the system, and its column is recon�gured through the second rule.
This process does not preserve the initial shape of the histogram if the order of
the modules is not respected during the locomotion: if a module of the i+ 1-th
column arrives before the modules of column i, column i + 1 is recon�gured
before the i-th column, and the logical order of the columns of the histogram
is modi�ed during the locomotion. In order to recreate the columns with the
right position, the order among the modules has to be preserved; this is achieved
through the exchange of information performed during the locomotion. As the
only moment in which the order between the modules can be altered is when
an active module of the column j surpasses a bridge which belongs to a column
i < j, these rules apply only to this kind of situation.

The exchange between an active module and a bridge is performed in two
phases: the �rst phase consists of the communication between the modules, con-
trolled by the rules �Info exchange: active� and �Info exchange: bridge�, which
are two symmetric rules for the exchange of the counters, the �rst applicable
only to the active modules on the top of the bridge, and the second applicable
only to the bridge. If two modules ful�ll the preconditions, they change their
state to rinfo, read the values of the counters C01 and C02 of the other module
and memorize them into two internal auxiliary counters C011 and C012.

7.5. THE CASE OF THE LAST COLUMN 95

Figure 7.5: In (a) the bridge is formed between a complete column and the last
column, still incomplete; as another module of the last column changes its state
to stop and becomes the topmost one in (b), we can see as in (c) the bridge
moves North, while the active modules wait in order to avoid collisions.

North for Bridges

Figure 7.6: North rule for the bridges.

The second phase is an internal change of information: each module writes
the values taken from the other into its own counters C01 and C02, erasing the
original values, and goes back to its previous state. Through these rules then
the two modules swap their counters, changing their role in the recon�guration
of the system, and avoiding the change of order of the columns. For the details
of these rules, see Section 7.9.

7.5 The case of the last column

As explained in the previous section, the exchange of information is only per-
formed when an active module of a column i walks over a bridge of a column
j, where j < i. This condition cannot be used when the bridge is a module of
the last column; in this case in fact, as column 1 activates and walks over the
bridge, the exchange of information would not be performed, as the precondition
j < i is not ful�lled, and column 1 would be reformed before the last column,
changing the original order of the columns.

This problem is solved by the creation of some rules which treat speci�cally
the case of a bridge of the last column and an active module of column 1. These
rules force the exchange of information between such modules and resolve the
problem, as we can easily notice that there are no other situations in which
the swap is not performed when it has to: in fact, a contact between modules
of column that are not consecutive (in a circular order where the �rst column
follows the last one) is always prevented by the passage of the modules of the

96 CHAPTER 7. HISTOGRAM LOCOMOTION

IN

NA

NA

NA

NA

NA

(b) North activation for bridges

IN

NA

NA

NA

NA

(a) North-East activation for bridges

Figure 7.7: Rules for the activation and movement of bridges; notice that these
bridges activates and move through the same rule.

intermediate columns; the last column interacts then only with the �rst and the
penultimate column. For the detailed rules see Section 7.9.

7.6 Recon�guration

As the system always preserves the order and the height of the columns during
the locomotion, the idea of the recon�guration is to stop the locomotion when
column 1 is again the leftmost column of the system.

In order to achieve this, some other counters are stored in the memory of
the modules. The counter C10 is stored into the memory of each module, �xed
before the locomotion starts, and controls the number of rounds that the sys-
tem need to perform before the locomotion stops; each time a module changes
its state from stop to inactive a counter C04 is increased by one, counting its
number of inactivations. When column 1 is again the leftmost column, and the
counter C04 of its bottommost module equals the required value C10, such mod-
ule changes its state to still, blocking the process of inactivation of its column.
In order to complete the �nal recon�guration of the system, some additional
rules are needed. As we know, some bridges are formed during the locomo-
tion, and they only activate again as the �rst of the two columns they connect
change its state to inactive and is ready to move; in the �nal phase though, as
we stop the �rst module and block the inactivation of the modules, the bridges
cannot apply the activation rules of Figure 7.7 and need some additional rules
to understand how and when they can activate and move.

In order to solve this problem, a counting phase is introduced: as soon as a
module of the last column walks on the top of the bridge for the �rst time, the
bridge becomes an element of the last column through a swap of information;
then, the bridge starts the counting of the number of modules of the last column
while they walk over it, and reactivate as the last module of the column has
passed.

To perform this computation, some other counters are introduced. The
process of the reactivation of a bridge starts when the counter C04 of the rounds
has reached the �xed value C10. As soon as the value of the counter C01
of a bridge equals the counter C13, indicating the number of columns of the
histogram (i.e. when the bridge becomes a module of the last column), it starts
the counting of the modules of the last column while they pass over, and it sums

7.7. CORRECTNESS 97

1 to C14 for each module. When C14 reaches the value of C15, indicating the
number of modules of the last column, the bridge changes its state to moves,
and is free to activate through the action rules.

As these bridges reach the right side of the system, they stop again, recre-
ating the last missing columns, and the recon�guration is complete.

7.7 Correctness

In this section we prove that the described rules actually produce an eastward
locomotion of a robotic system initially con�gured as a connected histogram.
In particular, we prove that:

1. No collisions are produced during the movement.

2. The system stays connected during the whole movement.

3. There is always at least one rule that is applicable to some module of the
system.

4. The rules actually produce a locomotion of the system from West to East
on free ground.

5. The system preserves the order and the height of the columns of the initial
con�guration while the locomotion is performed.

In order to prove these results, we �rstly state and prove a preliminary result:

Lemma 5 Each module can apply at most one action rule at a time.

Proof: We need to check that rules with the same priority are pairwise incom-
patible, i.e. that a module cannot satisfy the preconditions of two of them at the
same time. This is easily seen by analyzing the preconditions. Without loss of
generality, we can examine the North and the North-East rules: a requirement
for the application of North is that the cell grid with relative coordinates (1,1)
is occupied by a module in the Stop state, while North-East requires the same
cell to be empty in order to change the position, so no module can satisfy both
sets of preconditions at the same time.

Each time two rules have the same priority we �nd similar contradictions,
so the rules are pairwise incompatible and modules can apply only one rule at
a time. �

Proposition 14 No collisions are produced during the movement.

Proof: The �rst possible type of collision is the one in which two di�erent
modules move to the same grid cell at the same time while applying the rules.

Due to Lemma 5 we only need to worry about con�icts created by the ap-
plication of one action rule at a time. While in the case of the rectangle col-
lisions where impossible due to the shape of the system and the nature of the
movements, in this case there are many situations to study; in order to avoid
con�icts, some speci�c preconditions over the second neighborhood of modules
are introduced; such conditions exclude any possible collision between modules.
For a better understanding of this, we can examine the South rule, described

98 CHAPTER 7. HISTOGRAM LOCOMOTION

in Figure 7.8. As a module applies the South rule, di�erent types of collision
can occur; the only module that can cause them is the one occupying the rel-
ative position (0,−2), as we can easily notice that no other module would be
able to move to the relative position (0,−1) in such con�guration. The cases
in which the module in (0,−2) is active or in the moves state, and able apply
the locomotion rules, is explicitly excluded with the precondition `State(0,-2)
6=(Active, Moves)'. The only other possible case is the one in which (0,−2)
is a bridge, willing to move to (0,−1) either because it is reactivating, either
because it is applying the North rule for bridges. The �rst case is not con-
sidered in the South rule, as it excluded in the Rules of activation of bridges
through the precondition `State(0,2) 6= active'. The second case is contemplated
in the South rule through the precondition `Not(State(0,-2)=Bridge&State(1,-
1)=Stop', which excludes this possibility too.

Move South
6

State 6=(Stop,Still,Bridge)&(1,0)=(0,-1)=empty&(-1,0)=(-1,-1)=Full&State(0,-2) 6=(Active,Moves,Rinfo)&State(1,-2)6=Rinfo&
Not(State(1,-2)=Active&State(0,-2)=Stop)&Not(State(0,-2)=Bridge&State(1,-1)=Stop)

Move (0,-1) & State=Active& C007 = 0000 & C017 = 0000

Figure 7.8: South rule

The second possible type of collision is the case of a module moving to a cell
which is being used as an intermediate position for the movement of another
module. To prove that a disconnection cannot occur in this case, we analyze
the case of a bridge applying the North-east activation rule; all the other cases
can be treated in the same way.

Let's suppose that a bridge activates moving North-east; observing the pre-
conditions of the North-east rule, we can see that there are two di�erent pos-
sibilities: any module moving to the relative position (0, 1) has to start the
movement from positions A or B of Figure 7.9.

IN

NA

A

B

i-column

Figure 7.9: A module moves from position A or B and tries to attach to the
bridge, while the bridge activates through the North-east activation rule.

As one of the precondition of the North-east rule is that the support module
is in the stop state, we can immediately discard the case in which a module in
position B wants to move over the bridge applying the North-east rule.

Let's suppose now that a module in position A wants to move east. The
module cannot be a stopped module, as each module has to pass through the

7.7. CORRECTNESS 99

inactive state before moving; the cases of a moves module or a bridge are ex-
cluded by the con�guration of the system, and a still module would not be
applying an action rule in this case.

The only possibilities left for a module in A applying the East rule are the
active and the inactive state. An active module in position A either is the
topmost module of column i, either is an active module coming from a previous
activated column. The �rst case is impossible as the bridge would have activated
before the coming of any active module in position A. The second case can be
excluded too: in the previous step, module A would have be in relative position
(−2, 0), and the module in position (−1,−1) could not be inactive yet, because
of the preconditions of the inactivation rules. The only case left is the case in
which module A is an inactive module; in this case the whole column would be
inactive and, as before, the bridge would have been already active. The other
cases of collision with an activating bridge can be analyzed in an analogous
way. As all the rules present these type of preconditions, collisions are always
avoided.

�

Proposition 15 The system stays connected during the whole movement.

Proof: The histogram locomotion, as we have explained, consists in the locomo-
tion of some active modules of the �rst columns walking over a static connected
histogram formed by the other columns of the system; as these left columns
do not perform any movement, and are always connected at least by their bot-
tommost modules, the only modules that can generate a disconnection are the
active modules while they walk over the system. Due to Lemma 5, the only
cases to study are the ones originated by the application of one rule at a time.
All the post-conditions of the action rules guarantee that the current module
is connected to one of its neighbors after the movement, the `support module'
of the rule; the only situation in which a disconnection could occur is the one
in which while a module applies a rule and intends to connect to the support
module, this last one applies an action rule itself, leaving its grid cell empty.
This is possible only if the support module is not set in the stop state, i.e. if it
is not part of the static part of the histogram.

We can assume that before the current module applies the rule the system
is connected, as in the initial con�guration the system is connected. We will
see now that the cases in which the support module is inactive cannot generate
disconnections; all the other cases can be treated in an analogous way.

Firstly we can notice that the only inactive modules of the system belong
to the leftmost column: modules of column i change their state from Stop to
inactive only when column i − 1 is already active, i.e. when column i is the
leftmost column of the system. Moreover, the only inactive module able to move
is the topmost module, so we can immediately exclude the case of an inactive
module in the middle of the column disconnecting the system by the application
of some action rule.

A stopped module changes its state to inactive only in the case in which the
grid cells of the left half of its neighborhood are empty; the inactivation starts
from the bottom to the top for each column; this means that the �rst column
is inactive and ready to move only when all the active modules of the previous
column have reached its right side. These observations exclude the case of an

100 CHAPTER 7. HISTOGRAM LOCOMOTION

inactive support for any module moving on the right side of the column (such
as the North rule, the North-East rule, the East rule).

The only case of an inactive support for a module moving on the left side of
the �rst column is the case depicted in Figure 7.10; we can notice that in this
case the support module cannot apply any of the action rules, and then cannot
generate any disconnection of the system.

IN

Figure 7.10: The moving module applies the South rule moving on an inactive
module (blue in the picture): the support module cannot apply any of the action
rules, as it does not ful�ll any of the preconditions, so no disconnection can be
generated.

�

Proposition 16 There is always at least one rule that is applicable to some
module of the system.

Proof: The proof is analogous to the case of the free locomotion of the rectangle;
we can analyze the movement of the leftmost column and proceed by induction.

Among the modules of the leftmost column there is always a module able
to apply a rule, either an inactivation or an action rule. As the topmost is
inactive and free to move, as soon as it applies an action rule it leaves space
to the other modules of its column to activate and move progressively; the �rst
module, followed by the others of its column, moves on the top of the system,
North, North-East, East, South-East, South along the rightmost column, and
stops reforming a new column. During this movement, the active modules do
not interfere one with the other, and move without disconnection nor con�icts,
as we have seen in the previous results. As soon as these modules make their
way to the right, the second leftmost column becomes the �rst, its modules are
free to change their states and move in order, and the motion is repeated. As
there is always a leftmost column, by induction on the number of columns we
can conclude that there is always some rule applicable to some module of the
system. �

Proposition 17 The rules actually produce the locomotion of the system from
West to East on free ground.

Proof: As there is always one rule applicable to the system because of Propo-
sition 16, the only thing we need to prove is that the rules do not produce an
alternation of opposite movements without moving the system in any direction.
The rules that produce a change in the states or in the counters cannot produce
any kind of oscillation. The action rules that do not produce a movement in the
East direction are North, South, North for bridges and North-East for bridges;
we can easily notice from the preconditions of the rules that any module which
performs a movement in the North direction cannot produce one in the South

7.8. COMPLEXITY 101

direction until it has reached the opposite side of the column it is attached to;
the same can be said for the rest of the rules, so we cannot have an oscillation
produced by the application of these rules. As all the other action rules have
a component on the East direction, the application of these rules produces an
overall movement towards East, without any risk of oscillations. As each time
a column is formed again the relative position of the columns and their height
is conserved, we can say that the locomotion is an in-shape locomotion. �

We have proved the following:

Theorem 4 The rules described in this chapter allow any histogram con�g-
uration of modules to advance eastwards on a free ground, while keeping the
connected shape of the system.

We have already commented the recon�guration phase and its correctness in
Section 7.6; as the locomotion preserves the shape of the histogram, stopping the
system after a given number of rounds and making the left bridges recon�gure
into the last columns is enough to produce a recon�guration of the system into
the initial histogram.

7.8 Complexity

Neighbourhood During the locomotion, most of the rules require a module
to be able to check the situation of the grid cells of its �rst neighbor and
of some grid cells of its second neighborhood, and to check if these cells
are either empty or occupied by another module; in this last case, it has
to be able to obtain information about the state of such module. The
checking of the second neighborhood modules is needed in order to avoid
collisions between active modules and moving bridges: as a bridge moves,
its neighborhood needs to be free of active modules willing to move to its
goal grid cell; this is achieved by the generation of a delay between two
consecutive active modules. No information about any other position is
needed.

Memory and computation Locomotion only requires O(1) memory for each
module, and a O(1) computation at each step, as modules only need to
check if preconditions of rules are ful�lled, to memorize �xed values in
some counters, and to make simple operations with counters at each step.

Number of moves Let h be the height of the highest column of the histogram,
and m the number of its columns. The con�guration which requires the
maximum number of moves for a module is the one depicted in Figure
7.11; in this con�guration, in fact, the number of modules over which the
current one needs to walk two or more times is maximal: both sides of
each column of height h are free, and the number of columns that reach
the maximal height is maximal, given that a separation of at least two
cells between them is required in order to avoid the formation of bridges.
Moreover, the current module can reach all the rest of the system, so even
the modules used as a separation between the maximal columns generate
the maximal number of moves. From the moment it activates on the left
of the system to its inactivation in the rightmost column, we can see that

102 CHAPTER 7. HISTOGRAM LOCOMOTION

each module performs ≈ m−2
3 (2h+ 1) + h moves; the number of moves is

then O((m + 1)h) for each round performed by the system. The number
of rounds k (in this case a round is a complete recon�guration, i.e. we
count a round each time the leftmost column is again column number 1)
depends linearly on the distance between the starting position and the
goal position.

+h

+(h-1)

+1 +1

+(h -1)

+1

+(h-1)

+1

Figure 7.11: Example of a worst case for the initial con�guration of an histogram
with m column and maximum height h: there are no bottlenecks of width 1
between the columns, so no bridge can be created, and the histogram is formed
by columns of height h separated by spaces of width 2. We can observe the steps
performed by the bottommost module of the �rst column, from its activation
to its change of state on the right part of the system.

Communication An exchange of information between the modules of the
system is performed in order to avoid modi�cations of the relative position
of the columns; a constant size communication is performed each time
an exchange rule is applied. During a complete round of the system a
module is able to perform at most O(n) exchanges of communication.
In fact, the situation in which a module performs the maximal number
of communication exchanges during a round of the system is the one in
which a module sets its state to bridge, exchanges its counters with O(n)
modules while they walk over it, activates and overpass again the same
amount of modules performing another O(n) exchanges; we can easily
notice that, while this happens, the system performs a complete round:
in fact, the �rst O(n) exchanges take place as all the columns on the
left of the bridge activate and walk over the bridge, and the second O(n)
are performed when the bridge, and the column it connects, activate and
overpass again all the rest of columns. If k is the number of complete
rounds of the system, O(kn) is the maximum number of communication
exchanges that can be performed by a module during the locomotion of
the system; the number of rounds k depends linearly on the number of
grid cells separating the starting and the goal position.

Number of time steps The computation of the number of time steps can
be done as in the case of the free locomotion of the rectangle, by charg-
ing to each column the time steps starting from the inactivation of its
bottommost module to the inactivation of the bottommost module of the
following column. Let ni be the number of modules of column i, and n the
number of modules of the system. The modules of column i start their lo-
comotion by changing their state from stop to inactive, one after the other,

7.8. COMPLEXITY 103

in ni time steps. As the bottommost module is inactive, it activates and
moves, followed by the others; each module waits to activate until its �rst
and second neighbor are free from other active modules, so a bounded
delay between the activation of one module and the activation of the fol-
lowing one is generated; given the con�guration of the system, and the fact
that active modules can only move North, East and South following the
shape of the columns, the time steps between two consecutive activations
is always smaller than the total number of grid cells forming the �rst and
the second neighborhood (active modules cannot stay still in a cell, nor
move backwards and repeat the same movements, so they cannot occupy
the same grid cell two times while walking); as this is a constant �xed
number, we charge O(ni) time steps to column i for its activation; as the
total number of time steps for the movement of each column is then O(ni),
the system performs a complete round in O(n) time steps. As before, the
number of rounds performed depends linearly on the distance covered by
the system during the locomotion.

104 CHAPTER 7. HISTOGRAM LOCOMOTION

7.9 Rules

The algorithm is based on 25 di�erent rules; before starting the locomotion
each module has the following information stored in its counters: the number
of its the column in the order de�ned (C01), the height of its column (C02), the
number of the columns of the histogram (C13), the height of the last column
(C15) and the number of rounds (C10).

Rule Name: North
Priority: 6
Preconditions: !SSTOPP !SBRIDG !SSTILL N0*1* T1,1,STOPP !T0,2,ACTIV !T1,2,ACTIV
Postconditions: P0,1 SACTIV A1*1* C007 + 0000 0000 C017 + 0000 0000

- Rule: North
- Priority: 6
- Preconditions:
!SSTOPP !SBRIDG !SSTILL: it is not applicable to modules set in the stop,
bridge or still state.
N0*1*: the rule concerns only the modules with a east neighbor, and without
a north neighbor.
T1,1,STOPP: the module in position (1, 1) needs to be set on stop.
!T0,2,ACTIV: the module in position (0, 2) cannot be set on active.
!T1,2,ACTIV: the module in position (1, 2) cannot be set on active.
- Postconditions:
P0,1: the module moves north.
SACTIV: the module changes its state to active.
A1*1*: the module attaches to its new north and east neighbor; if it was
attached before and if still possible, it attaches to the other neighbors.
C007 + 0000 0000: the module sets its C07 counter to zero.
C017 + 0000 0000: the module sets its C07 counter to zero.

Rule Name: North-east
Priority: 6
Preconditions: !SSTOPP !SSTILL !SBRIDG N0*1* E1,1 T1,0,STOPP !T2,1,RINFO
!T2,0,RINFO !T2,1,ACTIV !T1,2,ACTIV !T2,2,ACTIV E1,2
Postconditions: SACTIV P1,1 A***1 C007 + 0000 0000 C017 + 0000 0000

- Rule: North-east
- Priority: 6
- Preconditions:
!SSTOPP !SBRIDG !SSTILL: it is not applicable to modules set in the stop,
bridge or still state.
N0*1*: the rule concerns only the modules with a east neighbor, and without
a north neighbor.
E1,1: the grid cell in position (1, 1) needs to be empty.
E1,2: the grid cell in position (1, 2) needs to be empty.
T1,0,STOPP: the module in position (1, 0) needs to be set on stop.
!T2,1,RINFO: the module in position (2, 1) cannot be set on rinfo.
!T2,0,RINFO: the module in position (2, 0) cannot be set on rinfo.
!T2,1,ACTIV: the module in position (2, 1) cannot be set on active.
!T1,2,ACTIV: the module in position (1, 2) cannot be set on active.
!T2,2,ACTIV: the module in position (2, 2) cannot be set on active.
- Postconditions:

7.9. RULES 105

P1,1: the module moves north-east.
SACTIV: the module changes its state to active.
A***1: the module attaches to its new south neighbor; if it was attached
before and if still possible, it attaches to the other neighbors.
C007 + 0000 0000: the module sets its C07 counter to zero .
C017 + 0000 0000: the module sets its C07 counter to zero.

Rule Name: East
Priority: 7
Preconditions: !SSTOPP !SSTILL !SBRIDG N0*01 !E1,-1 !T1,-1,MOVES !T1,-1,ACTIV
!T1,1,ACTIV !T2,0,ACTIV !T2,1,ACTIV !T2,-1,ACTIV !T2,0,RINFO !T2,-1,RINFO
!T1,-1,RINFO !(SINACT T1,-1,BRIDG)
Postconditions: SACTIV P1,0 A**11 C007 + 0000 0000 C017 + 0000 0000

- Rule: East
- Priority: 7
- Preconditions:
!SSTOPP !SBRIDG !SSTILL: it is not applicable to modules set in the stop,
bridge or still state.
N0*01: the rule concerns only the modules with a south neighbor, and without
a north nor a east neighbor.
!E1,-1: the cell grid in position (1,−1) needs to be occupied.
!T1,-1,MOVES: the module in position (1,−1) cannot be set on moves.
!T1,-1,ACTIV: the module in position (1,−1) cannot be set on active.
!T1,1,ACTIV: the module in position (1, 1) cannot be set on active.
!T2,0,ACTIV: the module in position (2, 0) cannot be set on active.
!T2,1,ACTIV: the module in position (2, 1) cannot be set on active.
!T2,-1,ACTIV: the module in position (2,−1) cannot be set on active.
!T2,0,RINFO: the module in position (2, 0) cannot be set on rinfo.
!T2,-1,RINFO: the module in position (2,−1) cannot be set on rinfo.
!T1,-1,RINFO: the module in position (1,−1) cannot be set on rinfo.
!(SINACT T1,-1,BRIDG): the rule is not applicable by an inactive module if
the position (1,−1) is occupied by a bridge.
- Postconditions:
P1,0: the module moves east.
SACTIV: the module changes its state to active.
A**11: the module attaches to its new south and east neighbors; if it was
attached before and if still possible, it attaches to the other neighbors.
C007 + 0000 0000: the module sets its C07 counter to zero.
C017 + 0000 0000: the module sets its C07 counter to zero.

Rule Name: South
Priority: 6
Preconditions: !SSTOPP !SBRIDG !SSTILL N*100 !E-1,-1 !T0,-2,ACTIV !T0,-2,MOVES !T1,-1,ACTIV
!(T1,-2,ACTIV T0,-2,STOPP) !T0,-2,RINFO !T1,-2,RINFO !(T0,-2,BRIDG T1,-1,STOPP)
Postconditions: P0,-1 SACTIV A*111 C007 + 0000 0000 C017 + 0000 0000

- Rule: South
- Priority: 6
- Preconditions:
!SSTOPP !SBRIDG !SSTILL: it is not applicable to modules set in the stop,
bridge or still state.
N*100: the rule concerns only the modules with a west neighbor, and without
a east nor a south neighbor.

106 CHAPTER 7. HISTOGRAM LOCOMOTION

!E-1,-1: the cell grid in position (−1,−1) needs to be occupied.
!T0,-2,ACTIV: the module in position (0,−2) cannot be set on active.
!T1,-1,ACTIV: the module in position (1,−1) cannot be set on active.
!T0,-2,MOVES: the module in position (1,−1) cannot be set on moves.
!T0,-2,RINFO: the module in position (0,−2) cannot be set on rinfo.
!T1,-2,RINFO: the module in position (2,−1) cannot be set on rinfo.
!(T1,-2,ACTIV T0,-2,STOPP): if the module in position (1,−2) is set on active
and the module in position (0,−2) is set on stop the rule cannot be performed.
!(T0,-2,BRIDG T1,-1,STOPP): if the module in position (0,−2) is set on
bridge and the module in position (1,−1) is set on stop the rule cannot be
performed
- Postconditions:
P0,-1: the module moves south.
SACTIV: the module changes its state to active.
A*111: the module attaches to its new south and east and west neighbors; if it
was attached before and if still possible, it attaches to the other neighbor.
C007 + 0000 0000: the module sets its C07 counter to zero.
C017 + 0000 0000: the module sets its C07 counter to zero.

Rule Name: South-east
Priority: 6
Preconditions: !SSTOPP !SBRIDG !SSTILL N0*01 E1,-1 !T0,-1,BRIDG !T0,-1,ACTIV !T1,-2,ACTIV
!T2,0,ACTIV !T1,-2,RINFO !T2,0,RINFO !(T1,-2,BRIDG T2,-1,STOPP T0,-1,STOPP) !T2,-1,ACTIV
!T1,-2,MOVES
Postconditions: P1,-1 SACTIV A*111 C007 + 0000 0000 C017 + 0000 0000

- Rule: South-east
- Priority: 6
- Preconditions:
!SSTOPP !SBRIDG !SSTILL: it is not applicable to modules set in the stop,
bridge or still state.
N0*01: the rule concerns only the modules with a south neighbor, and without
a north nor a east neighbor.
E1,-1: the cell grid in position (1,−1) needs to be empty.
!T0,-1,BRIDG: the module in position (0,−1) cannot be set on bridge.
!T0,-1,ACTIV: the module in position (0,−1) cannot be set on active.
!T1,-2,ACTIV: the module in position (1,−2) cannot be set on active.
!T2,0,ACTIV: the module in position (2, 0) cannot be set on active.
!T2,-1,ACTIV: the module in position (2,−1) cannot be set on active.
!T1,-2,RINFO: the module in position (1,−2) cannot be set on rinfo.
!T2,0,RINFO: the module in position (2, 0) cannot be set on rinfo.
!T1,-2,MOVES: the module in position (1,−2) cannot be set on moves.
!(T1,-2,BRIDG T2,-1,STOPP T0,-1,STOPP): if the module in position (1,−2)
is set on bridge and the modules in position (2,−1) and (0,−1) are set on stop
the rule cannot be performed.
- Postconditions:
P1,-1: the module moves south-east.
SACTIV: the module changes its state to active.
A*111: the module attaches to its new south and east and west neighbors; if it
was attached before and if still possible, it attaches to the other neighbor.
C007 + 0000 0000: the module sets its C07 counter to zero.
C017 + 0000 0000: the module sets its C07 counter to zero.

7.9. RULES 107

Rule Name: North-east activation for bridges
Priority: 15
Preconditions: SBRIDG N011* E1,1 !T-1,1,ACTIV
!T-1,2,ACTIV !T0,2,ACTIV !T1,0,ACTIV T-1,-1,INACT
Postconditions: P1,1 SACTIV A**11

- Rule: North-east activation for bridges
- Priority: 15
- Preconditions:
SBRIDG: it is applicable only to modules set in the bridge state.
N011*: the rule concerns only the modules with a west and east neighbor, and
without a north neighbor.
E1,1: the cell grid in position (1, 1) needs to be empty.
!T-1,1,ACTIV: the module in position (−1, 1) cannot be set on active.
!T-1,2,ACTIV: the module in position (−1, 2) cannot be set on active.
!T0,2,ACTIV: the module in position (0, 2) cannot be set on active.
!T1,0,ACTIV: the module in position (1, 0) cannot be set on active.
T-1,-1,INACT: the module in position (−1,−1) needs to be set on inactive.
- Postconditions:
P1,1: the module moves north-east.
SACTIV: the module changes its state to active.
A**11: the module attaches to its new south and east neighbors; if it was
attached before and if still possible, it attaches to the other neighbors.

Rule Name: North activation for bridges
Priority: 15
Preconditions: SBRIDG N011* !E1,1 !T-1,1,ACTIV !T1,1,ACTIV !T0,2,ACTIV
!T-1,2,ACTIV T-1,-1,INACT
Postconditions: P0,1 SACTIV A**1*

- Rule: North activation for bridges
- Priority: 15
- Preconditions:
SBRIDG: it is applicable only to modules set in the bridge state.
N011*: the rule concerns only the modules with a west and east neighbor, and
without a north neighbor.
!E1,1: the grid cell in position (1, 1) needs to be occupied.
!T-1,1,ACTIV: the module in position (−1, 1) cannot be set on active.
!T1,1,ACTIV: the module in position (1, 1) cannot be set on active.
!T0,2,ACTIV: the module in position (0, 2) cannot be set on active.
!T-1,2,ACTIV: the module in position (−1, 2) cannot be set on active.
T-1,-1,INACT: the module in position (−1,−1) needs to be set on inactive.
- Postconditions:
P0,1: the module moves north.
SACTIV: the module changes its state to active.
A**1*: the module attaches to its new east neighbor; if it was attached before
and if still possible, it attaches to the other neighbors.

108 CHAPTER 7. HISTOGRAM LOCOMOTION

Rule Name: North for bridges
Priority: 30
Preconditions: SBRIDG N011* T1,1,STOPP T-1,1,STOPP
Postconditions: P0,1 A**1*

- Rule: North for bridges
- Priority: 30
- Preconditions:
SBRIDG: it is applicable only to modules set in the bridge state.
N011*: the rule concerns only the modules with a west and east neighbor, and
without a north neighbor.
T1,1,STOPP: the module in position (1, 1) needs to be set on stop.
T-1,1,STOPP: the module in position (−1, 1) needs to be set on stop.
- Postconditions:
P0,1: the module moves north.
A**1*: the module attaches to its new east and west neighbors; if it was
attached before and if still possible, it attaches to the other neighbors.

Rule Name: Bridge Formation
Priority: 10
Preconditions: SACTIV N011* T1,0,STOPP T-1,0,STOPP
Postconditions: SBRIDG

- Rule: Bridge formation
- Priority: 10
- Preconditions:
SACTIV: it is applicable only to modules set in the active state.
N011*: the rule concerns only the modules with a west and east neighbor, and
without a north neighbor.
T1,0,STOPP: the module in position (1, 0) needs to be set on stop.
T-1,0,STOPP: the module in position (−1, 0) needs to be set on stop.
- Postconditions:
SBRIDG: the module changes its state to bridge.

Rule Name: Stop bottommost module
Priority: 9
Preconditions: SACTIV N0100 !(!T-1,0,INACT !T-1,0,STOPP) E-1,-1
Postconditions: SSTOPP C006 + 0000 0001

- Rule: Stop bottommost module
- Priority: 9
- Preconditions:
SACTIV: it is applicable only to modules set in the active state.
N0100: the rule concerns only the modules with a west, and without other
neighbors.
E-1,-1: the grid cell in position (−1,−1) needs to be empty. !(!T-1,0,INACT
!T-1,0,STOPP): the cell grid in position (−1, 0) needs to be occupied by a
module, either set in the inactiveeither in the stop state.
- Postconditions:
P0,1: the module moves north.
SSTOPP: the module changes its state to stop.
A**1*: the module attaches to its new east and west neighbors; if it was
attached before and if still possible, it attaches to the other neighbors.
C006 + 0000 0001: the module sets its C06 counter to 1.

7.9. RULES 109

Rule Name: Stop other modules
Priority: 9
Preconditions: SACTIV N0*01 T0,-1,STOPP !V0,-1,C001 C001 W0,-1,C001 C001 V0,-1,C006 C002
Postconditions: SSTOPP C006 + 0,-1,C006 0001

- Rule: Stop other modules
- Priority: 9
- Preconditions:
SACTIV: it is applicable only to modules set in the active state.
N0*01: the rule concerns only the modules with a south neighbor, and without
a north nor west neighbor.
(!V0,-1,C001 C001 W0,-1,C001 C001): the value of the counter C01 of the
module has to coincide with the counter C01 of its south neighbor.
V0,-1,C006 C002: the value of the counter C02 of the module has to be bigger
than the value of the counter C06 of its south neighbor.
- Postconditions:
P0,1: the module moves north.
SSTOPP: the module changes its state to stop.
C006 + 0,-1,C006 0001: the module checks the value of the counter C06 of its
south neighbor, increases it by 1 and sets its own C06 counter to this result.

Rule Name: Locomotion break
Priority: 100
Preconditions: SSTOPP N*0*0 = C001 0001 = C004 C010
Postconditions: SSTILL

- Rule: Locomotion break
- Priority: 100
- Preconditions:
SSTOPP: it is applicable only to modules set in the stop state.
N*0*0: the rule concerns only the modules without a east or south neighbor.
= C001 0001: the rule applies only if the value of the counter C01 of the
module equals 1.
= C004 C010: the rule applies only if the value of the counter C04 of the
module equals the value of C10.
- Postconditions:
SSTILL: the module changes its state to still.

110 CHAPTER 7. HISTOGRAM LOCOMOTION

Rule Name: Bottommost module inactivation
Priority: 10
Preconditions: SSTOPP N*0*0 E-1,-1 E-1,1 !T0,1,ACTIV !T1,1,ACTIV !T-1,2,ACTIV
!T2,1,ACTIV !T1,2,ACTIV
Postconditions: SINACT C004 + C004 0001

- Rule: Bottommost module inactivation
- Priority: 10
- Preconditions:
SSTOPP: it is applicable only to modules set in the stop state.
N*0*0: the rule concerns only the modules without a west nor a south
neighbor.
E-1,-1: the grid cell in position (−1,−1) needs to be empty.
E-1,1: the grid cell in position (−1, 1) needs to be empty.
!T0,1,ACTIV: the module in position (0, 1) cannot be set on active.
!T1,1,ACTIV: the module in position (1, 1) cannot be set on active.
!T-1,2,ACTIV: the module in position (−1, 2) cannot be set on active.
!T2,1,ACTIV: the module in position (2, 1) cannot be set on active.
!T1,2,ACTIV: the module in position (1, 2) cannot be set on active.
- Postconditions:
SINACT: the module changes its state to inactive.
C004 + C004 0004: the module adds 1 to its C04 counter.

Rule Name: Other modules inactivation
Priority: 10
Preconditions: SSTOPP N10*1 E-1,-1 T0,-1,INACT E-1,0 E-1,1 !T1,0,ACTIV !T1,1,ACTIV
!T1,-1,ACTIV !T0,2,ACTIV !T2,0,ACTIV !T2,-1,ACTIV !T2,1,ACTIV
Postconditions: SINACT C004 + C004 0001

- Rule: Other modules inactivation
- Priority: 10
- Preconditions:
SSTOPP: it is applicable only to modules set in the stop state.
N10*1: the rule concerns only the modules with a north and a south neighbor,
and without a west neighbor.
E-1,-1: the grid cell in position (−1,−1) needs to be empty.
E-1,0: the grid cell in position (−1, 0) needs to be empty.
E-1,1: the grid cell in position (−1, 1) needs to be empty.
T0,-1,INACT: the module in position (0,−1) needs to be inactive.
!T1,0,ACTIV: the module in position (1, 0) cannot be set on active.
!T1,1,ACTIV: the module in position (1, 1) cannot be set on active.
!T1,-1,ACTIV: the module in position (1,−1) cannot be set on active.
!T2,1,ACTIV: the module in position (2, 1) cannot be set on active.
!T1,2,ACTIV: the module in position (2, 1) cannot be set on active.
!T2,-1,ACTIV: the module in position (−1, 2) cannot be set on active.
!T2,0,ACTIV: the module in position (2, 0) cannot be set on active.
!T0,2,ACTIV: the module in position (2, 0) cannot be set on active.
!T2,2,ACTIV: the module in position (2, 2) cannot be set on active.
- Postconditions:
SINACT: the module changes its state to inactive.
C004 + C004 0001: the module adds 1 to its C04 counter.

7.9. RULES 111

Rule Name: Topmost module inactivation
Priority: 12
Preconditions: SSTOPP N00*1 E-1,-1 T0,-1,INACT !T1,0,ACTIV !T1,1,ACTIV !T1,-1,ACTIV
!T0,2,ACTIV !T2,0,ACTIV !T2,-1,ACTIV !T2,1,ACTIV !T1,2,ACTIV !T2,2,ACTIV
Postconditions: SINACT C004 + C004 0001

- Rule: Topmost module inactivation
- Priority: 12
- Preconditions:
SSTOPP: it is applicable only to modules set in the stop state.
N00*1: the rule concerns only the modules with a south neighbor, and without
a north nor a west neighbor.
E-1,-1: the grid cell in position (−1,−1) needs to be empty.
T0,-1,INACT: the module in position (0,−1) needs to be inactive.
!T1,0,ACTIV: the module in position (1, 0) cannot be set on active.
!T1,1,ACTIV: the module in position (1, 1) cannot be set on active.
!T1,-1,ACTIV: the module in position (1,−1) cannot be set on active.
!T2,1,ACTIV: the module in position (2, 1) cannot be set on active.
!T1,2,ACTIV: the module in position (2, 1) cannot be set on active.
!T2,-1,ACTIV: the module in position (−1, 2) cannot be set on active.
!T2,0,ACTIV: the module in position (2, 0) cannot be set on active.
!T0,2,ACTIV: the module in position (2, 0) cannot be set on active.
!T2,2,ACTIV: the module in position (2, 2) cannot be set on active.
- Postconditions:
SINACT: the module changes its state to inactive.
C004 + C004 0001: the module adds 1 to its C04 counter.

Rule Name: Exchange rule for Bridges
Ponte su cui arriva un attivo Priority: 100
Preconditions: SBRIDG !W0,1,C001 C001 !E0,1 = C007 0000
Postconditions: SRINFO C011 + 0,1,C001 0000 C012 + 0,1,C002 0000 C017 + 0,1,C004 0000
C007 + 0000 0001

- Rule: Exchange rule for Bridges
- Priority: 100
- Preconditions:
SBRIDG: it is applicable only to modules set in the bridge state.
!E0,1: the grid cell in position (0, 1) needs to be occupied.
!W0,1,C001 C001: the value of the counter C01 of the module has to be less
than the value of the counter C01 of its north neighbor.
= C007 0000: the rule applies only if the value of the counter C07 of the
module is 0.
- Postconditions:
SRINFO: the module changes its state to rinfo.
C011 + 0,1,C001 0000: the module stores the value of the counter C01 of its
north neighbor into its own counter C11.
C012 + 0,1,C002 0000: the module stores the value of the counter C02 of its
north neighbor into its own counter C12.
C017 + 0,1,C004 0000: the module stores the value of the counter C04 of its
north neighbor into its own counter C17.
C007 + 0000 0001: the modules sets its counter C07 to 1.

112 CHAPTER 7. HISTOGRAM LOCOMOTION

Rule Name: Exchange rule for Actives
Priority: 100
Preconditions: T0,-1,BRIDG V0,-1,C001 C001 = C007 0000
Postconditions: SRINFO C011 + 0,-1,C001 0000 C012 + 0,-1,C002 0000 C017 + 0,-1,C004 0000
C007 + 0000 0001

- Rule: Exchange rule for Actives
- Priority: 100
- Preconditions:
T0,-1,BRIDG: the module in position (0,−1) needs to be set on bridge.
V0,-1,C001 C001: the value of the counter C01 of the module has to be bigger
than the value of the counter C01 of its south neighbor.
= C007 0000: the rule applies only if the value of the counter C07 of the
module is 0.
- Postconditions:
SRINFO: the module changes its state to rinfo.
C011 + 0,-1,C001 0000: the module stores the value of the counter C01 of its
south neighbor into its own counter C11.
C012 + 0,-1,C002 0000: the module stores the value of the counter C02 of its
south neighbor into its own counter C12.
C017 + 0,-1,C004 0000: the module stores the value of the counter C04 of its
south neighbor into its own counter C17.
C007 + 0000 0001: the modules sets its counter C07 to 1.

Rule Name: Internal change of counters I
Priority: 100
Preconditions: SRINFO E0,1 = C007 0001
Postconditions: C001 + C011 0000 C002 + C012 0000 C004 + C017 0000 SACTIV

- Rule: Internal change of counters I
- Priority: 100
- Preconditions:
SRINFO: it is applicable only to modules set in the rinfo state. E0,1: the grid
cell in position (0, 1) needs to be empty.
= C007 0001: the rule applies only if the value of the counter C07 of the
module is 1.
- Postconditions:
SACTIV: the module changes its state to active.
C001 + C011 0000: the module copies the value of its counter C11 into its
counter C01.
C002 + C012 0000: the module copies the value of its counter C12 into its
counter C02.
C004 + C017 0000: the module stores the value of the counter C17 of its south
neighbor into its own counter C04.

Rule Name: Internal change of counters II
Priority: 100
Preconditions: SRINFO !E0,1 = C007 0001
Postconditions: C001 + C011 0000 C002 + C012 0000 C004 + C017 0000 SBRIDG

- Rule: Internal change of counters II
- Priority: 100
- Preconditions:

7.9. RULES 113

SRINFO: it is applicable only to modules set in the rinfo state. !E0,1: the grid
cell in position (0, 1) needs to be occupied.
= C007 0001: the rule applies only if the value of the counter C07 of the
module is 1.
- Postconditions:
SBRIDG: the module changes its state to bridge.
C001 + C011 0000: the module copies the value of its counter C11 into its
counter C01.
C002 + C012 0000: the module copies the value of its counter C12 into its
counter C02.
C004 + C017 0000: the module stores the value of the counter C17 of its south
neighbor into its own counter C04.

Rule Name: Case of the last column (Bridge)
Priority: 100
Preconditions: SBRIDG T0,1,ACTIV = C001 C013 = C007 0000
!(!V0,1,C001 C013 W0,1,C001 C013)
Postconditions: SRINFO C011 + 0,1,C001 0000 C012 + 0,1,C002 0000 C017+ 0,1,C004 0000
C007 + 0000 0001

- Rule: Case of the last column (Bridge)
- Priority: 100
- Preconditions:
SBRIDG: it is applicable only to modules set in the bridge state.
T0,1,ACTIV: the module in position (0, 1) needs to be set on active.
!(!V0,1,C001 C013 W0,1,C001 C013): the value of the counter C01 of the
module has to be di�erent from the value of the counter C13 of its north
neighbor.
= C001 C013: the rule applies only if the value of the counter C01 of the
module is equal to the value of its counter C13.
= C007 0000: the rule applies only if the value of the counter C07 of the
module is 0.
- Postconditions:
SRINFO: the module changes its state to rinfo.
C011 + 0,1,C001 0000: the module stores the value of the counter C01 of its
south neighbor into its own counter C11.
C012 + 0,1,C002 0000: the module stores the value of the counter C02 of its
south neighbor into its own counter C12.
C017 + 0,1,C004 0000: the module stores the value of the counter C04 of its
south neighbor into its own counter C17.
C007 + 0000 0001: the modules sets to 1 its counter C07.

Rule Name: Case of the last column (Actives)
Priority: 100
Preconditions: SACTIV T0,-1,BRIDG ¡ C001 C013 !V0,-1,C001 C013 W0,-1,C001 C013 = C007 0000
Postconditions: SRINFO C011 + 0,-1,C001 0000 C012 + 0,-1,C002 0000 C017 + 0,-1,C004 0000
C007 + 0000 0001

- Rule: Case of the last column (Actives)
- Priority: 100
- Preconditions:
SACTIV: it is applicable only to modules set in the active state.
T0,-1,BRIDG: the module in position (0,−1) needs to be set on bridge.

114 CHAPTER 7. HISTOGRAM LOCOMOTION

(!V0,-1,C001 C013 W0,-1,C001 C013): the value of the counter C01 of the
module has to be equal to the value of the counter C13 of its south neighbor.
< C001 C013: the rule applies only if the value of the counter C01 of the
module is less than the value of its counter C13.
= C007 0000: the rule applies only if the value of the counter C07 of the
module is 0.
- Postconditions:
SRINFO: the module changes its state to rinfo.
C011 + 0,-1,C001 0000: the module stores the value of the counter C01 of its
south neighbor into its own counter C11.
C012 + 0,-1,C002 0000: the module stores the value of the counter C02 of its
south neighbor into its own counter C12.
C017 + 0,-1,C004 0000: the module stores the value of the counter C04 of its
south neighbor into its own counter C17.
C007 + 0000 0001: the modules sets to 1 its counter C07.

Rule Name: Counter C007
Priority: 15
Preconditions: SBRIDG E0,1 !(=C017 0000 =C007 0000)
Postconditions: C007 + 0000 0000 C017 + 0000 0000

- Rule: Counter C007
- Priority: 15
- Preconditions:
SBRIDG: it is applicable only to modules set in the bridge state.
E0,1: the grid cell in position (0, 1) needs to be empty.
< C001 C013: the rule applies only if the value of the counter C01 of the
module is less than the value of its counter C13.
!(=C017 0000 =C007 0000): the rule does not apply to modules with the two
counters C17 and C07 set to zero.
- Postconditions:
C017 + 0000 0000: the modules sets its counter C17 to 0.
C007 + 0000 0000: the modules sets its counter C07 to 0.

Rule Name: Counting of the modules of the last column
Priority: 100
Preconditions: SBRIDG !E0,1 = C013 C001 = C016 0000 !V0,1,C004 C010 W0,1,C004 C010
Postconditions: C014 + C014 0001 C016 + 0000 0001

- Rule: Counting of the modules of the last column
- Priority: 100
- Preconditions:
SBRIDG: it is applicable only to modules set in the bridge state.
!E0,1: the grid cell in position (0, 1) needs to be occupied.
= C013 C001: the rule applies only if the value of the counter C01 of the
module equals the value of its counter C13.
= C016 0000: the rule applies only if the value of the counter C16 of the
module is 0.
(!V0,1,C004 C010 W0,1,C004 C010): the value of the counter C10 of the
module has to be equal to the value of the counter C04 of its north neighbor.
- Postconditions:
C014 + C014 0001: the module adds 1 to its C04 counter.
C016 + 0000 0001: the module sets its C16 counter to 1.

7.9. RULES 115

Rule Name: Auxiliar counter for the counting
Priority: 100
Preconditions: SBRIDG E0,1 = C016 0001
Postconditions: C016 + 0000 0000

- Rule: Auxiliary counter for the counting
- Priority: 100
- Preconditions:
SBRIDG: the module changes its state to bridge.
E0,1: the grid cell in position (0, 1) needs to be empty.
= C016 0001: the rule applies only if the value of the counter C16 of the
module is 1.
- Postconditions:
C016 + 0000 0000: the module adds 0 to its C04 counter.

Rule Name: Bridges reconfiguration
Priority: 100
Preconditions: SBRIDG E0,1 = C014 C015
Postconditions: SMOVES

- Rule: Bridges recon�guration
- Priority: 100
- Preconditions:
SBRIDG: the module changes its state to bridge.
E0,1: the grid cell in position (0, 1) needs to be empty.
= C014 C015: the rule applies only if the value of the counter C14 of the
module equals the value of its counter C15.
- Postconditions:
SMOVES: the module changes its state to moves.

116 CHAPTER 7. HISTOGRAM LOCOMOTION

Chapter 8

Histogram locomotion with

inferior obstacles

8.1 Goal

The purpose of the set of rules presented in this chapter is to produce the
eastward locomotion of any modular robotic system initially con�gured as a
connected histogram, in the presence of inferior obstacles, i.e. obstacles that lay
on the ground. In our settings, obstacles lay on the ground (a horizontal line)
and are con�gured as histograms.

8.2 Strategy

The strategy is similar to the one of the free locomotion, but with some ad-
justments that make it possible to crawl over the obstacles. Before reaching an
obstacle, the histogram moves under the original locomotion rules described in
Chapter 7; as it encounters the obstacle, some module of the system create a
static path over it, allowing the others to walk over and cross it without any
disconnection. This path is created through the introduction of a new state for
the modules: the path state. We can observe the process of the formation of a
path depicted in Figure 8.1.

As the �rst active module of the system reaches the ground after crossing
the obstacle, it changes its state to stop, and starts the recon�guration of its
column. During the locomotion of the active modules over the paths no exchange
of information is performed, so the �rst column that is recon�gured after the
obstacle is in general not the one that follows in the order of the columns;
moreover, it is possible that some modules of such column are part of the path,
and that the column recon�gures only partially, until the path reactivates. As
soon as all the modules have crossed the obstacle, one by one the modules of
the path change their state to active again, and walk until they reach the rest
of the system and recon�gure into their columns. After the crossing, the system
recreates its initial shape, and the locomotion can continue as in the case of the
free locomotion. The strategy present some analogies with the strategy for the
rectangle locomotion over high obstacles: in the case of the rectangle, when the

117

118CHAPTER 8. HISTOGRAM LOCOMOTIONWITH INFERIOR OBSTACLES

Figure 8.1: Example of the formation of a path: as the modules encounter
an obstacle they change their state to path, and stay still until the rest of
the system has crossed the obstacle. Grey modules are path modules, active
modules are pink, red modules are in the stop state and yellow modules are
bridges. Obstacles are depicted in black.

system encounters an high part of an obstacle it turns into a connected worm,
allowing the active modules to pass by; such connected worm is transformed
into a connected path in the case of the histogram: the need of the introduction
of a new state is the need to avoid the comparison between the counters of the
active modules and the rest of modules during the overpassing of the obstacle.
The shape of the histogram, unlike in the case of the rectangle, is not conserved
neither in the high nor in the low parts of the obstacles; this is a choice done
in order to maintain the rules as simple as possible, as conserving the shape of
the histogram in the low parts would produce a signi�cant complication of the
rules, but no signi�cant advantages.

8.3 Locomotion rules

The locomotion of the system before the crossing of the obstacle is mostly pro-
duced through the rules used in the free locomotion of the histogram, adjusted
to the introduction of the new states obstacle and path. We can see an example
of such adjustments in Figure 8.2, which depicts the new action rule North, and
compare it with the former North rule (refer to Chapter 7). For the details of
the modi�cations of the remaining rules, see the detailed rules in Section 8.9.

As the obstacle is encountered, some additional rules are needed in order
to avoid disconnections. During the locomotion, columns start the movement
from their topmost module, and the other modules progressively activate until
the bottommost module moves and gives space to the following column to start
the inactivation; this process is now reversed for the column immediately on the
left of the obstacle, as we can observe in Figure 8.3.

Such inversion is achieved through the introduction of the two inversion
rules depicted in Figure 8.4; as the bottommost module of the column changes
its state to inactive, it activates applying the North-West inversion rule, walks
on the left side of its column through the North rule, and then crosses it through

8.3. LOCOMOTION RULES 119

North Rule
Priority: 6
Preconditions:
State6=(Stop,Still,Bridge,Obsta,Paths) & (0,1)=Empty & (1,0)=Full & State(0,2)6=Active & State(1,2) 6=Active
& State(1,1)=(Stop,Paths,Inact) & Not(State=Inactive,State(-1,0)=Active,(-2,0)=Empty)
& Not(State=Inactive,State(1,0)=Paths,((-2,0) or (0,-1))= Full)
Postconditions:
Move (0,1) & State=Active& C007 = 0000 & C017 = 0000

Figure 8.2: North rule for the histogram locomotion with obstacles: we
can notice some modi�cation with respect to the North rule of the
free locomotion; new preconditions as State 6=Obsta are introduced in or-
der to deal with the new states, while others as Not(State=Inactive,
State(−1, 0)=Active,(−2, 0)=Empty) deal with the new con�gurations that are
generated by the crossing of the obstacle

Figure 8.3: Histogram locomotion with obstacles: the last column on the left
of the obstacle inverts its movement in order to avoid disconnections. The �rst
module to move is now the bottommost one.

the North-East inversion rule.

North-West Inversion North-East Inversion

Figure 8.4: Inversion rules for the last column.

Notice that this type of inversion cannot be applied to the case of an his-
togram formed by a unique column, as the North-West Inversion would inter-
fere with the locomotion; this case needs some special modi�cation that will be
treated in Section 8.6.

120CHAPTER 8. HISTOGRAM LOCOMOTIONWITH INFERIOR OBSTACLES

8.4 Path formation and reactivation

The formation of the path over the obstacles is achieved through the application
of the six rules depicted in Figures 8.5 and 8.6. As a module encounters an
obstacle, it changes its state to paths through the application of one of the rules
depicted in Figure 8.5, and conserves its position until all the active modules
have crossed the obstacle.

Path formation I Path formation II

Path formation III

NS

NS

Path formation IV Path formation V

Figure 8.5: Rules for the formation of the path: the current module is indicated
with a dot. Colored grid cells are occupied, pink cells are modules set in the
active state, gray cells are modules of the path, and blue cells are obstacles. NS
indicates that if a module occupies the grid cell, it cannot be set to stop.

As none of the action rules created for the free locomotion produces a move-
ment with a component in the west direction, an additional rule is needed in
order to reach all the grid cells of the neighborhood of the obstacle and form
a complete and connected path. The rule depicted in Figure 8.6 solves this
problem; this rule belongs to the path rules set, but di�ers from the others as
it produces a South-West movement, apart from the change of state.

South-West for the path formation

Figure 8.6: South-West rule for the path formation.

The reactivation of the path is done through the six activation rules depicted
in Figure 8.7. Notice that the graphic representation does not contain all the
preconditions of the rules, as some of them are too complex to be expressed in
this way. The full description of the rules can be found in Section 8.9.

8.5. RECONFIGURATION 121

Path reactivation I

OB OB

OB NA

Path reactivation II

Path reactivation III

OB

NAR

OB

Path reactivation IV

PS

OP

SP

SPOB

Path reactivation V

OB

Path reactivation VI

OB=Obstacle NA=Not Active NAR=Not active nor Rinfo PS=Path or Stop OP=Obstacle or Path

Figure 8.7: Path reactivation rules: as always, the current module is indicated
with a dot. Colored grid cells are occupied, pink cells are modules set in the
active state, gray cells are modules of the path, blue cells are obstacles and red
cells are modules set on the stop state.

8.5 Recon�guration

As the system always conserves the order and the height of the columns during
the locomotion, the idea of the recon�guration is to stop the locomotion when
column 1 is again the leftmost column of the system, as in the case of the free
locomotion. In the new settings, however, counting the number of inactivations
of the modules is not a suitable solution, as modules do not inactivate the
same number of times during the locomotion: the path stays still while the rest
continue activating and inactivating, so a di�erence between the value of the
counter is produced and the former system for the �nal recon�guration does
not work anymore. The counters used for the new recon�guration process are
C09, C10 and C18. C09 is a measure of the position of the modules on the
x-axis; initially set as equal to the column counter (1 for the �rst column, 2
for the second one, and so on), it is increased (decreased) by one each time a
movement with an east (west) component is performed; the position of each
module is then controlled by its horizontal distance from the initial position of
the �rst column.

C10, �xed before the locomotion starts, stores the x-axis position in which
the system will start its recon�guration. As soon as the x-position stored in C10
is reached, and the leftmost column is again column 1, its bottommost module

122CHAPTER 8. HISTOGRAM LOCOMOTIONWITH INFERIOR OBSTACLES

sets its state to Still, blocking the movement of the �rst column.
As the modules of the last column walk on the blocked column 1, they change

their C18 counter to 1 and start the counting phase for the reactivation of the
bridges, as in the free locomotion case. The rules for the counting phase and
the reactivation of bridges can be seen in detail in Section 8.9.

8.6 Case of one column

The one column version of these rules constitutes an alternative set of rules
for the locomotion of the rectangle with one column; in the presence of many
obstacles, such rules are preferable to the set of rules presented in Chapter 2,
as they avoid the recon�guration of the system over the obstacle, making the
crossing �uider and faster.

In this particular case, in order to maintain the stability of the system and
avoid disconnections, the process of the formation of the path is modi�ed: the
construction starts now when the �rst module reaches the bottommost position
on the left of the obstacle. In this way the leftmost side of the obstacle is
completely recovered by the path, as we can observe in Figure 8.8, and modules
are free to walk over it avoiding the last column inversion, impossible for the
case of one column.

Figure 8.8: Histogram locomotion with obstacles in the case of one column:
there is no inversion for the last column, as the path covers the obstacle com-
pletely.

Apart from a few adjustments of some preconditions and priorities, the mod-
i�cation of the rules mostly consists in the elimination of the North-West In-
version rule, and in the introduction of two new rules: the �South rule for path
modules� and the �First path module� formation. All the rules for the case of
one column are detailed in Section 8.9.

8.7 Correctness

The modi�cations applied to the existent free locomotion rules are operated in
order to adapt the same rules to the new states of the modules and to some new
particular cases; all the results proved in the previous chapter are still valid for

8.7. CORRECTNESS 123

the new version of the rules, and we will not prove it again here. In this section
we will use such results and examine the impact of the new de�ned rules on the
correctness conclusions.

As always, we will prove that:

1. The system stays connected during the whole movement.

2. The new rules do not produce collisions during the movement.

3. There is always at least one rule that is applicable to some module of the
system.

4. The rules produce a locomotion of the system from West to East in the
presence of obstacles.

Proposition 18 The system stays connected during the whole movement, i.e.
no rule produces a disconnection between the module applying it and the system.

Proof: In Chapter 7 we have proved that the system stays connected during
the free locomotion. As the obstacle is encountered, a connected path is created
over the obstacle, and active modules walk over it until they reach the right part
of the obstacle and recon�gure again. As soon as the path modules are free to
move again, they activate one by one and walk over the remaining path, until
the last path module is active and the obstacle is crossed, therefore connection
is guaranteed by the path structure. �

Lemma 6 Each module can apply at most one action rule at a time.

Proof: We have already proved in the previous chapter that the set of rules that
produce the free locomotion of the system satis�es this property; the only thing
to check now is that none of the new action rules interferes with the preexistent
rules, or with another new rule.

The new action rules introduced are the South-West rule for the path forma-
tion, the North-West inversion and the North-East inversion rules; the priority
of these three rules are di�erent from all the other action rules, so there is no
possible interaction between them; moreover, the priority of the South-West
rule is di�erent from the priority of the inversion rules, so the only possible
interference can be generated between the two inversion rules; we can easily
exclude this possibility too.

As the North-East action rule requires the relative position (0, 1) to be empty,
while the North-West inversion requires the same position to be occupied, the
rules are incompatible, and each module can apply at most one action rule at a
time. �

Proposition 19 No collisions are produced during the movement.

Proof: We want to prove that two di�erent modules never move to the same
grid cell at the same time while applying the rules. Due to Lemma 6 we only
need to worry about con�icts created by the application of one action rule at
a time. As we have proved that the free locomotion rules do not generate any
collisions, due to their speci�c preconditions, we want now to exclude the case
of a collision generated during the crossing of the obstacle, or between free

124CHAPTER 8. HISTOGRAM LOCOMOTIONWITH INFERIOR OBSTACLES

locomotion modules and obstacle traversing modules. We analyze the North-
west inversion rule, under the assumption that the system is crossing an obstacle
for the �rst time; as the free locomotion does not generate any disconnection
and is performed conserving the shape of the system, we can reasonably suppose
that the system is connected and still in the form of an histogram in its left part.

While the current module is applying the North-west inversion rule, the only
possibility is that its column is the leftmost of the system; the only module that
could cause a collision would be either an active module attached to the column,
or and inactive or stopped module which belongs to the column. The only
possibility for the �rst case is a module in position A applying the South rule
(refer to Figure 8.9); we can easily see that this is impossible, as a precondition
for the application of the South rule is that the relative position (1, 0) is empty;
this would mean that the module is connected to another column on its left
side, which is a contradiction.

A

Figure 8.9: The current module applies the South-west rule, while a module in
position A applies the South rule generating a collision.

The second possibility is impossible too, as the only rules that imply a
movement in the west direction are the North-west rule, which has a north
component too and does not suit our case, and the South-west rule for the
formation of the path, which is applicable only to active modules.

Such contradictions can be found in all the new rules, so no collisions are
produced. As Proposition 18 states that the system is always connected, the
crossing of the �rst obstacle does not generate any disconnection, and the con-
clusions are true for any obstacle encountered. �

Proposition 20 There is always at least one rule that is applicable to some
module of the system.

Proof: Before the crossing of the obstacle, the locomotion is performed con-
serving the shape of the histogram, so there is always a leftmost column of the
system; among the modules of the leftmost column there is always a module able
to apply a rule: either its topmost module, during the free locomotion, either its
bottommost module in the case of the last column inversion. As the obstacle is
encountered, as a leftmost column is not present anymore, there is still always a
module able to apply a rule: either an active module able to change its state to
path, either an active module advancing over the path, or the same modules of
the path, which activate again as soon as all the rest of the system has passed
by. As the obstacle is crossed, a �rst column is again formed and the motion is
repeated. �

8.8. COMPLEXITY 125

Proposition 21 The rules actually produce a locomotion of the system from
west to east, on free ground and over histogram obstacles.

Proof: As there is always one rule applicable to the system because of Propop-
sition 20, the only thing we need to prove is that the rules do not produce an
alternation of opposite movements without moving the system in any direction.
We have already proved that the free locomotion is correctly performed in this
sense, and we prove now that there is no oscillation produced by the new rules
introduced. We analyze here the formation of the path; all the other new rules
present the same behavior and can be analyzed in an analogous way.

The path formation rules that do not produce any change of position cannot
cause any oscillation of the system. The only path rule that causes a movement
is the South-west rule for the formation of the path. As soon as a module applies
such rule it moves South-west, changes its own state to path, and stands still until
its reactivation is possible. No advance rule can be applied to a path module, so
we only need to worry about reactivation rules with an east component in the
movement, as they are the only one applicable and that could cause oscillations.

After the application of the South-west rule, the module has a unique neigh-
bor: a north neighbor set on the path state. Each one of the activation rules
with an east direction is applicable only by modules without a north neighbor;
a module that has applied the South west rule, then, has to wait for the rest of
the system to move and overpass before applying any other rule; as there is no
disconnection during the application of the rules because of Proposition 18, the
only possibility for the module to lose its north neighbor is that the system has
walked eastward, overpassing it and reaching its left side, so an application of
an east rule could not generate any oscillation.

As all the other rules can be treated in the same way, no oscillation can be
produced by the application of the rules. �

8.8 Complexity

Neighbourhood As in the case of the free locomotion, the rules require a
module to be able to check the situation of the grid cells of its �rst and
second neighbor, and to know if these cells are either empty or occupied
by another module; in this last case, to obtain information about the state
of such module. The need of information about the second neighborhood
is the need to avoid collisions between the moving bridges and the active
modules, as in the case of free locomotion. No information about any
other position is needed.

Memory and computation As the free locomotion, the locomotion with
obstacles only requires O(1) memory for each module, and a O(1) com-
putation at each step, as modules only need to check if preconditions of
rules are ful�lled, to memorize a �xed value in some counters and to make
simple operations with counters at each step.

Number of moves As we have already analyzed the case of the free locomo-
tion of the histogram, we can now focus on the crossing of the obstacle.
Let B be the number of boundary cells of the obstacle, i.e. the set of
the grid cells which share at least one edge or a vertex with the obstacle

126CHAPTER 8. HISTOGRAM LOCOMOTIONWITH INFERIOR OBSTACLES

with a positive abscissa (if we consider the straight line representing the
ground as the axis x = 0). Each of the modules of the system crosses
the obstacle performing at most O(B) moves: in case it takes part in the
construction of the path at position k, as in the Figure 8.10, the module
performs k moves until it gets to the right position k, changes its state to
path, stays still until it is time to activate again, and then performs B− k
moves walking over the remaining part of the paths; in case the path is
already formed when it crosses the obstacle, the module walks over it as
an active module from position 1 to position B. Notice that this is an
upper bound, as bottlenecks of width 1 and 2 formed by the columns of
the obstacle are not �lled by the module of the path. The total number
of moves for a module then is the sum of the number of moves performed
before and after the obstacle, calculated as in the free locomotion case,
and at most O(Bi) for each encountered obstacle, where Bi is the number
of grid boundary cells of obstacle i.

1

2

3

kk-1

B

Figure 8.10: Boundary cells of the obstacle: the cells of the boundary are enu-
merated from left to right. The module in position k is the k-th module of the
path according to this order.

Communication As no exchange of communication is performed during the
crossing of the obstacle, the communication operated by a module is at
most O(n) as in the case of the free locomotion, where n is the total
number of modules of the system.

Number of time steps As we have already analyzed the number of time
steps needed for the free locomotion of the histogram, we focus here on
the overpassing of the obstacles. Let M be the number of grid cells of the
positive boundary of the obstacle (i.e. the boundary grid cells contained
in the positive half-plane y > 0, where y-axis is perpendicular to the line
representing the ground). If the number n of modules of the system is lower
thanM , as soon as the modules of the system touch the obstacle they form
the path over the �rst n boundary cells; as they activate again, they walk
over and rechange their state to path another time, covering the following
n cells on the boundary; this process is repeated until they reach the
ground another time. The formation of the path and its reactivation both
require O(n) time steps, as at most a constant delay is produced between
the activation of two following modules of the system. The number of
times this cycle is repeated depends linearly on the number of boundary
cells of the obstacle, i.e. on the total number of modules of the obstacle.
If n = M , O(n) time steps are needed to create the path and O(n) to
activate again. If the number of modules is higher than M , O(M) time

8.9. RULES 127

steps are needed to create the path over the obstacle, O(M) are needed for
its reactivation and an additional O(n −M) is required: before starting
the reactivation of the modules, in fact, the path needs to wait that all
the active modules that don't take part to the formation of the path have
overpassed the obstacle.

8.9 Rules

The algorithm is based on 40 di�erent rules; before starting the locomotion
each module has the following information stored in its counters: the number
of its the column in the order de�ned (C01), the height of its column (C02), the
number of the columns of the histogram (C13), the height of the last column
(C15) and the number of rounds (C10).

Rule Name: North
Priority: 6
Preconditions: !SSTOPP !SBRIDG !SOBSTA !SSTILL !SPATHS N0*1*
!(!T1,1,STOPP !T1,1,PATHS !T1,1,INACT) !T0,2,ACTIV !T1,2,ACTIV !(SINACT T-1,0,ACTIV E-2,0)
!(SINACT T1,0,PATHS !(E-1,0 E0,-1))
Postconditions: P0,1 SACTIV A1*1* C007 + 0000 0000 C017 + 0000 0000

- Rule: North
- Priority: 6
- Preconditions:
!SSTOPP !SBRIDG !SSTILL !SPATHS !SOBSTA: it is not applicable to
modules set in the stop, bridge, still, path or obsta state
N0*1*: the rule concerns only the modules with a east neighbor, and without
a north neighbor.
!(!T1,1,STOPP !T1,1,PATHS !T1,1,INACT): the module in position (1, 1)
needs to be set on stop, path, or inactive.
!T0,2,ACTIV: the module in position (0, 2) cannot be set on active.
!T1,2,ACTIV: the module in position (1, 2) cannot be set on active.
!(SINACT T-1,0,ACTIV E-2,0): the rule cannot be applied if the module is set
on inactive, the module (−1, 0) is active and the position (−2, 0) is not empty.
!(SINACT T1,0,PATHS !(E-1,0 E0,-1)): the rule cannot be applied if the
module is set on inactive, the module (−1, 0) is active and one of the position
(−1, 0) and (0,−1) is not empty.
- Postconditions:
P0,1: the module moves north.
SACTIV: the module changes its state to active.
A1*1*: the module attaches to its new north and east neighbor; if it was
attached before and if still possible, it attaches to the other neighbors.
C007 + 0000 0000: the module sets to zero its C07 counter.
C017 + 0000 0000: the module sets to zero its C07 counter.

128CHAPTER 8. HISTOGRAM LOCOMOTIONWITH INFERIOR OBSTACLES

Rule Name: North-east
Priority: 6
Preconditions: !SSTOPP !SOBSTA !SSTILL !SBRIDG !SPATHS N0*1* E1,1 !T1,2,RINFO
!(!T1,0,STOPP !T1,0,PATHS) !T2,1,RINFO !T2,0,RINFO !T2,1,ACTIV !T2,2,ACTIV
!T1,2,ACTIV !T-1,0,RINFO !T0,2,ACTIV !T1,2,ACTIV !(SINACT T-1,0,ACTIV E-2,0)
!(SINACT T1,0,PATHS !(E-1,0 E0,-1))
Postconditions: SACTIV P1,1 A**11 C007 + 0000 0000 C017 + 0000 0000 C009 + C009 0001

- Rule: North-east
- Priority: 6
- Preconditions:
!SSTOPP !SOBSTA !SSTILL !SBRIDG !SPATHS: it is not applicable to
modules set in the stop, obsta, still, bridge nor path state.
N0*1*: the rule concerns only the modules with a east neighbor, and without
a north neighbor.
E1,1: the grid cell in position (1, 1) needs to be empty.
!T1,2,RINFO: the module in position (1, 2) cannot be set on rinfo.
!T-1,0,RINFO: the module in position (−1, 0) cannot be set on rinfo.
!(!T1,0,STOPP !T1,0,PATHS): the module in position (1, 0) needs to be set
either on stop or in the path state.
!T2,1,RINFO: the module in position (2, 1) cannot be set on rinfo.
!T2,0,RINFO: the module in position (2, 0) cannot be set on rinfo.
!T2,1,ACTIV: the module in position (2, 1) cannot be set on active.
!T1,2,ACTIV: the module in position (1, 2) cannot be set on active.
!T2,2,ACTIV: the module in position (2, 2) cannot be set on active.
!(SINACT T1,0,PATHS !(E-1,0 E0,-1)): the rule cannot be applied if the
module is set on inactive, the module (−1, 0) is active and one of the position
(−1, 0) and (0,−1) is not empty.
- Postconditions:
P1,1: the module moves north-east.
SACTIV: the module changes its state to active.
A**11: the module attaches to its new south and east neighbor; if it was
attached before and if still possible, it attaches to the other neighbors.
C007 + 0000 0000: the module sets to zero its C07 counter.
C017 + 0000 0000: the module sets to zero its C07 counter.
C009 + C009 0001: the module increases its C09 value by one.

Rule Name: East
Priority: 7
Preconditions: N**01 !SSTOPP !SSTILL !SOBSTA !SBRIDG !SPATHS !E1,-1 !T1,-1,ACTIV
!T1,-1,OBSTA !(SINACT T1,-1,BRIDG) !(T0,1,ACTIV E-1,1) !T0,1,INACT !T0,1,STOPP !T1,1,ACTIV
!T2,0,ACTIV !T2,1,ACTIV !T2,-1,ACTIV !T2,0,RINFO !T2,-1,RINFO !T1,-1,RINFO
Postconditions: SACTIV P1,0 A**11 C007 + 0000 0000 C017 + 0000 0000 C009 + C009 0001

- Rule: East
- Priority: 7
- Preconditions:
!SSTOPP !SSTILL !SOBSTA !SBRIDG !SPATHS: it is not applicable to
modules set in the stop, obsta, still, bridge nor path state.
N**01: the rule concerns only the modules with a south neighbor, and without
a east neighbor.
!E1,-1: the cell grid in position (1,−1) needs to be occupied.
!T1,-1,ACTIV: the module in position (1,−1) cannot be set on active.

8.9. RULES 129

!T1,-1,OBSTA: the module in position (1,−1) cannot be set on obsta.
!T0,1,INACT !T0,1,STOPP: the module in position (0, 1) cannot be set on
inactive nor stop.
!T1,1,ACTIV: the module in position (1, 1) cannot be set on active.
!T2,0,ACTIV: the module in position (2, 0) cannot be set on active.
!T2,1,ACTIV: the module in position (2, 1) cannot be set on active.
!T2,-1,ACTIV: the module in position (2,−1) cannot be set on active.
!T2,0,RINFO: the module in position (2, 0) cannot be set on rinfo.
!T2,-1,RINFO: the module in position (2,−1) cannot be set on rinfo.
!T1,-1,RINFO: the module in position (1,−1) cannot be set on rinfo.
!(SINACT T1,-1,BRIDG): the rule cannot be applied if the module is set on
inactive and the module (1,−1) is a bridge.
!(T0,1,ACTIV E-1,1): the rule cannot be applied if the module (0, 1) is set on
active and the grid cell (−1, 1) is empty.
- Postconditions:
P1,0: the module moves east.
SACTIV: the module changes its state to active.
A**11: the module attaches to its new south and east neighbors; if it was
attached before and if still possible, it attaches to the other neighbors.
C007 + 0000 0000: the module sets to zero its C07 counter.
C017 + 0000 0000: the module sets to zero its C07 counter.
C009 + C009 0001: the module increases its C09 value by one.

Rule Name: South
Priority: 6
Preconditions: N*100 !SSTOPP !SBRIDG !SSTILL !SOBSTA !SPATHS !T1,-1,ACTIV !E-1,-1
!T0,-2,ACTIV !(T1,-2,ACTIV T0,-2,STOPP) !T0,-2,RINFO !T1,-2,RINFO !T-1,-1,RINFO
!(T0,-2,BRIDG T1,-1,STOPP) !T1,-2,ACTIV
Postconditions: SACTIV P0,-1 A***1 C007 + 0000 0000 C017 + 0000 0000

- Rule: South
- Priority: 6
- Preconditions:
!SSTOPP !SBRIDG !SSTILL !SOBSTA !SPATHS: it is not applicable to
modules set in the stop, bridge, still, obsta nor path state.
N*100: the rule concerns only the modules with a west neighbor, and without
a east or a south neighbor.
!E-1,-1: the cell grid in position (−1,−1) needs to be occupied.
!T1,-1,ACTIV: the module in position (1,−1) cannot be set on active.
!T0,-2,ACTIV: the module in position (0,−2) cannot be set on active.
!T1,-2,ACTIV: the module in position (1,−2) cannot be set on active.
!T1,-2,RINFO: the module in position (1,−2) cannot be set on rinfo.
!T-1,-1,RINFO: the module in position (−1,−1) cannot be set on rinfo.
!T0,-2,RINFO: the module in position (0,−2) cannot be set on rinfo.
!(T1,-2,ACTIV T0,-2,STOPP): the rule cannot be applied if the module
(1,−2) is set on active and the module (0,−2) is set on stop.
!(T0,-2,BRIDG T1,-1,STOPP): the rule cannot be applied if the module
(0,−2) is set on bridge and the module (1,−1) is set on stop.
- Postconditions:
P0,-1: the module moves south.
SACTIV: the module changes its state to active.

130CHAPTER 8. HISTOGRAM LOCOMOTIONWITH INFERIOR OBSTACLES

A***1: the module attaches to its new south neighbor; if it was attached
before and if still possible, it attaches to the other neighbors.
C007 + 0000 0000: the module sets to zero its C07 counter.
C017 + 0000 0000: the module sets to zero its C07 counter.

Rule Name: South-east
Priority: 6
Preconditions: N0*01 !SSTOPP !SBRIDG !SSTILL !SOBSTA !SPATHS E1,-1 !T0,-1,BRIDG
!T0,-1,ACTIV !T1,-2,ACTIV !T2,0,ACTIV !T1,-2,RINFO !T2,0,RINFO !T2,-1,ACTIV
!(T1,-2,BRIDG T2,-1,STOPP T0,-1,STOPP)
Postconditions: P1,-1 SACTIV A*111 C007 + 0000 0000 C017 + 0000 0000 C009 + C009 0001

- Rule: South-east
- Priority: 6
- Preconditions:
!SSTOPP !SBRIDG !SSTILL !SOBSTA !SPATHS: it is not applicable to
modules set in the stop, bridge, still, obsta nor path state.
N0*01: the rule concerns only the modules with a south neighbor, and without
a north or a west neighbor.
E1,-1: the cell grid in position (1,−1) needs to be empty.
!T0,-1,BRIDG: the module in position (0,−1) cannot be set on bridge.
!T0,-1,ACTIV: the module in position (0,−1) cannot be set on active.
!T1,-2,ACTIV: the module in position (1,−2) cannot be set on active.
!T2,0,ACTIV: the module in position (2, 0) cannot be set on active.
!T1,-2,RINFO: the module in position (1,−2) cannot be set on rinfo.
!T2,0,RINFO: the module in position (1,−2) cannot be set on rinfo.
!T2,-1,ACTIV: the module in position (2,−1) cannot be set on active.
!(T1,-2,BRIDG T2,-1,STOPP T0,-1,STOPP): the rule cannot be applied if the
module (1,−2) is set on bridge, the module (2,−1) is set on stop and the
module (0,−1) is set on stop.
- Postconditions:
P0,-1: the module moves south.
SACTIV: the module changes its state to active.
A*111: the module attaches to its new east, west and south neighbors; if it
was attached before and if still possible, it attaches to the other neighbor.
C007 + 0000 0000: the module sets to zero its C07 counter.
C017 + 0000 0000: the module sets to zero its C07 counter.
C009 + C009 0001: the module increases its C09 value by one.

Rule Name: Bridge Formation
Priority: 10
Preconditions: N011* SACTIV T1,0,STOPP T-1,0,STOPP = C018 0000
Postconditions: SBRIDG

- Rule: Bridge formation
- Priority: 10
- Preconditions:
SACTIV: it is applicable only to modules set in the active state.
N011*: the rule concerns only the modules with a west and east neighbor, and
without a north neighbor.
T1,0,STOPP: the module in position (1, 0) needs to be set on stop.
T-1,0,STOPP: the module in position (−1, 0) needs to be set on stop.
- Postconditions:
SBRIDG: the module changes its state to bridge.

8.9. RULES 131

Rule Name: North-east activation for bridges
Priority: 15
Preconditions: SBRIDG N011* E1,1 !T-1,1,ACTIV !T-1,2,ACTIV !T0,2,ACTIV !T1,0,ACTIV
T-1,-1,INACT
Postconditions: P1,1 SACTIV A***1 C009 + C009 0001

- Rule: North-east activation for bridges
- Priority: 15
- Preconditions:
SBRIDG: it is applicable only to modules set in the bridge state.
N011*: the rule concerns only the modules with a west and east neighbor, and
without a north neighbor.
E1,1: the cell grid in position (1, 1) needs to be empty.
!T-1,1,ACTIV: the module in position (−1, 1) cannot be set on active.
!T-1,2,ACTIV: the module in position (−1, 2) cannot be set on active.
!T0,2,ACTIV: the module in position (0, 2) cannot be set on active.
!T1,0,ACTIV: the module in position (1, 0) cannot be set on active.
T-1,-1,INACT: the module in position (−1,−1) needs to be set on inactive.
- Postconditions:
P1,1: the module moves north-east.
SACTIV: the module changes its state to active.
A***1: the module attaches to its new south neighbor; if it was attached
before and if still possible, it attaches to the other neighbors.
C009 + C009 0001: the module increases its C09 value by one.

Rule Name: North activation for bridges
Priority: 15
Preconditions: SBRIDG N0*1* !E1,1 !T-1,1,ACTIV !T1,1,ACTIV !T0,2,ACTIV !T-1,2,ACTIV
T-1,-1,INACT
Postconditions: P0,1 SACTIV A**1*

- Rule: North activation for bridges
- Priority: 15
- Preconditions:
SBRIDG: it is applicable only to modules set in the bridge state.
N0*1*: the rule concerns only the modules with a west neighbor, and without
a north neighbor.
!E1,1: the grid cell in position (1, 1) needs to be occupied.
!T-1,1,ACTIV: the module in position (−1, 1) cannot be set on active.
!T1,1,ACTIV: the module in position (1, 1) cannot be set on active.
!T0,2,ACTIV: the module in position (0, 2) cannot be set on active.
!T-1,2,ACTIV: the module in position (−1, 2) cannot be set on active.
T-1,-1,INACT: the module in position (−1,−1) needs to be set on inactive.
- Postconditions:
P0,1: the module moves north.
SACTIV: the module changes its state to active.
A**1*: if the module was attached before and if still possible, it attaches to its
new neighbors.

132CHAPTER 8. HISTOGRAM LOCOMOTIONWITH INFERIOR OBSTACLES

Rule Name: North for bridges
Priority: 30
Preconditions: SBRIDG N011* T1,1,STOPP T-1,1,STOPP
Postconditions: P0,1 SBRIDG A**1*

- Rule: North for bridges
- Priority: 30
- Preconditions:
SBRIDG: it is applicable only to modules set in the bridge state.
N011*: the rule concerns only the modules with a west and east neighbor, and
without a north neighbor.
T1,1,STOPP: the module in position (1, 1) needs to be set on stop.
T-1,1,STOPP: the module in position (−1, 1) needs to be set on stop.
- Postconditions:
P0,1: the module moves north.
A**1*: the module attaches to its new east and west neighbors; if it was
attached before and if still possible, it attaches to th other neighbors.

Rule Name: Stop bottommost module
Priority: 9
Preconditions: N0100 !SBRIDG !SOBSTA !SSTOPP !SPATHS !SSTILL E-1,-1
!(!T-1,0,STOPP !T-1,0,PATHS !T-1,0,INACT)
Postconditions: SSTOPP C006 + 0000 0001

- Rule: Stop bottommost module
- Priority: 9
- Preconditions:
!SBRIDG !SOBSTA !SSTILL !SSTOPP !SPATHS: it is not applicable to
modules set in the stop, bridge, still, obsta nor path state.
N0100: the rule concerns only the modules with a west, and without other
neighbors.
E-1,-1: the grid cell in position (−1,−1) needs to be empty.
!(!T-1,0,PATHS !T-1,0,INACT !T-1,0,STOPP): the cell grid in position (−1, 0)
needs to be occupied by a module set in the inactive, in the stop or in the
paths state.
- Postconditions:
SSTOPP: the module changes its state to stop.
C006 + 0000 0001: the module sets its C06 counter to 1.

8.9. RULES 133

Rule Name: Stop other modules
Priority: 9
Preconditions: N0*01 !SBRIDG !SOBSTA !SSTILL !SSTOPP !SPATHS T0,-1,STOPP V0,-1,C006 C002
!V0,-1,C001 C001 W0,-1,C001 C001
Postconditions: SSTOPP C006 + 0,-1,C006 0001

- Rule: Stop other modules
- Priority: 9
- Preconditions:
!SBRIDG !SOBSTA !SSTILL !SSTOPP !SPATHS: it is not applicable to
modules set in the stop, bridge, still, obsta nor path state.
N0*01: the rule concerns only the modules with a south neighbor, and without
a north nor west neighbor.
T0,-1,STOPP: the module in position (0,−1) needs to be set on stop.
(!V0,-1,C001 C001 W0,-1,C001 C001): the value of the counter C01 of the
module has to coincide with the counter C01 of its south neighbor.
V0,-1,C006 C002: the value of the counter C02 of the module has to be bigger
than the value of the counter C06 of its south neighbor.
- Postconditions:
SSTOPP: the module changes its state to stop.
C006 + 0,-1,C006 0001: the module checks the value of the counter C06 of its
south neighbor, increases it by 1 and sets its own C06 counter to this result.

Rule Name: Bottommost module inactivation
Priority: 10
Preconditions: SSTOPP N*0*0 E-1,-1 E-1,1 !T0,1,ACTIV !T1,1,ACTIV !T-1,2,ACTIV
!T2,1,ACTIV !T1,2,ACTIV
Postconditions: SINACT

- Rule: Bottommost module inactivation
- Priority: 10
- Preconditions:
SSTOPP: it is applicable only to modules set in the stop state.
N*0*0: the rule concerns only the modules without a north nor a south
neighbor.
E-1,-1: the grid cell in position (−1,−1) needs to be empty.
E-1,1: the grid cell in position (−1, 1) needs to be empty.
!T0,1,ACTIV: the module in position (0, 1) cannot be set on active.
!T1,1,ACTIV: the module in position (1, 1) cannot be set on active.
!T-1,2,ACTIV: the module in position (−1, 2) cannot be set on active.
!T2,1,ACTIV: the module in position (2, 1) cannot be set on active.
!T1,2,ACTIV: the module in position (1, 2) cannot be set on active.
- Postconditions:
SINACT: the module changes its state to inactive.

Rule Name: Other modules inactivation
Priority: 10
Preconditions: N10*1 SSTOPP E-1,-1 !T0,1,ACTIV T0,-1,INACT E-1,0 E-1,1 !T1,0,ACTIV
!T1,1,ACTIV !T1,-1,ACTIV !T0,2,ACTIV !T2,0,ACTIV !T2,-1,ACTIV !T2,1,ACTIV
Postconditions: SINACT

- Rule: Other modules inactivation
- Priority: 10
- Preconditions:

134CHAPTER 8. HISTOGRAM LOCOMOTIONWITH INFERIOR OBSTACLES

SSTOPP: it is applicable only to modules set in the stop state.
N10*1: the rule concerns only the modules with a north and a south neighbor,
and without a west neighbor.
E-1,-1: the grid cell in position (−1,−1) needs to be empty.
E-1,1: the grid cell in position (−1, 1) needs to be empty.
T0,-1,INACT: the module in position (0,−1) needs to be inactive.
!T0,1,ACTIV: the module in position (0, 1) cannot be set on active.
!T1,0,ACTIV: the module in position (1, 0) cannot be set on active.
!T1,1,ACTIV: the module in position (1, 1) cannot be set on active.
!T1,-1,ACTIV: the module in position (1,−1) cannot be set on active.
!T0,2,ACTIV: the module in position (2, 0) cannot be set on active.
!T2,0,ACTIV: the module in position (2, 0) cannot be set on active.
!T2,1,ACTIV: the module in position (2, 1) cannot be set on active.
!T2,-1,ACTIV: the module in position (−1, 2) cannot be set on active.
- Postconditions:
SINACT: the module changes its state to inactive.

Rule Name: Topmost module inactivation
Priority: 12
Preconditions: SSTOPP N00*1 E-1,-1 T0,-1,INACT !T1,0,ACTIV !T1,1,ACTIV
!T1,-1,ACTIV !T0,2,ACTIV !T2,0,ACTIV !T2,-1,ACTIV !T2,1,ACTIV !T1,2,ACTIV !T2,2,ACTIV
Postconditions: SINACT

- Rule: Topmost module inactivation
- Priority: 12
- Preconditions:
SSTOPP: it is applicable only to modules set in the stop state.
N00*1: the rule concerns only the modules with a south neighbor, and without
a north nor a west neighbor.
E-1,-1: the grid cell in position (−1,−1) needs to be empty.
T0,-1,INACT: the module in position (0,−1) needs to be inactive.
!T1,0,ACTIV: the module in position (1, 0) cannot be set on active.
!T1,1,ACTIV: the module in position (1, 1) cannot be set on active.
!T1,-1,ACTIV: the module in position (1,−1) cannot be set on active.
!T2,1,ACTIV: the module in position (2, 1) cannot be set on active.
!T1,2,ACTIV: the module in position (2, 1) cannot be set on active.
!T2,-1,ACTIV: the module in position (−1, 2) cannot be set on active.
!T2,0,ACTIV: the module in position (2, 0) cannot be set on active.
!T0,2,ACTIV: the module in position (2, 0) cannot be set on active.
!T2,2,ACTIV: the module in position (2, 2) cannot be set on active.
- Postconditions:
SINACT: the module changes its state to inactive.

Rule Name: Locomotion break
Priority: 100
Preconditions: SSTOPP N*010 = C001 0001 > C009 C010
Postconditions: SSTILL

- Rule: Locomotion break
- Priority: 100
- Preconditions:
SSTOPP: it is applicable only to modules set in the stop state.

8.9. RULES 135

N*010: the rule concerns only the modules with a west neighbor, and without
a east nor south neighbor.
= C001 0001: the rule applies only if the value of the counter C01 of the
module equals 1.
> C009 C010: the rule applies only if the value of the counter C09 is bigger
than the value of C10.
- Postconditions:
SSTILL: the module changes its state to still.

Rule Name: Exchange rule for Bridges
Priority: 100
Preconditions: SBRIDG !W0,1,C001 C001 !E0,1 = C007 0000
Postconditions: SRINFO C011 + 0,1,C001 0000 C012 + 0,1,C002 0000 C017 + 0,1,C004 0000
C007 + 0000 0001

- Rule: Exchange rule for Bridges
- Priority: 100
- Preconditions:
SBRIDG: it is applicable only to modules set in the bridge state.
!E0,1: the grid cell in position (0, 1) needs to be occupied.
!W0,1,C001 C001: the value of the counter C01 of the module has to be less
than the value of the counter C01 of its north neighbor.
= C007 0000: the rule applies only if the value of the counter C07 of the
module is 0.
- Postconditions:
SRINFO: the module changes its state to rinfo.
C011 + 0,1,C001 0000: the module stores the value of the counter C01 of its
north neighbor into its own counter C11.
C012 + 0,1,C002 0000: the module stores the value of the counter C02 of its
north neighbor into its own counter C12.
C017 + 0,1,C004 0000: the module stores the value of the counter C04 of its
north neighbor into its own counter C17.
C007 + 0000 0001: the modules sets to 1 its counter C07.

Rule Name: Exchange rule for Actives
Priority: 100
Preconditions: T0,-1,BRIDG V0,-1,C001 C001 = C007 0000
Postconditions: SRINFO C011 + 0,-1,C001 0000 C012 + 0,-1,C002 0000 C017 + 0,-1,C004 0000
C007 + 0000 0001

- Rule: Exchange rule for Actives
- Priority: 100
- Preconditions:
T0,-1,BRIDG: the module in position (0,−1) needs to be set on bridge.
V0,-1,C001 C001: the value of the counter C01 of the module has to be bigger
than the value of the counter C01 of its south neighbor.
= C007 0000: the rule applies only if the value of the counter C07 of the
module is 0.
- Postconditions:
SRINFO: the module changes its state to rinfo.
C011 + 0,-1,C001 0000: the module stores the value of the counter C01 of its
south neighbor into its own counter C11.
C012 + 0,-1,C002 0000: the module stores the value of the counter C02 of its
south neighbor into its own counter C12.

136CHAPTER 8. HISTOGRAM LOCOMOTIONWITH INFERIOR OBSTACLES

C017 + 0,-1,C004 0000: the module stores the value of the counter C04 of its
south neighbor into its own counter C17.
C007 + 0000 0001: the modules sets to 1 its counter C07.

Rule Name: Internal change of counters I
Priority: 100
Preconditions: SRINFO E0,1 = C007 0001
Postconditions: C001 + C011 0000 C002 + C012 0000 C004 + C017 0000 SACTIV

- Rule: Internal change of counters I
- Priority: 100
- Preconditions:
SRINFO: it is applicable only to modules set in the rinfo state. E0,1: the grid
cell in position (0, 1) needs to be empty.
= C007 0001: the rule applies only if the value of the counter C07 of the
module is 1.
- Postconditions:
SACTIV: the module changes its state to active.
C001 + C011 0000: the module copies the value of its counter C11 into its
counter C01.
C002 + C012 0000: the module copies the value of its counter C12 into its
counter C02.
C004 + C017 0000: the module stores the value of the counter C17 of its south
neighbor into its own counter C04.

Rule Name: Internal change of counters II
Priority: 100
Preconditions: SRINFO !E0,1 = C007 0001
Postconditions: C001 + C011 0000 C002 + C012 0000 C004 + C017 0000 SBRIDG

- Rule: Internal change of counters II
- Priority: 100
- Preconditions:
SRINFO: it is applicable only to modules set in the rinfo state. !E0,1: the grid
cell in position (0, 1) needs to be occupied.
= C007 0001: the rule applies only if the value of the counter C07 of the
module is 1.
- Postconditions:
SBRIDG: the module changes its state to bridge.
C001 + C011 0000: the module copies the value of its counter C11 into its
counter C01.
C002 + C012 0000: the module copies the value of its counter C12 into its
counter C02.
C004 + C017 0000: the module stores the value of the counter C17 of its south
neighbor into its own counter C04.

Rule Name: Case of the last column (Bridge)
Priority: 100
Preconditions: SBRIDG T0,1,ACTIV = C001 C013 = C007 0000 !(!V0,1,C001 C013 W0,1,C001 C013)
Postconditions: SRINFO C011 + 0,1,C001 0000 C012 + 0,1,C002 0000 C017+ 0,1,C004 0000
C007 + 0000 0001

- Rule: Case of the last column (Bridge)
- Priority: 100

8.9. RULES 137

- Preconditions:
SBRIDG: it is applicable only to modules set in the bridge state.
T0,1,ACTIV: the module in position (0, 1) needs to be set on active.
!(!V0,1,C001 C013 W0,1,C001 C013): the value of the counter C01 of the
module has to be di�erent from the value of the counter C13 of its north
neighbor.
= C001 C013: the rule applies only if the value of the counter C01 of the
module is equal to the value of its counter C13.
= C007 0000: the rule applies only if the value of the counter C07 of the
module is 0.
- Postconditions:
SRINFO: the module changes its state to rinfo.
C011 + 0,1,C001 0000: the module stores the value of the counter C01 of its
south neighbor into its own counter C11.
C012 + 0,1,C002 0000: the module stores the value of the counter C02 of its
south neighbor into its own counter C12.
C017 + 0,1,C004 0000: the module stores the value of the counter C04 of its
south neighbor into its own counter C17.
C007 + 0000 0001: the modules sets to 1 its counter C07.

Rule Name: Case of the last column (Actives)
Priority: 100
Preconditions: SACTIV T0,-1,BRIDG ¡ C001 C013 !V0,-1,C001 C013 W0,-1,C001 C013 = C007 0000
Postconditions: SRINFO C011 + 0,-1,C001 0000 C012 + 0,-1,C002 0000 C017 + 0,-1,C004 0000 C007 +
0000 0001

- Rule: Case of the last column (Actives)
- Priority: 100
- Preconditions:
SACTIV: it is applicable only to modules set in the active state.
T0,-1,BRIDG: the module in position (0,−1) needs to be set on bridge.
(!V0,-1,C001 C013 W0,-1,C001 C013): the value of the counter C01 of the
module has to be equal to the value of the counter C13 of its south neighbor.
< C001 C013: the rule applies only if the value of the counter C01 of the
module is less than the value of its counter C13.
= C007 0000: the rule applies only if the value of the counter C07 of the
module is 0.
- Postconditions:
SRINFO: the module changes its state to rinfo.
C011 + 0,-1,C001 0000: the module stores the value of the counter C01 of its
south neighbor into its own counter C11.
C012 + 0,-1,C002 0000: the module stores the value of the counter C02 of its
south neighbor into its own counter C12.
C017 + 0,-1,C004 0000: the module stores the value of the counter C04 of its
south neighbor into its own counter C17.
C007 + 0000 0001: the modules sets to 1 its counter C07.

138CHAPTER 8. HISTOGRAM LOCOMOTIONWITH INFERIOR OBSTACLES

Rule Name: Counter C007
Priority: 15
Preconditions: SBRIDG E0,1
Postconditions: C007 + 0000 0000 C017 + 0000 0000

- Rule: Counter C007
- Priority: 15
- Preconditions:
SBRIDG: it is applicable only to modules set in the bridge state.
E0,1: the grid cell in position (0, 1) needs to be empty.
- Postconditions:
C017 + 0000 0000: the modules sets to 0 its counter C17.
C007 + 0000 0000: the modules sets to 0 its counter C07.

Rule Name: Counter C018
Priority: 150
Preconditions: SACTIV T0,-1,STOPP = C013 C001 !V0,-1,C001 0001 W0,-1,C001 0001 > C009 C010
= C019 0000
Postconditions: C018 + 0000 0001 C019 + 0000 0001

- Rule: Counter C018
- Priority: 150
- Preconditions:
SACTIV: it is applicable only to modules set in the active state.
T0,-1,STOPP: the grid cell in position (0,−1) needs to be set in the stop state.
= C013 C001: the rule applies only if the value of the counter C01 meets the
value of its counter C13.
> C009 C010: the rule applies only if the value of the counter C09 of the
module is bigger than the value of its counter C10.
= C019 0000: the rule applies only if the value of the counter C19 is 0.
(!V0,-1,C001 0001 W0,-1,C001 0001): the value of the counter C01 of the
module in position (0,−1) has to be equal to 1.
- Postconditions:
C018 + 0000 0001: the modules sets to 1 its counter C18.
C019 + 0000 0001: the modules sets to 1 its counter C19.

Rule Name: Counting of the modules of the last column
Priority: 100
Preconditions: SBRIDG !E0,1 = C013 C001 = C016 0000 !V0,1,C018 0001 W0,1,C018 0001 > C009 C010
Postconditions: C014 + C014 0001 C016 + 0000 0001 C018 + 0000 0001

- Rule: Counting of the modules of the last column
- Priority: 100
- Preconditions:
SBRIDG: it is applicable only to modules set in the bridge state.
!E0,1: the grid cell in position (0, 1) needs to be occupied.
= C013 C001: the rule applies only if the value of the counter C01 of the
module equals the value of its counter C13.
= C016 0000: the rule applies only if the value of the counter C16 of the
module is 0.
> C009 C010: the rule applies only if the value of the counter C09 of the
module is bigger than the value of its counter C10.
(!V0,1,C018 0001 W0,1,C018 0001): the value of the counter C18 of the
module in position (0, 1) has to be equal 1.

8.9. RULES 139

- Postconditions:
C014 + C014 0001: the module adds 1 to its C04 counter.
C016 + 0000 0001: the module sets its C16 counter to 1.
C018 + 0000 0001: the modules sets to 1 its counter C18.

Rule Name: Auxiliar counter for the counting
Priority: 100
Preconditions: SBRIDG E0,1 = C016 0001
Postconditions: C016 + 0000 0000

- Rule: Auxiliary counter for the counting
- Priority: 100
- Preconditions:
SBRIDGE: it is applicable only to modules set in the bridge state.
E0,1: the grid cell in position (0, 1) needs to be empty.
= C016 0001: the rule applies only if the value of the counter C16 of the
module is 1.
- Postconditions:
C016 + 0000 0000: the module adds 0 to its C04 counter.

Rule Name: Bridges reconfiguration
Priority: 100
Preconditions: SBRIDG E0,1 = C014 C015
Postconditions: SMOVES

- Rule: Bridges recon�guration
- Priority: 100
- Preconditions:
SBRIDGE: it is applicable only to modules set in the bridge state.
E0,1: the grid cell in position (0, 1) needs to be empty.
= C014 C015: the rule applies only if the value of the counter C14 of the
module equals the value of its counter C15.
- Postconditions:
SMOVES: the module changes its state to moves.

Rule Name: Path formation I
Priority: 15
Preconditions: SACTIV T1,0,OBSTA
Postconditions: SPATHS

- Rule: Path formation I
- Priority: 15
- Preconditions:
SACTIV: it is applicable only to modules set in the active state.
T1,0,OBSTA: the grid cell in position (1, 0) needs to set on obsta.
- Postconditions:
SPATHS: the module changes its state to moves.

Rule Name: Path formation II
Priority: 14
Preconditions: SACTIV T0,-1,OBSTA
Postconditions: SPATHS

- Rule: Path formation II

140CHAPTER 8. HISTOGRAM LOCOMOTIONWITH INFERIOR OBSTACLES

- Priority: 14
- Preconditions:
SACTIV: it is applicable only to modules set in the active state.
T0,-1,OBSTA: the grid cell in position (1, 0) needs to set on obsta.
- Postconditions:
SPATHS: the module changes its state to moves.

Rule Name: Path formation III
Priority: 12
Preconditions: SACTIV T-1,0,OBSTA !T1,0,STOPP
Postconditions: SPATHS

- Rule: Path formation III
- Priority: 12
- Preconditions:
SACTIV: it is applicable only to modules set in the active state.
T-1,0,OBSTA: the grid cell in position (−1, 0) needs to set on obsta.
!T1,0,STOPP: the grid cell in position (1, 0) cannot be set on stop.
- Postconditions:
SPATHS: the module changes its state to moves.

Rule Name: Path formation IV
Priority: 13
Preconditions: SACTIV T-1,-1,OBSTA !T1,0,STOPP
Postconditions: SPATHS

- Rule: Path formation IV
- Priority: 13
- Preconditions:
SACTIV: it is applicable only to modules set in the active state.
T-1,-1,OBSTA: the grid cell in position (−1,−1) needs to set on obsta.
!T1,0,STOPP: the grid cell in position (1, 0) cannot be set on stop.
- Postconditions:
SPATHS: the module changes its state to moves.

Rule Name: Path formation V
Priority: 11
Preconditions: SACTIV T1,-1,OBSTA
Postconditions: SPATHS

- Rule: Path formation V
- Priority: 11
- Preconditions:
SACTIV: it is applicable only to modules set in the active state.
T1,-1,OBSTA: the grid cell in position (1,−1) needs to set on obsta.
- Postconditions:
SPATHS: the module changes its state to moves.

Rule Name: South-west rule for the path formation
Priority: 9
Preconditions: SACTIV N**00 T-1,0,PATHS E-1,-1 T-2,-1,OBSTA
Postconditions: P-1,-1 SPATHS A11*1 C009 - C009 0001

- Rule: South-west rule for the path formation
- Priority: 9

8.9. RULES 141

- Preconditions:
SACTIV: it is applicable only to modules set in the active state.
N**00: the rule concerns only the modules without a east and a south
neighbor.
T-1,0,PATHS: the grid cell in position (−1, 0) needs to set on paths.
- Postconditions:
P-1,-1: the module moves south-west.
SPATHS: the module changes its state to moves.
A11*1: the module attaches to its north, east and south neighbors; if it was
attached before and if still possible, it attaches to the other neighbor.
C009 - C009 0001: the module decreases the value of its C09 counter by 1.

Rule Name: North-west Inversion
Priority: 100
Preconditions: SINACT N1000 T0,1,INACT E-1,1
Postconditions: P-1,1 SACTIV A**1* C009 - C009 0001

- Rule: North-west Inversion
- Priority: 100
- Preconditions:
SINACT: it is applicable only to modules set in the inactive state.
N1000: the rule concerns only the modules with a north neighbor and without
any other neighbor.
E-1,1: the grid cell in position (−1, 1) needs to be empty.
T0,1,PATHS: the grid cell in position (0, 1) needs to set on paths.
- Postconditions:
P-1,1: the module moves north-west.
SACTIV: the module changes its state to active.
A**1*: the module attaches to its east neighbor; if it was attached before and
if still possible, it attaches to the other neighbor.
C009 - C009 0001: the module decreases the value of its C09 counter by 1.

Rule Name: North-east Inversion
Priority: 100
Preconditions: SACTIV N001* T1,0,INACT T2,0,PATHS E1,1
Postconditions: P1,1 A1*11 C009 + C009 0001

- Rule: North-east Inversion
- Priority: 100
- Preconditions:
SACTIV: it is applicable only to modules set in the active state.
N001*: the rule concerns only the modules with a north neighbor and without
any other neighbor.
E1,1: the grid cell in position (1, 1) needs to be empty.
T1,0,INACT: the grid cell in position (1, 0) needs to set on inactive.
T2,0,PATHS: the grid cell in position (2, 0) needs to set on paths.
- Postconditions:
P1,1: the module moves north-east.
A1*11: the module attaches to its north, west and south neighbor; if it was
attached before and if still possible, it attaches to the other neighbor.
C009 + C009 0001: the module increases the value of its C09 counter by 1.

142CHAPTER 8. HISTOGRAM LOCOMOTIONWITH INFERIOR OBSTACLES

Rule Name: Path reactivation I
Priority: 100
Preconditions: SPATHS N101* T0,1,PATHS T1,0,OBSTA !(!T0,-1,OBSTA !E0,-1) E-1,1 E-1,2
Postconditions: SACTIV P-1,1 C009 - C009 0001

- Rule: Path reactivation I
- Priority: 100
- Preconditions:
SPATHS: it is applicable only to modules set in the paths state.
N101*: the rule concerns only the modules with a north and a east neighbor,
and without a west neighbor.
T0,1,PATHS: the grid cell in position (0, 1) needs to set on paths.
T1,0,OBSTA: the grid cell in position (1, 0) needs to set on obsta.
E-1,1: the grid cell in position (−1, 1) needs to be empty.
E-1,2: the grid cell in position (−1, 2) needs to be empty.
!(!T0,-1,OBSTA !E0,-1): the grid cell in position (0,−1) has to be either
occupied by an obstacle module, either empty.
- Postconditions:
SACTIV: the module changes its state to active.
P-1,1: the module moves north-east.
C009 - C009 0001: the module decreases the value of its C09 counter by 1.

Rule Name: Path reactivation II
Priority: 100
Preconditions: SPATHS N0*1* !(!T-1,0,OBSTA !E-1,0) !(!T0,-1,OBSTA !E0,-1) T1,0,PATHS
E1,1 !T2,1,ACTIV
Postconditions: SACTIV P1,1 C009 + C009 0001

- Rule: Path reactivation II
- Priority: 100
- Preconditions:
SPATHS: it is applicable only to modules set in the paths state.
N0*1*: the rule concerns only the modules without a north neighbor, but with
a east one.
E1,1: the grid cell in position (1, 1) needs to be empty.
T1,0,PATHS: the grid cell in position (1, 0) needs to set on paths.
!T2,1,ACTIV: the grid cell in position (2, 1) needs to set on active.
!(!T0,-1,OBSTA !E0,-1): the grid cell in position (0,−1) has to be either
occupied by an obstacle module, either empty.
!(!T-1,0,OBSTA !E-1,0): the grid cell in position (−1, 0) has to be either
occupied by an obstacle module, either empty.
- Postconditions:
SACTIV: the module changes its state to active.
P1,1: the module moves north-east.
C009 + C009 0001: the module increases the value of its C09 counter by 1.

Rule Name: Path reactivation III
Priority: 100
Preconditions: SPATHS N0*01 T0,-1,PATHS !(!E-1,0 !T-1,0,OBSTA) E1,-1 !T1,-2,ACTIV !T1,-2,RINFO
Postconditions: SACTIV P1,-1 C009 + C009 0001

- Rule: Path reactivation III
- Priority: 100
- Preconditions:

8.9. RULES 143

SPATHS: it is applicable only to modules set in the paths state.
N0*01: the rule concerns only the modules without a north and a east
neighbor, but with a south one.
E1,-1: the grid cell in position (1,−1) needs to be empty.
T0,-1,PATHS: the grid cell in position (0,−1) needs to set on paths.
!T1,-2,ACTIV !T1,-2,RINFO: the grid cell in position (1,−2) needs to set
either on the active or on the rinfo state.
!(!T-1,0,OBSTA !E-1,0): the grid cell in position (−1, 0) has to be either
occupied by an obstacle module, either empty.
- Postconditions:
SACTIV: the module changes its state to active.
P1,-1: the module moves north-west.
C009 + C009 0001: the module increases the value of its C09 counter by 1.

Rule Name: Path reactivation IV
Priority: 100
Preconditions: SPATHS N0*01 T0,-1,PATHS !(!E-1,0 !T-1,0,OBSTA) !(!T1,-1,STOPP !T1,-1,PATHS)
Postconditions: SACTIV P1,0 C009 + C009 0001

- Rule: Path reactivation IV
- Priority: 100
- Preconditions:
SPATHS: it is applicable only to modules set in the paths state.
N0*01: the rule concerns only the modules without a north and a east
neighbor, but with a south one.
T0,-1,PATHS: the grid cell in position (0,−1) needs to set on paths.
!(!T-1,0,OBSTA !E-1,0): the grid cell in position (−1, 0) has to be either
occupied by an obstacle module, either empty.
!(!T1,-1,STOPP !T1,-1,PATHS): the grid cell in position (1,−1) has to be
occupied by a stop or by a path module.
- Postconditions:
SACTIV: the module changes its state to active.
P1,0: the module moves east.
C009 + C009 0001: the module increases the value of its C09 counter by 1.

Rule Name: Path reactivation V
Priority: 100
Preconditions: SPATHS N0*1* !(T0,-1,PATHS T1,0,PATHS) !(!T1,0,STOPP !T1,0,PATHS)
!(!T1,1,STOPP !T1,1,PATHS) !(!T0,-1,OBSTA !T0,-1,PATHS !E0,-1) !(!E-1,0 !T-1,0,OBSTA)
Postconditions: SACTIV P0,1

- Rule: Path reactivation V
- Priority: 100
- Preconditions:
SPATHS: it is applicable only to modules set in the paths state.
N0*1*: the rule concerns only the modules without a north neighbor, but with
a east one.
T0,-1,PATHS: the grid cell in position (0,−1) needs to set on paths.
!(!T-1,0,OBSTA !E-1,0): the grid cell in position (−1, 0) has to be either
occupied by an obstacle module, either empty.
!(!T1,1,STOPP !T1,1,PATHS): the grid cell in position (1, 1) has to be
occupied by a stop or by a path module.

144CHAPTER 8. HISTOGRAM LOCOMOTIONWITH INFERIOR OBSTACLES

!(T0,-1,PATHS T1,0,PATHS): the rule is not applicable if the grid cells (0,−1)
and (1, 0) are both occupied by path modules.
!(!T1,0,STOPP !T1,0,PATHS): the grid cell in position (1, 0) has to be
occupied by a stop or by a path module.
!(!T0,-1,OBSTA !T0,-1,PATHS !E0,-1): the grid cell in position (−1, 0) has to
be either occupied by an obstacle module, either by a path module, either
empty.
- Postconditions:
SACTIV: the module changes its state to active.
P0,1: the module moves north.

Rule Name: Path reactivation VI
Priority: 100
Preconditions: SPATHS N0*1* !(!E-1,0 !T-1,0,OBSTA) T1,0,STOPP E1,1
Postconditions: SACTIV P1,1 C009 + C009 0001

- Rule: Path reactivation VI
- Priority: 100
- Preconditions:
SPATHS: it is applicable only to modules set in the paths state.
N0*1*: the rule concerns only the modules without a north neighbor, but with
a east one.
E1,1: the grid cell in position (1, 1) needs to be empty.
T1,0,STOPP: the grid cell in position (1, 0) needs to set on stop.
!(!T-1,0,OBSTA !E-1,0): the grid cell in position (−1, 0) has to be either
occupied by an obstacle module, either empty.
- Postconditions:
SACTIV: the module changes its state to active.
P1,1: the module moves north-east.
C009 + C009 0001: the module increases the value of its C09 counter by 1.

South (Case of one column)
25
!SSTOPP !SBRIDG !SSTILL !SOBSTA !SPATHS N*100 !E-1,-1 !T0,-2,ACTIV
!(T1,-2,ACTIV T0,-2,STOPP) !T0,-2,RINFO !T1,-2,RINFO !T-1,-1,RINFO
!(T0,-2,BRIDG T1,-1,STOPP) !T1,-2,ACTIV !(T-1,0,PATHS T-1,-1,OBSTA) !T1,-1,ACTIV
P0,-1 SACTIV A***1 C007 + 0000 0000 C017 + 0000 0000

- Rule: South (Case of one column)
- Priority: 25
- Preconditions:
!SSTOPP !SBRIDG !SSTILL !SOBSTA !SPATHS: it is not applicable to
modules set in the stop, bridge, still, obsta nor path state.
N*100: the rule concerns only the modules with a west neighbor, and without
a east or a south neighbor.
!E-1,-1: the cell grid in position (−1,−1) needs to be occupied.
!T1,-1,ACTIV: the module in position (1,−1) cannot be set on active.
!T0,-2,ACTIV: the module in position (0,−2) cannot be set on active.
!T1,-2,ACTIV: the module in position (1,−2) cannot be set on active.
!T1,-2,RINFO: the module in position (1,−2) cannot be set on rinfo.
!T-1,-1,RINFO: the module in position (−1,−1) cannot be set on rinfo.
!T0,-2,RINFO: the module in position (0,−2) cannot be set on rinfo.

8.9. RULES 145

!(T1,-2,ACTIV T0,-2,STOPP): the rule cannot be applied if the module
(1,−2) is set on active and the module (0,−2) is set on stop.
!(T0,-2,BRIDG T1,-1,STOPP): the rule cannot be applied if the module
(0,−2) is set on bridge and the module (1,−1) is set on stop.
!(T-1,0,PATHS T-1,-1,OBSTA): the rule cannot be applied if the module
(−1, 0) is set on paths and the module (−1,−1) is set on obsta.
- Postconditions:
P0,-1: the module moves south.
SACTIV: the module changes its state to active.
A***1: the module attaches to its new south neighbor; if it was attached
before and if still possible, it attaches to the other neighbors.
C007 + 0000 0000: the module sets to zero its C07 counter.
C017 + 0000 0000: the module sets to zero its C07 counter.

South for the first module of the path (Case of one column)
30
SACTIV N0110 T1,0,OBSTA T1,-1,OBSTA !(!T-1,-1,INACT !T-1,-1,STOPP)
P0,-1 A*11* C007 + 0000 0000 C017 + 0000 0000

- Rule: South for the �rst module of the path (Case of one column)
- Priority: 30
- Preconditions:
SACTIV: it is applicable to modules set in the active state.
N0110: the rule concerns only the modules with a west and a east neighbor,
and without a north and a south neighbor.
T1,0,OBSTA: the module in position (1, 0) needs to be an obstacle.
T1,-1,OBSTA: the module in position (1,−1) needs to be an obstacle.
!(!T-1,-1,INACT !T-1,-1,STOPP): the module in position (−1,−1) needs to be
set either in the inactive or in the stop state.
- Postconditions:
P0,-1: the module moves south.
A*11*: the module attaches to its new south neighbor; if it was attached
before and if still possible, it attaches to the other neighbors.
C007 + 0000 0000: the module sets to zero its C07 counter.
C017 + 0000 0000: the module sets to zero its C07 counter.

First module of the path (Case of one column)
15
SACTIV N0110 E-1,-1 T1,0,OBSTA
SPATHS

- Rule: First module of the path (Case of one column)
- Priority: 15
- Preconditions:
SACTIV: it is applicable to modules set in the active state.
N0110: the rule concerns only the modules with a west and a east neighbor,
and without a north and a south neighbor.
T1,0,OBSTA: the module in position (1, 0) needs to be an obstacle.
E-1,-1: the cell grid in position (−1,−1) needs to be empty.
- Postconditions:
SPATHS: the module changes its state to paths.

146CHAPTER 8. HISTOGRAM LOCOMOTIONWITH INFERIOR OBSTACLES

First module of the path (Case of one column)
15
SACTIV N0110 E-1,-1 T1,0,OBSTA
SPATHS

- Rule: Path formation I (Case of one column)
- Priority: 15
- Preconditions:
SACTIV: it is applicable to modules set in the active state.
N0110: the rule concerns only the modules with a west and a east neighbor,
and without a north and a south neighbor.
T1,0,OBSTA: the module in position (1, 0) needs to be an obstacle.
T0,-1,PATHS: the module in position (0,−1) needs to be set on paths.
- Postconditions:
SPATHS: the module changes its state to paths.

Chapter 9

Histogram locomotion under

superior obstacles

9.1 Goal

In this chapter we discuss the eastward locomotion of a modular robotic system
initially con�gured as an histogram, in the presence of superior obstacles. As
in the free locomotion case, the rules are divided into locomotion and recon�g-
uration rules: as soon as the system crosses the obstacle, it recon�gures into its
initial shape.

9.2 Strategy

The crossing of superior obstacles by an histogram presents many analogies with
the case of the rectangle; as in the rectangle case, in fact, the strategy of the
free locomotion is conserved, but with some modi�cations that make it possible
to crawl under the obstacles.

Before encountering the obstacles, the modules of the leftmost column in
turn move from the back of the group, over the top, and locate on the front
of the group to reform a new column with the same height. As soon as the
presence of an obstacle is detected, the system continues its locomotion dividing
the columns into di�erent subcolumns when it is necessary, �attening in order
to be able to crawl under the obstacle and reach its end. While walking under
the obstacle then, columns are recon�gured entirely only when possible, and
divided into di�erent parts if the total con�guration is not achievable due to the
height restrictions produced by the obstacle.

We can observe an example of the crossing of a superior obstacle in Figure
9.1. As the system has crossed the obstacle, it recon�gures into the initial shape
and stops the locomotion.

As in the case of the rectangle, we can observe how this set of rules produce
both the crossing of superior obstacles con�gured as histograms, and the crossing
of superior general obstacles; in fact, the system does not detect any di�erence
between the two cases, as it just moves taking into account the presence of
obstacle modules without using, nor explicitly nor in an implicit way, the fact

147

148CHAPTER 9. HISTOGRAM LOCOMOTION UNDER SUPERIOR OBSTACLES

Figure 9.1: Crawling under a superior histogram obstacle: in (a) we can see that
the system is con�gured as an histogram when it starts the locomotion. As the
obstacle is detected in (b) and (c), as the locomotion continues, the columns are
sometimes not con�gured completely, but divided into subcolumns: the system
�attens and decreases its height in order to be able to cross. After the obstacle,
the system recon�gures again and stops the locomotion in (d). Stopped modules
are red, active modules are pink, inactive modules are blue, obstacles are black
and green modules are exchanging information.

that they belong to an histogram. In Figure 9.2 we can see an example of the
crossing of a general obstacle.

9.3 Locomotion

The set of rules presented in this chapter is a direct adaptation of the set of
rules that produces the free locomotion of histograms presented in Chapter 7;
the number of the rules, the structure and the purpose of each one of them is
the same as before, apart from some adaptations that make the system able to
continue the locomotion in the presence of superior obstacles.

In this section we present and explain a few examples of such modi�cations
through the analysis of the new East rule and the new Stop bottommost module
rule, and then we skip directly to the study of the complexity of the rules
and to their detailed presentation in sections 9.5 and 9.6, as no one of these
modi�cations compromises the correctness, and the results proved in Chapter 7
are still valid and can be proved in the same way.

In Figure 9.3 we can see the details of the new version of the East rule;
the di�erences introduced are due to the possible presence of obstacles over the
system.

In Figure 9.4 the �Stop other modules� rule is presented; this is one of the

9.4. RECONFIGURATION 149

Figure 9.2: Crawling under a superior general obstacle: the system behaves
as in the previous cases. Stopped modules are red, active modules are pink,
inactive modules are blue and obstacles are black.

most important modi�cation, as it allows the �attening of the system and the re-
con�guration of columns into di�erent subcolumns while the system is crawling
under the obstacle.

9.4 Recon�guration

We recall that the recon�guration strategy of the free locomotion case is based
on the counting of the rounds of the system; such rounds are controlled by the
counter C04, which counts the number of times each module changes its state
from stop to inactive, i.e. each time its column starts the movement again. In
the case of the free locomotion, this counter is indicative for the rounds of the
system, as modules of the same column inactivate together and stop together
every time the column moves, and no di�erences can be produced between
modules of the same column. In the case of superior obstacles, however, it can
happen that modules of the same column inactivate a di�erent number of times
during the locomotion, due to the divisions into subcolumns operated by the
system while crossing the obstacle; we can see an example of such case in Figure
9.5. Because of this reason, the recon�guration of the system is done through
the strategy applied in the case of inferior obstacles, presented in Chapter 8.

150CHAPTER 9. HISTOGRAM LOCOMOTION UNDER SUPERIOR OBSTACLES

East
Priority: 7
Preconditions: !SSTOPP !SSTILL !SOBSTA !SBRIDG N**01 !E1,-1 !T1,-1,MOVES !T1,-1,ACTIV
!T1,1,ACTIV !T2,0,ACTIV !T2,1,ACTIV !T2,-1,ACTIV !T2,0,RINFO !T2,-1,RINFO !T1,-1,RINFO
!(SINACT T1,-1,BRIDG) !(!T0,1,OBSTA !E0,1)
Postconditions: SACTIV P1,0 A**11 C007 + 0000 0000 C017 + 0000 0000

Figure 9.3: Details of the East rule: the new condition !SOBSTA (state 6= obsta-
cle) is introduced, as in all the other rules, in order to deal with the introduction
of a new state for the modules; moreover, the previous condition N0*01 is re-
placed by N**01 !(!T0,1,OBSTA !E0,1), through which we allow the rule to be
applied by a module with an obstacle as a north neighbor, preventing modules
to stop if they detect an obstacle in the relative position (0, 1).

Stop other modules
Priority: 9
Preconditions: SACTIV N0*01 T0,-1,STOPP !T-1,1,OBSTA !T1,1,OBSTA !V0,-1,C001 C001
W0,-1,C001 C001 V0,-1,C006 C002
Postconditions: SSTOPP C006 + 0,-1,C006 0001

Figure 9.4: Details of the Stop other modules rule: !T-1,1,OBSTA !T1,1,OBSTA
in a new condition that allows the stop of the module only in the cases in which
this would not imply a block for the passage of the other modules; in case
the module cannot apply this rule, it would continue the movement, reach the
bottommost cell on the right of the system and stop through the bottommost
module rule, continuing the recon�guration of its column into a new subcolumn
and allowing the system to continue the locomotion.

9.4. RECONFIGURATION 151

Figure 9.5: Example of a situation that produces a di�erence in the counter
C04 among modules of the same column: we can see in (a) that column 1 is
initially formed by 11 modules; as they reach the right of the system in (b), they
recon�gure into 3 subcolumns (the three rightmost columns in (b)). As soon
as the �rst two change their state to inactive again, they reach the last one of
the three, stop again and recon�gure the entire column in (c); they inactivate
again in (d), continuing the locomotion. In this process, the �rst modules of
the column have increased their C04 by two, while the rest of the column have
inactivated only once.

152CHAPTER 9. HISTOGRAM LOCOMOTION UNDER SUPERIOR OBSTACLES

9.5 Complexity

Neighbourhood As in the case of the free locomotion, each module is able
to check if the grid cells of its �rst and its second neighborhood are either
empty or occupied by another module; in this last case, it has to be able to
obtain information about the state of such module and about the value of
its counters. The checking of the second neighborhood modules is needed
in order to avoid collisions between active modules and moving bridges:
as a bridge moves, its neighborhood needs to be free of active modules
willing to move to its goal grid cell; this is achieved by the generation of
a delay between two consecutive active modules. No information about
any other position is needed. No information about any other position is
needed.

Memory and computation The application of this set of rules requires O(1)
memory for each module, and a O(1) computation at each step, as modules
only need to check if preconditions of rules are ful�lled, to memorize �xed
values in some counters, and to make simple operations with some counter
at each step.

Number of moves We analyze here the number of moves performed by a
module from the moment it activates to its inactivation; as we have al-
ready analyzed the case of free locomotion, we focus now on the crossing
of the obstacle. Starting from the worst case analysis presented for the
case of the free locomotion of the histogram in Chapter 7, we want to
understand now how the presence of a superior obstacle could a�ect the
maximum number of moves of a module. Given the strategy of the move-
ment, the e�ect of the presence of such obstacle is, just as in the case
of the rectangle, the recon�guration of the columns into more di�erent
subcolumns. Supposing that the histogram starts its movement as in the
con�guration depicted in Figure 7.11 of Chapter 7, which represents the
worst case for the number of moves in the free locomotion, the e�ect of the
presence of a superior obstacle would be the subdivision of the columns
of maximal height h into di�erent consecutive subcolumns. This would
actually produce an improvement in the number of time steps of a module,
as the number of modules that need to be touched more than one times
during the locomotion would decrease (there would be less modules with
both sides free). This means that the worst case possible for the num-
ber of moves in the presence of superior obstacles is the one in which the
histogram is con�gured in the described way, and the superior obstacle is
as far from the ground as the system does not perceive it: in this case a
module performs O(n) moves. The overall number of moves for a module
during the overpassing of the obstacle is then O(kn) at most, where k is
the number of rounds of the system, which depends on the width of the
obstacle.

Communication As no additional exchange of communication is performed
during the crossing of the obstacle, the communication operated by a
module is at most O(n) at each round, as in the case of the free locomotion.
The need of information about the second neighborhood is the need to

9.5. COMPLEXITY 153

avoid collisions between the moving bridges and the active modules, as in
the case of free locomotion.

Number of time steps The computation of the number of time steps is
analogous to the one presented in the case of free locomotion: as the
e�ect of the presence of superior obstacle is the subdivision of the columns
into di�erent subcolumns, the computation is the same as in the free
locomotion, only done considering a higher number of columns and with
less modules for each column considered. The overpassing of a superior
obstacle can then be performed in O(kn) time steps, with k the number
of rounds performed (linearly dependent on the number of modules of the
system) and n is the overall number of modules of the system.

154CHAPTER 9. HISTOGRAM LOCOMOTION UNDER SUPERIOR OBSTACLES

9.6 Rules

The algorithm is based on 26 di�erent rules; before starting the locomotion
each module has the following information stored in its counters: the number
of its the column in the order de�ned (C01), the height of its column (C02), the
number of the columns of the histogram (C13), the height of the last column
(C15) and the number of rounds (C10).

Rule Name: North
Priority: 6
Preconditions: !SSTOPP !SBRIDG !SSTILL !SOBSTA N0*1* T1,1,STOPP !T0,2,ACTIV !T1,2,ACTIV
Postconditions: P0,1 SACTIV A1*1* C007 + 0000 0000 C017 + 0000 0000

- Rule: North
- Priority: 6
- Preconditions:
!SSTOPP !SBRIDG !SSTILL !SOBTA: it is not applicable to modules set in
the stop, bridge, still nor obstacle state.
N0*1*: the rule concerns only the modules with a east neighbor, and without
a north neighbor.
T1,1,STOPP: the module in position (1, 1) needs to be set on stop.
!T0,2,ACTIV: the module in position (0, 2) cannot be set on active.
!T1,2,ACTIV: the module in position (1, 2) cannot be set on active.
- Postconditions:
P0,1: the module moves north.
SACTIV: the module changes its state to active.
A1*1*: the module attaches to its new north and east neighbor; if it was
attached before and if still possible, it attaches to the other neighbors.
C007 + 0000 0000: the module sets to zero its C07 counter.
C017 + 0000 0000: the module sets to zero its C07 counter.

Rule Name: North-east
Priority: 6
Preconditions: !SSTOPP !SSTILL !SBRIDG !SOBSTA N0*1* E1,1 T1,0,STOPP !T2,1,RINFO
!T2,0,RINFO !T2,1,ACTIV !T1,2,ACTIV !T2,2,ACTIV
Postconditions: SACTIV P1,1 A***1 C007 + 0000 0000 C017 + 0000 0000 C009 + C009 0001

- Rule: North-east
- Priority: 6
- Preconditions:
!SSTOPP !SBRIDG !SSTILL !SOBSTA: it is not applicable to modules set in
the stop, bridge, still nor obstacle state.
N0*1*: the rule concerns only the modules with a east neighbor, and without
a north neighbor.
E1,1: the grid cell in position (1, 1) needs to be empty.
T1,0,STOPP: the module in position (1, 0) needs to be set on stop.
!T2,1,RINFO: the module in position (2, 1) cannot be set on rinfo.
!T2,0,RINFO: the module in position (2, 0) cannot be set on rinfo.
!T2,1,ACTIV: the module in position (2, 1) cannot be set on active.
!T1,2,ACTIV: the module in position (1, 2) cannot be set on active.
!T2,2,ACTIV: the module in position (1, 2) cannot be set on active.
- Postconditions:
P1,1: the module moves north-east.

9.6. RULES 155

SACTIV: the module changes its state to active.
A***1: the module attaches to its new south neighbor; if it was attached
before and if still possible, it attaches to the other neighbors.
C007 + 0000 0000: the module sets to zero its C07 counter.
C017 + 0000 0000: the module sets to zero its C07 counter.
C009 + C009 0001: the module increases its C09 value by one.

Rule Name: East
Priority: 7
Preconditions: !SSTOPP !SSTILL !SBRIDG !SOBSTA N**01 !(!T0,1,OBSTA !E0,1) !E1,-1
!T1,-1,MOVES !T1,-1,ACTIV !T1,1,ACTIV !T2,0,ACTIV !T2,1,ACTIV !T2,-1,ACTIV !T2,0,RINFO
!T2,-1,RINFO !T1,-1,RINFO !(SINACT T1,-1,BRIDG)
Postconditions: SACTIV P1,0 A**11 C007 + 0000 0000 C017 + 0000 0000 C009 + C009 0001

- Rule: East
- Priority: 7
- Preconditions:
!SSTOPP !SBRIDG !SSTILL !SOBSTA: it is not applicable to modules set in
the stop, bridge, still or obstacle state.
N**01: the rule concerns only the modules with a south neighbor, and without
a north nor a east neighbor.
!(!T0,1,OBSTA !E0,1): the cell grid in position (0, 1) needs to be either empty
or occupied by and obstacle module. !E1,-1: the cell grid in position (1,−1)
needs to be occupied.
!T1,-1,MOVES: the module in position (1,−1) cannot be set on moves.
!T1,-1,ACTIV: the module in position (1,−1) cannot be set on active.
!T1,1,ACTIV: the module in position (1, 1) cannot be set on active.
!T2,0,ACTIV: the module in position (2, 0) cannot be set on active.
!T2,1,ACTIV: the module in position (2, 1) cannot be set on active.
!T2,-1,ACTIV: the module in position (2,−1) cannot be set on active.
!T2,0,RINFO: the module in position (2, 0) cannot be set on rinfo.
!T2,-1,RINFO: the module in position (2,−1) cannot be set on rinfo.
!T1,-1,RINFO: the module in position (1,−1) cannot be set on rinfo.
!(SINACT T1,-1,BRIDG): the rule is not applicable by an inactive module if
the position (1,−1) is occupied by a bridge.
- Postconditions:
P1,0: the module moves east.
SACTIV: the module changes its state to active.
A**11: the module attaches to its new south and east neighbors; if it was
attached before and if still possible, it attaches to the other neighbors.
C007 + 0000 0000: the module sets to zero its C07 counter.
C017 + 0000 0000: the module sets to zero its C07 counter.
C009 + C009 0001: the module increases its C09 value by one.

Rule Name: South
Priority: 6
Preconditions: !SSTOPP !SBRIDG !SSTILL !SOBSTA N*1*0 !(!T1,0,OBSTA !E1,0) !E-1,-1
!T0,-2,ACTIV !T0,-2,MOVES !(T1,-2,ACTIV T0,-2,STOPP) !T0,-2,RINFO !T1,-2,RINFO
!(T0,-2,BRIDG T1,-1,STOPP) !T1,-1,ACTIV
Postconditions: P0,-1 SACTIV A*111 C007 + 0000 0000 C017 + 0000 0000

- Rule: South
- Priority: 6

156CHAPTER 9. HISTOGRAM LOCOMOTION UNDER SUPERIOR OBSTACLES

- Preconditions:
!SSTOPP !SBRIDG !SSTILL !SOBSTA: it is not applicable to modules set in
the stop, bridge, still or obstacle state.
N*1*0: the rule concerns only the modules with a west neighbor, and without
a south neighbor.
!(!T1,0,OBSTA !E1,0): the grid cell in position (1,0) needs to be either empty
or occupied by an obstacle module.
!E-1,-1: the cell grid in position (−1,−1) needs to be occupied.
!T0,-2,ACTIV: the module in position (0,−2) cannot be set on active.
!T0,-2,MOVES: the module in position (0,−2) cannot be set on moves.
!T0,-2,RINFO: the module in position (0,−2) cannot be set on rinfo.
!T1,-2,RINFO: the module in position (1,−2) cannot be set on rinfo.
!T1,-1,ACTIV: the module in position (1,−1) cannot be set on active.
!(T1,-2,ACTIV T0,-2,STOPP): if the module in position (1,−2) is set on active
and the module in position (0,−2) is set on stop the rule cannot be performed.
!(T0,-2,BRIDG T1,-1,STOPP): if the module in position (0,−2) is set on
bridge and the module in position (1,−1) is set on stop the rule cannot be
performed
- Postconditions:
P0,-1: the module moves south.
SACTIV: the module changes its state to active.
A*111: the module attaches to its new south and east and west neighbors; if it
was attached before and if still possible, it attaches to the other neighbor.
C007 + 0000 0000: the module sets to zero its C07 counter.
C017 + 0000 0000: the module sets to zero its C07 counter.

Rule Name: South-east
Priority: 6
Preconditions: !SSTOPP !SBRIDG !SSTILL !SOBSTA N**01 !(!E0,1 !T0,1,OBSTA) E1,-1
!T0,-1,ACTIV !T1,-2,ACTIV !T2,0,ACTIV !T1,-2,RINFO !T2,0,RINFO
!T2,-1,ACTIV !T1,-2,MOVES !(T1,-2,BRIDG T2,-1,STOPP T0,-1,STOPP)
Postconditions: P1,-1 SACTIV A*111 C007 + 0000 0000 C017 + 0000 0000 C009 + C009 0001

- Rule: South-east
- Priority: 6
- Preconditions:
!SSTOPP !SBRIDG !SSTILL !SOBSTA: it is not applicable to modules set in
the stop, bridge, still or obstacle state.
N**01: the rule concerns only the modules with a south neighbor, and without
a north nor a east neighbor.
!(!E0,1 !T0,1,OBSTA): the grid cell in position (0,1) needs to be either empty
or occupied by an obstacle module.
E1,-1: the cell grid in position (1,−1) needs to be empty.
!T0,-1,BRIDG: the module in position (0,−1) cannot be set on bridge.
!T0,-1,ACTIV: the module in position (0,−1) cannot be set on active.
!T1,-2,ACTIV: the module in position (1,−2) cannot be set on active.
!T2,0,ACTIV: the module in position (2, 0) cannot be set on active.
!T2,-1,ACTIV: the module in position (2,−1) cannot be set on active.
!T1,-2,RINFO: the module in position (1,−2) cannot be set on rinfo.
!T2,0,RINFO: the module in position (2, 0) cannot be set on rinfo.
!T1,-2,MOVES: the module in position (1,−2) cannot be set on moves.

9.6. RULES 157

!(T1,-2,BRIDG T2,-1,STOPP T0,-1,STOPP): if the module in position (1,−2)
is set on bridge and the modules in position (2,−1) and (0,−1) are set on stop
the rule cannot be performed.
- Postconditions:
P1,-1: the module moves south-east.
SACTIV: the module changes its state to active.
A*111: the module attaches to its new south and east and west neighbors; if it
was attached before and if still possible, it attaches to the other neighbor.
C007 + 0000 0000: the module sets to zero its C07 counter.
C017 + 0000 0000: the module sets to zero its C07 counter.
C009 + C009 0001: the module increases its C09 value by one.

Rule Name: Bridge Formation
Priority: 10
Preconditions: SACTIV N011* T1,0,STOPP T-1,0,STOPP
Postconditions: SBRIDG

- Rule: Bridge formation
- Priority: 10
- Preconditions:
SACTIV: it is applicable only to modules set in the active state.
N011*: the rule concerns only the modules with a west and east neighbor, and
without a north neighbor.
T1,0,STOPP: the module in position (1, 0) needs to be set on stop.
T-1,0,STOPP: the module in position (−1, 0) needs to be set on stop.
- Postconditions:
SBRIDG: the module changes its state to bridge.

Rule Name: North-east activation for bridges
Priority: 15
Preconditions: SBRIDG N011* E1,1 !T-1,1,ACTIV !T-1,2,ACTIV
!T0,2,ACTIV !T1,0,ACTIV T-1,-1,INACT
Postconditions: P1,1 SACTIV A**11 C009 + C009 0001

- Rule: North-east activation for bridges
- Priority: 15
- Preconditions:
SBRIDG: it is applicable only to modules set in the bridge state.
N011*: the rule concerns only the modules with a west and east neighbor, and
without a north neighbor.
E1,1: the cell grid in position (1, 1) needs to be empty.
!T-1,1,ACTIV: the module in position (−1, 1) cannot be set on active.
!T-1,2,ACTIV: the module in position (−1, 2) cannot be set on active.
!T0,2,ACTIV: the module in position (0, 2) cannot be set on active.
!T1,0,ACTIV: the module in position (1, 0) cannot be set on active.
T-1,-1,INACT: the module in position (−1,−1) needs to be set on inactive.
- Postconditions:
P1,1: the module moves north-east.
SACTIV: the module changes its state to active.
A**11: the module attaches to its new south and east neighbors; if it was
attached before and if still possible, it attaches to the other neighbors.
C009 + C009 0001: the module increases its C09 value by one.

158CHAPTER 9. HISTOGRAM LOCOMOTION UNDER SUPERIOR OBSTACLES

Rule Name: North activation for bridges
Priority: 15
Preconditions: SBRIDG N011* !E1,1 !T-1,1,ACTIV !T1,1,ACTIV !T0,2,ACTIV
!T-1,2,ACTIV T-1,-1,INACT
Postconditions: P0,1 SACTIV A**1*

- Rule: North activation for bridges
- Priority: 15
- Preconditions:
SBRIDG: it is applicable only to modules set in the bridge state.
N011*: the rule concerns only the modules with a west and east neighbor, and
without a north neighbor.
!E1,1: the grid cell in position (1, 1) needs to be occupied.
!T-1,1,ACTIV: the module in position (−1, 1) cannot be set on active.
!T1,1,ACTIV: the module in position (1, 1) cannot be set on active.
!T0,2,ACTIV: the module in position (0, 2) cannot be set on active.
!T-1,2,ACTIV: the module in position (−1, 2) cannot be set on active.
T-1,-1,INACT: the module in position (−1,−1) needs to be set on inactive.
- Postconditions:
P0,1: the module moves north.
SACTIV: the module changes its state to active.
A**1*: the module attaches to its new east neighbor; if it was attached before
and if still possible, it attaches to the other neighbors.

Rule Name: North for bridges
Priority: 30
Preconditions: SBRIDG N011* T1,1,STOPP T-1,1,STOPP
Postconditions: P0,1 A**1*

- Rule: North for bridges
- Priority: 30
- Preconditions:
SBRIDG: it is applicable only to modules set in the bridge state.
N011*: the rule concerns only the modules with a west and east neighbor, and
without a north neighbor.
T1,1,STOPP: the module in position (1, 1) needs to be set on stop.
T-1,1,STOPP: the module in position (−1, 1) needs to be set on stop.
- Postconditions:
P0,1: the module moves north.
A**1*: the module attaches to its new east and west neighbors; if it was
attached before and if still possible, it attaches to the other neighbors.

Rule Name: Stop bottommost module
Priority: 9
Preconditions: SACTIV N0100 !(!T-1,0,INACT !T-1,0,STOPP) E-1,-1
Postconditions: SSTOPP C006 + 0000 0001

- Rule: Stop bottommost module
- Priority: 9
- Preconditions:
SACTIV: it is applicable only to modules set in the active state.
N0100: the rule concerns only the modules with a west, and without other
neighbors.

9.6. RULES 159

E-1,-1: the grid cell in position (−1,−1) needs to be empty.
!(!T-1,0,INACT !T-1,0,STOPP): the cell grid in position (−1, 0) needs to be
occupied by a module, either set in the inactiveeither in the stop state.
- Postconditions:
P0,1: the module moves north.
SSTOPP: the module changes its state to stop.
A**1*: the module attaches to its new east and west neighbors; if it was
attached before and if still possible, it attaches to the other neighbors.
C006 + 0000 0001: the module sets its C06 counter to 1.

Rule Name: Stop other modules
Priority: 9
Preconditions: SACTIV N0*01 T0,-1,STOPP !T-1,1,OBSTA !T1,1,OBSTA !V0,-1,C001 C001
W0,-1,C001 C001 V0,-1,C006 C002
Postconditions: SSTOPP C006 + 0,-1,C006 0001

- Rule: Stop other modules
- Priority: 9
- Preconditions:
SACTIV: it is applicable only to modules set in the active state.
N0*01: the rule concerns only the modules with a south neighbor, and without
a north nor west neighbor.
T0,-1,STOP: the module in position (0,−1) needs to be set on stop.
!T-1,1,OBSTA: the module in position (−1, 1) cannot be set on obstacle.
!T1,1,OBSTA: the module in position (1, 1) cannot be set on obstacle.
(!V0,-1,C001 C001 W0,-1,C001 C001): the value of the counter C01 of the
module has to coincide with the counter C01 of its south neighbor.
V0,-1,C006 C002: the value of the counter C02 of the module has to be bigger
than the value of the counter C06 of its south neighbor.
- Postconditions:
SSTOPP: the module changes its state to stop.
C006 + 0,-1,C006 0001: the module checks the value of the counter C06 of its
south neighbor, increases it by 1 and sets its own C06 counter to this result.

Rule Name: Locomotion break
Priority: 100
Preconditions: SSTOPP N*0*0 = C001 0001 > C009 C010
Postconditions: SSTILL

- Rule: Locomotion break
- Priority: 100
- Preconditions:
SSTOPP: it is applicable only to modules set in the stop state.
N*010: the rule concerns only the modules with a west neighbor, and without
a east nor south neighbor.
= C001 0001: the rule applies only if the value of the counter C01 of the
module equals 1.
> C009 C010: the rule applies only if the value of the counter C09 is bigger
than the value of C10.
- Postconditions:
SSTILL: the module changes its state to still.

160CHAPTER 9. HISTOGRAM LOCOMOTION UNDER SUPERIOR OBSTACLES

Rule Name: Bottommost module inactivation
Priority: 10
Preconditions: SSTOPP N*0*0 E-1,-1 E-1,1 !T0,1,ACTIV !T1,1,ACTIV !T-1,2,ACTIV
!T2,1,ACTIV !T1,2,ACTIV
Postconditions: SINACT C004 + C004 0001

- Rule: Bottommost module inactivation
- Priority: 10
- Preconditions:
SSTOPP: it is applicable only to modules set in the stop state.
N*0*0: the rule concerns only the modules without a west or a south neighbor.
E-1,-1: the grid cell in position (−1,−1) needs to be empty.
E-1,1: the grid cell in position (−1, 1) needs to be empty.
!T0,1,ACTIV: the module in position (0, 1) cannot be set on active.
!T1,1,ACTIV: the module in position (1, 1) cannot be set on active.
!T-1,2,ACTIV: the module in position (−1, 2) cannot be set on active.
!T2,1,ACTIV: the module in position (2, 1) cannot be set on active.
!T1,2,ACTIV: the module in position (1, 2) cannot be set on active.
- Postconditions:
SINACT: the module changes its state to inactive.

Rule Name: Other modules inactivation
Priority: 10
Preconditions: SSTOPP N10*1 E-1,-1 T0,-1,INACT E-1,0 E-1,1 !T1,0,ACTIV !T1,1,ACTIV
!T1,-1,ACTIV !T0,2,ACTIV !T2,0,ACTIV !T2,-1,ACTIV !T2,1,ACTIV
Postconditions: SINACT

- Rule: Other modules inactivation
- Priority: 10
- Preconditions:
SSTOPP: it is applicable only to modules set in the stop state.
N10*1: the rule concerns only the modules with a north and a south neighbor,
and without a west neighbor.
E-1,-1: the grid cell in position (−1,−1) needs to be empty.
E-1,1: the grid cell in position (−1, 1) needs to be empty.
T0,-1,INACT: the module in position (0,−1) needs to be inactive.
!T1,0,ACTIV: the module in position (1, 0) cannot be set on active.
!T1,1,ACTIV: the module in position (1, 1) cannot be set on active.
!T1,-1,ACTIV: the module in position (1,−1) cannot be set on active.
!T2,1,ACTIV: the module in position (2, 1) cannot be set on active.
!T1,2,ACTIV: the module in position (2, 1) cannot be set on active.
!T2,-1,ACTIV: the module in position (−1, 2) cannot be set on active.
!T2,0,ACTIV: the module in position (2, 0) cannot be set on active.
!T0,2,ACTIV: the module in position (2, 0) cannot be set on active.
!T2,2,ACTIV: the module in position (2, 2) cannot be set on active.
- Postconditions:
SINACT: the module changes its state to inactive.

9.6. RULES 161

Rule Name: Other modules inactivation
Priority: 10
Preconditions: SSTOPP N10*1 E-1,-1 T0,-1,INACT E-1,0 E-1,1 !T1,0,ACTIV !T1,1,ACTIV
!T1,-1,ACTIV !T0,2,ACTIV !T2,0,ACTIV !T2,-1,ACTIV !T2,1,ACTIV
Postconditions: SINACT

- Rule: Topmost module inactivation
- Priority: 12
- Preconditions:
SSTOPP: it is applicable only to modules set in the stop state.
N00*1: the rule concerns only the modules with a south neighbor, and without
a north nor a west neighbor.
E-1,-1: the grid cell in position (−1,−1) needs to be empty.
T0,-1,INACT: the module in position (0,−1) needs to be inactive.
!T1,0,ACTIV: the module in position (1, 0) cannot be set on active.
!T1,1,ACTIV: the module in position (1, 1) cannot be set on active.
!T1,-1,ACTIV: the module in position (1,−1) cannot be set on active.
!T2,1,ACTIV: the module in position (2, 1) cannot be set on active.
!T1,2,ACTIV: the module in position (2, 1) cannot be set on active.
!T2,-1,ACTIV: the module in position (−1, 2) cannot be set on active.
!T2,0,ACTIV: the module in position (2, 0) cannot be set on active.
!T0,2,ACTIV: the module in position (2, 0) cannot be set on active.
!T2,2,ACTIV: the module in position (2, 2) cannot be set on active.
- Postconditions:
SINACT: the module changes its state to inactive.

Rule Name: Exchange rule for Bridges
Ponte su cui arriva un attivo Priority: 100
Preconditions: SBRIDG !W0,1,C001 C001 !E0,1 = C007 0000
Postconditions: SRINFO C011 + 0,1,C001 0000 C012 + 0,1,C002 0000
C007 + 0000 0001

- Rule: Exchange rule for Bridges
- Priority: 100
- Preconditions:
SBRIDG: it is applicable only to modules set in the bridge state.
!E0,1: the grid cell in position (0, 1) needs to be occupied.
!W0,1,C001 C001: the value of the counter C01 of the module has to be less
than the value of the counter C01 of its north neighbor.
= C007 0000: the rule applies only if the value of the counter C07 of the
module is 0.
- Postconditions:
SRINFO: the module changes its state to rinfo.
C011 + 0,1,C001 0000: the module stores the value of the counter C01 of its
north neighbor into its own counter C11.
C012 + 0,1,C002 0000: the module stores the value of the counter C02 of its
north neighbor into its own counter C12.
C007 + 0000 0001: the modules sets to 1 its counter C07.

162CHAPTER 9. HISTOGRAM LOCOMOTION UNDER SUPERIOR OBSTACLES

Rule Name: Exchange rule for Actives
Priority: 100
Preconditions: T0,-1,BRIDG V0,-1,C001 C001 = C007 0000
Postconditions: SRINFO C011 + 0,-1,C001 0000 C012 + 0,-1,C002 0000
C007 + 0000 0001

- Rule: Exchange rule for Actives
- Priority: 100
- Preconditions:
T0,-1,BRIDG: the module in position (0,−1) needs to be set on bridge.
V0,-1,C001 C001: the value of the counter C01 of the module has to be bigger
than the value of the counter C01 of its south neighbor.
= C007 0000: the rule applies only if the value of the counter C07 of the
module is 0.
- Postconditions:
SRINFO: the module changes its state to rinfo.
C011 + 0,-1,C001 0000: the module stores the value of the counter C01 of its
south neighbor into its own counter C11.
C012 + 0,-1,C002 0000: the module stores the value of the counter C02 of its
south neighbor into its own counter C12.
C007 + 0000 0001: the modules sets to 1 its counter C07.

Rule Name: Internal change of counters I
Priority: 100
Preconditions: SRINFO !(! E0,1 !T0,1,OBSTA) = C007 0001
Postconditions: C001 + C011 0000 C002 + C012 0000 SACTIV

- Rule: Internal change of counters I
- Priority: 100
- Preconditions:
SRINFO: it is applicable only to modules set in the rinfo state. !(!E0,1
!T0,1,OBSTA): the grid cell in position (0, 1) needs to either empty or
occupied by an obstacle.
= C007 0001: the rule applies only if the value of the counter C07 of the
module is 1.
- Postconditions:
SACTIV: the module changes its state to active.
C001 + C011 0000: the module copies the value of its counter C11 into its
counter C01.
C002 + C012 0000: the module copies the value of its counter C12 into its
counter C02.

Rule Name: Internal change of counters II
Priority: 100
Preconditions: SRINFO !E0,1 !T0,1,OBSTA = C007 0001
Postconditions: C001 + C011 0000 C002 + C012 0000 SBRIDG

- Rule: Internal change of counters II
- Priority: 100
- Preconditions:
SRINFO: it is applicable only to modules set in the rinfo state.
!E0,1: the grid cell in position (0, 1) needs to be occupied.

9.6. RULES 163

!T0,1,OBSTA: the grid cell in position (0, 1) cannot be occupied by an
obstacle.
= C007 0001: the rule applies only if the value of the counter C07 of the
module is 1.
- Postconditions:
SBRIDG: the module changes its state to bridge.
C001 + C011 0000: the module copies the value of its counter C11 into its
counter C01.
C002 + C012 0000: the module copies the value of its counter C12 into its
counter C02.

Rule Name: Case of the last column (Bridge)
Priority: 100
Preconditions: SBRIDG T0,1,ACTIV = C001 C013 = C007 0000
!(!V0,1,C001 C013 W0,1,C001 C013)
Postconditions: SRINFO C011 + 0,1,C001 0000 C012 + 0,1,C002 0000
C007 + 0000 0001

- Rule: Case of the last column (Bridge)
- Priority: 100
- Preconditions:
SBRIDG: it is applicable only to modules set in the bridge state.
T0,1,ACTIV: the module in position (0, 1) needs to be set on active.
!(!V0,1,C001 C013 W0,1,C001 C013): the value of the counter C01 of the
module has to be di�erent from the value of the counter C13 of its north
neighbor.
= C001 C013: the rule applies only if the value of the counter C01 of the
module is equal to the value of its counter C13.
= C007 0000: the rule applies only if the value of the counter C07 of the
module is 0.
- Postconditions:
SRINFO: the module changes its state to rinfo.
C011 + 0,1,C001 0000: the module stores the value of the counter C01 of its
south neighbor into its own counter C11.
C012 + 0,1,C002 0000: the module stores the value of the counter C02 of its
south neighbor into its own counter C12.
C007 + 0000 0001: the modules sets to 1 its counter C07.

Rule Name: Case of the last column (Actives)
Priority: 100
Preconditions: SACTIV T0,-1,BRIDG < C001 C013 !V0,-1,C001 C013 W0,-1,C001 C013 = C007 0000
Postconditions: SRINFO C011 + 0,-1,C001 0000 C012 + 0,-1,C002 0000
C007 + 0000 0001

- Rule: Case of the last column (Actives)
- Priority: 100
- Preconditions:
SACTIV: it is applicable only to modules set in the active state.
T0,-1,BRIDG: the module in position (0,−1) needs to be set on bridge.
(!V0,-1,C001 C013 W0,-1,C001 C013): the value of the counter C01 of the
module has to be equal to the value of the counter C13 of its south neighbor.
< C001 C013: the rule applies only if the value of the counter C01 of the
module is less than the value of its counter C13.

164CHAPTER 9. HISTOGRAM LOCOMOTION UNDER SUPERIOR OBSTACLES

= C007 0000: the rule applies only if the value of the counter C07 of the
module is 0.
- Postconditions:
SRINFO: the module changes its state to rinfo.
C011 + 0,-1,C001 0000: the module stores the value of the counter C01 of its
south neighbor into its own counter C11.
C012 + 0,-1,C002 0000: the module stores the value of the counter C02 of its
south neighbor into its own counter C12.
C007 + 0000 0001: the modules sets to 1 its counter C07.

Rule Name: Counter C007
Priority: 15
Preconditions: SBRIDG E0,1 !(=C017 0000 =C007 0000)
Postconditions: C007 + 0000 0000 C017 + 0000 0000

- Rule: Counter C007
- Priority: 15
- Preconditions:
SBRIDG: it is applicable only to modules set in the bridge state.
E0,1: the grid cell in position (0, 1) needs to be empty.
< C001 C013: the rule applies only if the value of the counter C01 of the
module is less than the value of its counter C13.
!(=C017 0000 =C007 0000): the rule does not apply to modules with the two
counters C17 and C07 set to zero.
- Postconditions:
C017 + 0000 0000: the modules sets to 0 its counter C17.
C007 + 0000 0000: the modules sets to 0 its counter C07.

Rule Name: Counter C018
Priority: 150
Preconditions: SACTIV T0,-1,STOPP = C013 C001 !V0,-1,C001 0001 W0,-1,C001 0001 > C009 C010
= C019 0000
Postconditions: C018 + 0000 0001 C019 + 0000 0001

- Rule: Counter C018
- Priority: 150
- Preconditions:
SACTIV: it is applicable only to modules set in the active state.
T0,-1,STOPP: the grid cell in position (0,−1) needs to be set in the stop state.
= C013 C001: the rule applies only if the value of the counter C01 meets the
value of its counter C13.
> C009 C010: the rule applies only if the value of the counter C09 of the
module is bigger than the value of its counter C10.
= C019 0000: the rule applies only if the value of the counter C19 is 0.
(!V0,-1,C001 0001 W0,-1,C001 0001): the value of the counter C01 of the
module in position (0,−1) has to be equal to 1.
- Postconditions:
C018 + 0000 0001: the modules sets to 1 its counter C18.
C019 + 0000 0001: the modules sets to 1 its counter C19.

9.6. RULES 165

Rule Name: Counting of the modules of the last column
Priority: 100
Preconditions: SBRIDG !E0,1 = C013 C001 = C016 0000 !V0,1,C018 0001 W0,1,C018 0001 > C009 C010
Postconditions: C014 + C014 0001 C016 + 0000 0001 C018 + 0000 0001

- Rule: Counting of the modules of the last column
- Priority: 100
- Preconditions:
SBRIDG: it is applicable only to modules set in the bridge state.
!E0,1: the grid cell in position (0, 1) needs to be occupied.
= C013 C001: the rule applies only if the value of the counter C01 of the
module equals the value of its counter C13.
= C016 0000: the rule applies only if the value of the counter C16 of the
module is 0.
> C009 C010: the rule applies only if the value of the counter C09 of the
module is bigger than the value of its counter C10.
(!V0,1,C018 0001 W0,1,C018 0001): the value of the counter C18 of the
module in position (0, 1) has to be equal 1.
- Postconditions:
C014 + C014 0001: the module adds 1 to its C04 counter.
C016 + 0000 0001: the module sets its C16 counter to 1.
C018 + 0000 0001: the modules sets to 1 its counter C18.

Rule Name: Auxiliar counter for the counting
Priority: 100
Preconditions: SBRIDG E0,1 = C016 0001
Postconditions: C016 + 0000 0000

- Rule: Auxiliary counter for the counting
- Priority: 100
- Preconditions:
SBRIDGE: it is applicable only to modules set in the bridge state.
E0,1: the grid cell in position (0, 1) needs to be empty.
= C016 0001: the rule applies only if the value of the counter C16 of the
module is 1.
- Postconditions:
C016 + 0000 0000: the module adds 0 to its C04 counter.

Rule Name: Bridges reconfiguration
Priority: 100
Preconditions: SBRIDG E0,1 = C014 C015
Postconditions: SMOVES

- Rule: Bridges recon�guration
- Priority: 100
- Preconditions:
SBRIDGE: it is applicable only to modules set in the bridge state.
E0,1: the grid cell in position (0, 1) needs to be empty.
= C014 C015: the rule applies only if the value of the counter C14 of the
module equals the value of its counter C15.
- Postconditions:
SMOVES: the module changes its state to moves.

166CHAPTER 9. HISTOGRAM LOCOMOTION UNDER SUPERIOR OBSTACLES

Chapter 10

General obstacles

10.1 Goal

In this chapter we discuss the strategy for the overpassing of general obstacles,
i.e. obstacles with general shapes formed by connected components which lay
on the ground, without any height restriction. In the following, we will not
focus neither on the initial shape of the system, nor in the recon�guration at
the end of the locomotion; the crossing can be performed by any system that is
able to recon�gure into a worm shape as it touches the obstacle, or before, as
long as the system starts its movement externally to the orthogonal convex hall
of all obstacles.

10.2 Strategy

The strategy for the overpassing of a general connected obstacle is analogous to
the one used in the locomotion of the histogram with obstacles: as the system
encounters the obstacle, the modules create a static path over it, changing their
state to paths and allowing the others to walk over and traverse it without any
disconnection. In the case of general obstacles, though, many new di�culties are
generated by the new possible con�gurations; as the obstacle is not con�gured as
an histogram anymore, bottlenecks are created between di�erent branches of the
obstacle, and between di�erent modules of the path. Notice that, as the obstacle
is connected, the presence of a bottleneck is always associated to the presence
of an hole or a cul-de-sac in the obstacle, which may cause complications. In
order to overpass this type of structures and avoid disconnections and collisions,
di�erent types of bridges are created during the crossing, this time not only
between the obstacle and the system, but between two modules of the system
too. In the following sections, we analyze all the di�erent types of bridges that
are needed in order to deal with all the possible situations that the system may
encounter during its way. We treat in the last sections the cases of combinations
of di�erent type of bridges, and the practical structure of the rules.

167

168 CHAPTER 10. GENERAL OBSTACLES

10.3 Bottlenecks of width 2

The �rst critical con�guration for the formation of the path is the one generated
by the presence of bottlenecks of width 2 created between two di�erent branches
of the obstacle. In order to overpass such bottlenecks, the �rst type of bridge has
been introduced: we are for the �rst time in front of the need of the creation of
bridges between modules of the path. As an active module detects the presence
of a bottleneck of this type then, it changes its state to a bridge state and blocks
the way to the rest of modules, avoiding the �lling of the bottleneck and making
the overpassing �uider and faster. Such bridge deals with all the cases depicted
in Figure 10.1.

Figure 10.1: First type of bridge: as an active module encounters a bottleneck
of width 2, it changes its state and stays still until all the rest of modules have
crossed it; as it becomes the last module of the path, it activates another time
and continues its locomotion. In the Picture we can see that the bridge is formed
in all the three possible cases: in (a) the bridge is formed between two branches
of the same length; in (b) the �rst branch that the system encounters is shorter
than the second one, while in (c) the �rst one is longer than the second. The
fact that in the Figure the two branches forming the bottlenecks are parallel is
not a limitation, as the formation of the bridge is only related to the position
of the two last module of the branches; the position of the rest of the obstacle
modules is then irrelevant. Grey modules are modules of the path, the orange
module is the bridge, and black modules are obstacle modules.

Notice that the same situations can be generated in all the di�erent di-
rections; such cases are controlled by three more analogous bridges, each one
dedicated to a di�erent possible orientation, and each one working exactly in
the same way.

10.4. BOTTLENECKS OF WIDTH 3: INTRODUCTION 169

10.4 Bottlenecks of width 3: Introduction

The second important case to consider is the one in which a bottleneck of width
3 is created by two di�erent modules of the obstacle. As the system creates the
path over the obstacle, any bottleneck of width 3 is transformed in a bottleneck
of width 1 formed between two di�erent modules of the path, as we can notice
in Figure 10.2.

Figure 10.2: Example of bottleneck of width 3: as there is a 3-grid cells distance
between the modules of the obstacle, the path formation generates a bottleneck
of width 1, through which modules can walk in both directions colliding the one
with the other. Grey modules are modules of the path, pink modules are active
and black modules are obstacle modules.

The need of a creation of a bridge in this case is the need to control col-
lisions between active modules that, while following the path, enter into the
hole created by the obstacle, and modules that come out from it. The many
particular situations that can be generated can be grouped into the four general
cases depicted in Figure 10.3, depending on the di�erent relative situations of
the two modules of the path that create the bottleneck (i.e. on the di�erent
con�gurations of the obstacle that they are covering); notice that each of this
case needs to be considered in all the possible orientations.

(a) (b) (c) (d)

Figure 10.3: General cases of bottleneck of width 1 between modules of the
path: such cases are generated by the formation of the path over bottlenecks of
width three between two branches of the obstacle.

In the following sections we will treat separately the di�erent cases, and
present the di�erent strategies created in order to overpass such type of con�g-
urations.

170 CHAPTER 10. GENERAL OBSTACLES

10.5 Bottlenecks of width 3: �rst case

In this section we treat the case (a) of Figure 10.3; in this con�guration, as
two branches of the obstacles form a bottleneck of width 3, the path formation
generates a bottleneck of width 1 formed by two path modules placed in the
same vertical (or horizontal, depending on the direction) line. Depending on the
con�guration of the system around the two path modules, di�erent strategies
are adopted.

10.5.1 Moving bridges

The �rst case to study is the one depicted in Figure 10.4; in this case, an active
module is standing in the bottleneck formed by the two path modules, and a
third path module blocks its way on one of its sides. The active module changes
then its state to a bridge state.

Figure 10.4: Case of the moving bridge: the active module changes its state
to a bridge state when it �nds itself stuck in a bottleneck of width 1 and with
another path module blocking its way on its right.

As soon as the bridge is formed, the remaining active modules walk over it
and continue the formation of the path; if the con�guration of the new parts of
the path is such that a new bottleneck of width 1 is formed next to the original
one, the bridge slides to its left and blocks it; this is done until the end of one
of the two branches is reached and the last bottleneck is blocked. We can see
an example of such behavior in Figure 10.5.

As soon as all the modules have overpassed the bottleneck, the bridge ac-
tivates again and clears the way for the modules in the hole to activate and
move.

10.5.2 Joint bridges

The second type of bridge to analyze is the one created in the situations depicted
in Figure 10.6; in this cases the obstacle creates an hole in which the active
modules enter while creating the path; as the bottleneck is formed, some active
modules are inside the hole and the rest of modules are outside, so the bottleneck
needs to be blocked in order to avoid collisions.

As soon as the bridge is formed the remaining active modules walk over it
and continue the formation of the path. Given the de�nition of path, when new
parts of it are formed at least one more bottleneck of width 1 is created next
to the original one; this is due to the presence of the path in relative position
(0, 1) with respect to the bridge (refer to Figure 10.6), and to the fact that (1, 1)
cannot be occupied by a path module: the module in (0, 1) needs to be adjacent
to an obstacle module, and such obstacle produces the formation of at least two

10.5. BOTTLENECKS OF WIDTH 3: FIRST CASE 171

Figure 10.5: The moving bridge case: as the bridge is formed, if other bottle-
necks are created next to the original one, the bridge moves under a speci�c
rule and blocks all the bottlenecks until it reaches the end of one or both of the
branches. The active modules that may cause collisions with the moving bridge
stand still if the bridge is moving, due to a speci�c precondition. Grey modules
are modules of the path, pink modules are active, black modules are obstacle
modules and the red module is the moving bridge.

other adjacent path modules. When this type of bridge is formed then, other
bridges of the same type join the �rst one; such additional bridges are created
as long as more bottlenecks of width 1 are encountered; we can see and example
of such con�guration in Figure 10.7.

The main di�erence between this case and the case of moving bridges is that
in this case there can be found active modules on both sides of the bridge: we
don't allow the locomotion of the bridge, as its presence blocks the movement
of the modules in the hole and avoid loops; as an active module in the hole
encounters this type of bridge, in fact, it blocks its movement until the bridge
activates again and clears the way.

We can see that with the formation of the moving bridge and the joint bridges
we are able to deal with all the possible cases of a bottleneck of with 1 formed by
two path modules positioned in the same vertical line, in the examined direction;
by the application of the same strategies in the 3 directions left, we cover all the
possible cases for the bottlenecks of width 1 formed by two vertically aligned
path modules. In Figure 10.8 we can see a summary of all the possible cases for
the current direction; it is easy to see that any other case is either a sub-case of
the ones depicted, or the symmetric of one of them, or it is the same case in an
horizontal version.

172 CHAPTER 10. GENERAL OBSTACLES

E/A

E/A

E/A E/A

E/A

E/A

E/A

Case I Case II Case III

Figure 10.6: Second case of bridge for bottlenecks of width 3: obstacle modules,
and the path over it, create an hole, and the �rst active module which encounters
it blocks the way to the others in order to avoid collisions between the entering
modules and the coming out modules. Grey modules are path modules, the
orange cell is the bridge and E/A means that the grid cell is either empty or
occupied by an active module. All the symmetric cases and their horizontal
analogous are treated in the same way, through the formation of analogous
bridges.

10.6 Bottlenecks of width 3: trasversal bridges

The second and the third cases of bottleneck (refer to (b) and (c) of Figure
10.3) are treated through the creation of a third type of bridge between the two
modules of the path: the trasversal bridge. The di�erent cases possible for this
type of con�guration are depicted in Figure 10.9; for each one of these cases, a
di�erent trasversal bridge is created. As soon as an active module encounters
such con�guration, it changes its state to a trasversal bridge state and stays
still until the rest of module external to the hole have crossed the bottleneck;
the active module in the internal part of the hole don't move until the bridge
is active again and clears the way. The same four di�erent cases of the Figure
10.9 can be found in their horizontal version, so eight di�erent trasversal bridges
need to be de�ned.

The process for the creation and reactivation of a trasversal bridge requires
the joint action of an additional module, used as a pivot by the reactivating
bridge in order to avoid disconnections; as we can see in Figure 10.10 (a), without
an auxiliary module the bridge could not activate and move without generating
a disconnection of the system. In this case, then, as an active module reaches
the right position (on the top of the trasversal bridge in the case of Figure 10.10
(b)) it changes its state to path and conserves its position until the bridge is
active again; it activates then, as soon as it is free to move.

The auxiliary path position depends on the position of the bridge with re-
spect to the two path modules of the bottleneck; such auxiliary module is always
formed outside the hole, by an active module that is crossing the bottleneck; in
Figure 10.11 we can observe the di�erent positions of such auxiliary module de-
pending on the di�erent con�gurations; notice that the formation of the bridge
is performed always by active modules before they enter in the hole, and not by
active modules that are coming out of it.

In Figure 10.12 we can observe the process of formation and reactivation of
a trasversal bridge module.

Notice that a trasversal bridge is not formed in the cases in which the same
bottleneck can be overpassed through the use of the bridges described in Sub-

10.7. DIAGONAL BRIDGES 173

Figure 10.7: Joint bridges: as a bottleneck is formed in (a) the appropriate
bridge is created in (b); in (c) we can see how two others analogous bridges
blocks the new bottlenecks. In (d), (e), (f) the bridges reactivate and clear the
way as all the modules out of the hole have crossed the bottleneck. Notice in
(c), (d) and (e) how the active modules in the hole block their movement as
the bridge is detected, and stay still until the bridge is again an active module.
Case II and III are treated in the same way.

section 10.5.2. In the case of Figure 10.13 for example, and in all the analogous
situations, although the module encounters a bottleneck of the type described
for the trasversal modules, it continues its movement and forms a joint bridge
in the following time step. In this case, a possible collision between the current
module and any active module coming out from the hole is avoided through
dedicated preconditions in the rules for the locomotion of active modules over
the path. This choice is done in order to reduce the number of bridges, as the
de�nition of new trasversal bridges would be needed in order to deal with these
other con�gurations without the use of the previous bridges de�ned.

In Figure 10.14 we can see an example of a bottleneck of width 1 between
two path modules crossed through the use of our method.

10.7 Diagonal bridges

The last case to study is the case of a bottleneck formed by two path modules
diagonally aligned, as in Figure 10.3 (c).

In order to deal with this case, a new type of bridge is created: the diagonal
bridge; such bridge is formed by the conjunction of two di�erent modules that
work together in order to block the way and avoid con�icts generated between
modules coming out from the hole and modules that are entering in it. The
creation of this type of bridges is divided in two phases; in the �rst phase of the
formation of a diagonal bridge, an active module who recognizes the presence of

174 CHAPTER 10. GENERAL OBSTACLES

E/A

E/A

E/A

E/A

E/A

E/A

E/A

Moving bridge Joint bridges Joint bridges Joint bridges

Impossible Impossible Impossible

E/A

Impossible

Figure 10.8: Possible cases for the bottlenecks of width 1 formed by two verti-
cally aligned path modules. Grey modules are path modules, the active module
candidate for the bridge formation is the pink module, E/A indicates that the
grid cell can be either empty or occupied by an active module and crossed
cells are obstacles. A grid cell without any speci�ed condition can be empty or
occupied by any possible module.

Trasversal bridge I Trasversal bridge II Trasversal birdge III Trasversal bridge IV

E/A

E/A E/A

E/A

E/A

E/A E/A

E/A

Figure 10.9: Transversal bridges: path modules are depicted in gray, the active
module that encounters the bottleneck is depicted in pink; E/A means that the
grid cell is either empty or occupied either by an active module.

the bottleneck stops and changes its state into a bridge state, creating the �rst
component of the bridge. As soon as a second active module reaches the right
position, and notices the presence of the �rst component of the bridge, it changes
its own state creating the second one and completes the diagonal bridge. While
the bridge is present, the active modules which are out of the hole overpass it by
walking diagonally over these two modules, and continuing the formation of the
path on the other side. As soon as all the modules have overpassed the bridge,
its �rst component activates and enters the hole; the second component detects
such activation and activates itself, clearing the way for the modules that are
stuck into the hole. We can observe an example of the overpassing of a diagonal
bottleneck with the use of diagonal bridges in Figure 10.15.

There are four di�erent possible con�gurations that require the formation of
a diagonal bridge, depending on the orientation of the path modules that form
the bottleneck and from the relative position of the hole; we can see all these
cases depicted in Figure 10.16, together with the position of the two component
of the diagonal bridge formed in each case.

10.8. COMBINATIONS OF BRIDGES 175

(a) (b)

Figure 10.10: Formation of the auxiliary path module for trasversal bridges:
(a) shows how, without the auxiliary path module, at the moment of activation
the trasversal bridge (depicted in purple) cannot move as it cannot attach to
any other module; in (b) we can see how, through the auxiliary path formation
(blue module), the bridge is able to move and clear the way as soon as the �rst
of the two path modules of the bottleneck (pink module) activates again.

H

H

Trasversal bridge I Trasversal bridge II Trasversal birdge III Trasversal bridge IV

H

H

Figure 10.11: Di�erent cases for the trasversal bridges in the vertical direc-
tion. Grey modules are path modules, pink modules are the di�erent trasversal
bridges, and yellow modules indicate the auxiliary path modules. The curved
segment that links the two path modules in each con�guration indicates the
position of the hole.

10.8 Combinations of bridges

In the previous section we discussed the strategy for the formation of bridges
without considering the possibility of the presence of two or more di�erent types
of bridges combined together in the same con�guration. The most versatile type
of bridge in this sense is the �rst bridge discussed in Section 10.3: such bridge
is treated exactly as a path module, and is then recognized by other modules as
a possible support module for the creation of a bridge: any module can block a
bottleneck formed between two path module as between a path module and a
bridge of type I. We can observe many con�gurations in which two consecutive
bridges of the �rst type are created, or in which bridges of other kinds are created
over a bridge of the �rst type; as an example of this property see Figure 10.17.

This �rst kind of bridge is then such that any other module is able to attach
to it an form any bridge; this is the only kind of bridge which has this property
in our settings. The rest of combinations are allowed only between selected pairs
of bridges in order to deal with particular situations, as in Figure 10.18 where
a bridge of type II is formed between a path module and a diagonal bridge.

The rest of combinations allowed in our settings are all combinations in the
sense that two di�erent kinds of bridges can be created in the same neighbor-

176 CHAPTER 10. GENERAL OBSTACLES

H E/A H

(c) (d)

E/AH

(a)

E/A H

(b)

E/A

Figure 10.12: The process of reactivation of a trasversal bridge through its aux-
iliary module: in (a) the bridge is formed as soon as the bottleneck is detected;
in (b) the �rst active module changes its state to path forming the auxiliary
module for a bridge. In (c) and (d), as the �rst one of the modules of the
bottleneck is active again and clears the way, the bridge activates and uses the
auxiliary module as a pivot to move again. The bridge is the violet module,
path modules are gray and active modules are pink; we depict the auxiliary
module in yellow in order to distinguish it from the rest of path modules.

(a) (b) (c)

A B

C

A B A B

C C

Figure 10.13: If the same bottleneck can be overpassed by the formation of a
joint bridge, the current module continue its movement. In (a) and (b) we can
see how, although the module detects a trasversal bottleneck formed by modules
B and C, due to the presence of the path module A it continues its movement
and chooses to form another type of bridge. Path modules are gray, the current
active module is pink and the bridge is depicted in orange.

hood, but they cannot be attached the one to the other. The only requirement
for the formation of the rest of bridges is than that they need to be able to
recognize the presence of other ones in their neighborhood, and to move in this
case as in the presence of path modules.

10.9 Strategy for the implementation of the rules

In order to deal with the presence of four di�erent directions of movement, some
particular features are introduced to the structure of the rules; we present here
the general idea of the rules created for the overpassing of general connected
obstacles. The �rst thing to notice is that in this settings each de�nition of
a bridge corresponds to a new bridge state; such states are named following
di�erent patterns depending on the type of bridge de�ned: the pattern *brid is
used for the moving bridges, brid* for the joint bridges, bris* for the bridges

10.9. STRATEGY FOR THE IMPLEMENTATION OF THE RULES 177

Figure 10.14: Example of crossing of a bottleneck through the use of a trasversal
bridge: as an active module encounters the bottleneck in (a), it changes its state
to a bridge state in (b). In (c) an auxiliary active module changes its state to
path in order to allow the reactivation and movement of the bridge. In (d) and
(e) the bridge is free to move and activates again; in (f) we can see how the
crossing is completed.

for bottlenecks of width 2, tras* for the trasversal bridges and diag* for the
diagonal ones; the �rst or last missing letter, indicated with *, is replaced by
a di�erent letter for each di�erent orientation and case. The de�nition of each
bridge is always associated with the de�nition of some advance rules speci�c for
the movement over such bridge, that cannot be applied over any other; this is
due to the fact that now active modules move in the four di�erent directions,
and we control the directions that modules have to follow through the de�nition
of di�erent advance rules for di�erent bridges. To understand this, we can
consider as an example of this strategy the formation of the bridge bridf depicted
in Figure 10.7; notice how the active modules out of the hole continue their
movement, while the active modules inside the hole stop and stand in line,
waiting for the bridge to be active again; this behavior is due to the fact that,
while there exists a `North rule over the bridf', no `South rule over the bridf'
is de�ned, so any module which intends to move south cannot apply any rule if
the support module is set to bridf, and has to wait until the bridge disappears.
In order to make this system work, it is really important that each bridge is
formed in the right place, and that a bridge designed for a given direction is not
created for another one; this, in some cases, is di�cult or impossible to achieve
through the only knowledge of the local con�guration of the path. We can see
an example of this ambiguity comparing the two cases depicted in Figure 10.19,
in which the preconditions for the formation of the two bridges bridf and bridh
are shown, together with the relative positions of the holes. In this case, the
preconditions for the formation of two di�erent bridges are not incompatible, so
any active module which encounters such con�guration is not able to understand

178 CHAPTER 10. GENERAL OBSTACLES

Figure 10.15: Example of the overpassing of a hole through the formation of
a diagonal bridge. In (a), the �rst active modules to detect the bottleneck
is the one which forms in (b) the �rst component of the bridge. In (c) the
second component of the bridge is created. In (d) and (e) we can observe the
reactivation of the two components.

which of the state is the right one, as active modules cannot deduce the position
of the hole just from the position of its neighbors.

To deal with such kind of problems, a new tool is introduced for the control
over the identity of the last path module: each time a module changes its state
to path, its counter C00 is set to 1, and then reset to zero as the following
path module is created; at each step of the locomotion of the system then,
modules have a way to check which is the last module of the path, and in
ambiguous situations a check over the counter C00 of the right path module
of the bottleneck solves the problem of the orientation. In the cases of Figure
10.19, for example, the bridf bridge will be created if the path module in relative
position (0, 1) has its C00 set to 1, while the bridh will be chosen if the last
module of the path is the one in relative position (0,−1). The change of the
counter C00 is applied to the case of bridges for the bottlenecks of width 2: as
they are physically part of the path, in spite of their state they are treated as
modules of the path in the strategy of the movement.

10.10 Still to be done

In the next section we present an incomplete version of the rules for the overpass-
ing of general connected obstacles. Although the di�erent kind of bottlenecks
presented in the previous sections cover all the possible cases, and in spite of
the fact that the de�ned correspondent bridges are able to deal with each one
of these bottlenecks one by one, when such bottlenecks and bridges combine
together in the same neighborhood, the path over them can generate many dif-

10.10. STILL TO BE DONE 179

H

H

H

H

Case I Case II Case III Case IV

1

2
1

2
1

2
1

2

Figure 10.16: Di�erent cases for the diagonal bridge formation, with the chrono-
logical order for the formation of the components. Grey modules are path mod-
ules, pink modules are the components of the bridge; the H and the line that
connects the path modules of each case is the indication of the relative position
of the hole.

Figure 10.17: Two examples of combinations for bridges of the �rst type: in (a)
we can observe two consecutive bridges of type I created along the path, while
in (b) a bridge of type II (red in the Picture) is formed over a bridge of type I.
Orange modules are bridges of type I, red modules are bridge of type II, gray
modules are path modules and black modules are obstacles.

ferent con�gurations, due to the complexity of the shapes that the obstacle may
take. Such diverse cases have not been treated yet in a systematic way, and
the rules re�ect this lack of orderliness. In order to deal with all the di�erent
con�gurations then, more di�erent rules of activation of the path and bridges
may be necessary, and the introduction of new di�erent combinations of bridges
may be needed. As the set of rules presented is not a de�nitive version, we skip
the studies of correctness and complexity and present the current rules without
a detailed explanation of each one of them.

180 CHAPTER 10. GENERAL OBSTACLES

Figure 10.18: Combination between a diagonal bridge and a bridge of type II;
the diagonal bridge is depicted in blue, while the red module is a bridge of type
II. As always, gray modules are path modules and black modules are obstacles.

E/A

E/A

E/A

E/A

E/A

E/A

H H

Case I: bridf Case II: bridh

Figure 10.19: Preconditions for the formation of two di�erent bridges: the two
situations are not incompatible, and any module which satisfy the one set of
preconditions could at the same time satisfy the second. We indicate the posi-
tion of the hole too, in order to point out how the confusion between the two
bridges could a�ect the e�cacy of our strategy of movement. Notice that in the
preconditions we are not depicting the cases of combinations of bridges.

10.11. RULES 181

10.11 Rules

Nord
2
!(!SACTIV !SINACT) N001* T1,1,INACT
P0,1 SACTIV A****

Nordest
2
!(!SACTIV !SINACT) N001* T1,0,INACT E1,1
P1,1 SACTIV A***1

Est
2
!(!SACTIV !SINACT)N0*01 T1,-1,INACT
P1,0 SACTIV A***1

Sud
2
!(!SACTIV !SINACT) N*1*0 T-1,-1,INACT !(!T1,0,OBSTA !E1,0)
P0,-1 SACTIV A***1

Sudest
2
!(!SACTIV !SINACT) N0001 T0,-1,INACT E1,-1
P1,-1 SACTIV A*1**

Disattivazione
1
SACTIV N*10* !T0,1,DIAG* !T-1,0,DIAG* !T0,-1,PATHS !T0,1,PATHS !T-
1,0,PATHS !T1,0,PATHS !T0,1,*BRID !T0,-1,*BRID !T1,0,*BRID !T-1,0,*BRID
!T0,-1,ACTIV !T0,1,BRID* !T0,-1,BRID* !T1,0,BRID* !T-1,0,BRID* !T0,1,BRIS*
!T0,-1,BRIS* !T1,0,BRIS* !T-1,0,BRIS*
SINACT

Counter for the last module of the path I
100
!(!SPATHS !SBRIS*) = C000 0001 !(!(T-1,0,PATHS T1,0,PATHS) !(T0,1,PATHS
T0,-1,PATHS))
C000 + 0000 0000

Counter for the last module of the path II
100
!(!SPATHS !SBRIS*) = C000 0001 !(!(T-1,0,PATHS T0,-1,PATHS) !(T-1,0,PATHS
T0,1,PATHS) !(T0,1,PATHS T1,0,PATHS) !(T1,0,PATHS T0,-1,PATHS))
C000 + 0000 0000

Counter for the last module of the path III
100

182 CHAPTER 10. GENERAL OBSTACLES

!(!SPATHS !SBRIS*) = C000 0001 !(!T0,1,PATHS !T0,1,BRIS*) T1,0,OBSTA
E1,-1
C000 + 0000 0000

Counter for the last module of the path - Case of consecutive bridges I
100
!(!SPATHS !SBRIS*) = C000 0001 !(!(T-1,0,BRIS* T1,0,PATHS) !(T-1,0,PATHS
T1,0,BRIS*) !(T0,1,BRIS* T0,-1,PATHS) !(T0,1,PATHS T0,-1,BRIS*))
C000 + 0000 0000

Counter for the last module of the path - Case of consecutive bridges II
100
!(!SPATHS !SBRIS*) = C000 0001 !(!(T-1,0,BRIS* T0,-1,PATHS) !(T-1,0,PATHS
T0,-1,BRIS*) !(T-1,0,BRIS* T0,1,PATHS) !(T-1,0,PATHS T0,1,BRIS*) !(T0,1,BRIS*
T1,0,PATHS) !(T0,1,PATHS T1,0,BRIS*) !(T1,0,BRIS* T0,-1,PATHS) !(T1,0,PATHS
T0,-1,BRIS*))
C000 + 0000 0000

First module of the path Case I
5
SACTIV N*110 T1,0,OBSTA T-1,0,INACT E-1,-1
SPATHS C000 + 0000 0001

First module of the path Case II
5
SACTIV N*111 T0,-1,INACT T1,0,OBSTA T-1,0,INACT
SPATHS C000 + 0000 0001

First module of the path Case III
5
SACTIV N**11 T1,0,OBSTA !(!E-1,0 !T-1,0,ACTIV) T0,-1,INACT
SPATHS C000 + 0000 0001

Path formation I
5
SACTIV T1,0,PATHS T0,1,OBSTA
SPATHS C000 + 0000 0001

Path formation II
5
SACTIV T0,-1,PATHS T1,0,OBSTA
SPATHS C000 + 0000 0001

10.11. RULES 183

Path formation III
5
SACTIV T0,-1,PATHS T1,0,OBSTA
SPATHS C000 + 0000 0001

Path formation IV
5
SACTIV T-1,0,PATHS T0,-1,OBSTA
SPATHS C000 + 0000 0001

Path formation V
5
SACTIV T0,1,PATHS T-1,0,OBSTA
SPATHS C000 + 0000 0001

East Angle I
5
SACTIV T1,0,PATHS E0,1 T1,1,OBSTA
SPATHS C000 + 0000 0001

East Angle II
5
SACTIV T0,-1,PATHS E1,0 T1,-1,OBSTA
SPATHS C000 + 0000 0001

North Angle I
5
SACTIV T0,1,PATHS E0,-1 T-1,1,OBSTA
SPATHS C000 + 0000 0001

North Angle II
5
SACTIV T-1,0,PATHS E0,1 T1,1,OBSTA
SPATHS C000 + 0000 0001

West Angle I
5
SACTIV T-1,0,PATHS E0,-1 T-1,-1,OBSTA
SPATHS C000 + 0000 0001

West Angle II
5
SACTIV T1,0,PATHS E-1,0 T-1,1,OBSTA
SPATHS C000 + 0000 0001

South Angle I
5

184 CHAPTER 10. GENERAL OBSTACLES

SACTIV T0,-1,PATHS E1,0 T1,-1,OBSTA
SPATHS C000 + 0000 0001

South Angle II
5
SACTIV T-1,0,PATHS E1,0 T-1,-1,OBSTA
SPATHS C000 + 0000 0001

North on the Path
6
!(!SINACT !SACTIV) N0*1* !(!T1,0,PATHS !T1,0,INACT) T1,1,PATHS !(T0,2,BBRID
T-1,1,PATHS) !(T0,2,BBRID !E-1,1) !(T0,2,ACTIV !(!T-1,1,ACTIV !T-1,1,PATHS)
T-1,0,PATHS E-1,-1) !(!(SACTIV T-1,0,ACTIV) !T-1,0,OBSTA !E-1,0 !(T-1,0,PATHS
E-1,1 T-1,-1,PATHS)) !(T-1,1,ABRID E-1,0) !T0,2,ABRID
P0,1 A111* SACTIV

North-East on the Path
7
SACTIV N0*1* T1,0,PATHS E1,1 !(T2,1,ABRID !(!T1,2,PATHS !T1,2,ACTIV))
!(T1,2,ACTIV T0,2,PATHS)
P1,1 A1*11

East
7
SACTIV N**01 T1,-1,PATHS !(T2,0,ACTIV T2,1,DIAG*) !(T2,0,ABRID !(!T1,1,PATHS
!T1,1,ACTIV)) !T0,-1,ACTIV !T0,-1,BRID* !T0,-1,BRIS* !T0,-1,TRAS* !(T0,1,PATHS
T0,-1,PATHS T1,1,PATHS T1,-1,PATHS E-1,-1) !(T1,1,PATHS T2,1,ACTIV)
!T2,0,DBRID
P1,0 A*011

South
6
SACTIV N*1*0 T-1,-1,PATHS T-1,0,PATHS !(T0,-2,DBRID !(!T1,-1,PATHS
!T1,-1,ACTIV)) !(T0,-2,ACTIV T1,-2,PATHS) !(T1,0,PATHS !SACTIV T0,1,PATHS
T-1,0,PATHS) !(E0,1 E-1,1 T1,1,PATHS T-1,-1,PATHS) !(T1,-2,ACTIV T1,-
1,PATHS) !T0,-2,CBRID
P0,-1 A*1*1

South-East
6
SACTIV N**01 E1,-1 T0,-1,PATHS !(T1,-2,DBRID !(!T2,-1,PATHS !T2,-1,ACTIV))
!(T0,-1,PATHS T1,-2,ACTIV) !(T2,0,ACTIV T2,1,PATHS E1,1) !(T1,-2,PATHS
!E2,-1 !(!T0,-2,TRAS* !E0,-2 !T0,-2,ACTIV))
P1,-1 A*1*1

West
6
SACTIV N10** T-1,1,PATHS !(T-2,0,CBRID !(!T-1,-1,PATHS !T-1,-1,ACTIV))
!T0,1,TRAS* !(T-1,-1,PATHS T-2,0,ACTIV) !T-2,0,BBRID

10.11. RULES 185

P-1,0 A11*1

North-west
6
SACTIV N10** E-1,1 T0,1,PATHS !(T-1,2,BBRID !(!T-2,1,PATHS !T-2,1,ACTIV))
!(T-2,1,PATHS T-2,2,ACTIV)
P-1,1 A1*1*

North-west for Inactives
6
SINACT N10*0 E-1,1 !(!T1,0,OBSTA !E1,0)
SACTIV P-1,1 A1*1*

East for inactives
6
SINACT N0001 T1,-1,PATHS
SACTIV P1,0 A**11

North-east for inactives
6
SINACT N0011 T1,0,PATHS E1,1
SACTIV P1,1 A**11

South-west
6
SACTIV N*1*0 !(!E0,1 !T0,1,PATHS !(T0,1,ACTIV T-1,1,PATHS)) T-1,0,PATHS
E-1,-1 !(T-2,-1,CBRID !(!T-1,-2,PATHS !T-1,-2,ACTIV)) !(T0,-2,ACTIV T1,-
1,PATHS)
P-1,-1 A11**

South-west II
16
SACTIV N11*0 T-1,0,PATHS T0,1,OBSTA !(!T1,0,OBSTA !E1,0) E-1,-1
P-1,-1 A11*1

Path reactivation I
2
SPATHS N101* T0,1,PATHS T1,0,OBSTA !(!T0,-1,OBSTA !E0,-1)
SACTIV

Path reactivation I
2
SPATHS N0011 T1,0,PATHS T0,-1,OBSTA
SACTIV

186 CHAPTER 10. GENERAL OBSTACLES

Path reactivation III
2
SPATHS N11*0 T-1,0,PATHS T0,1,OBSTA !(!T1,0,OBSTA !E1,0)
SACTIV

Path reactivation IV
2
SPATHS N100* T0,1,PATHS T1,1,OBSTA !(!T0,-1,OBSTA !E0,-1)
SACTIV

Path reactivation V
2
SPATHS N0*10 T1,0,PATHS T1,-1,OBSTA !(!T-1,0,OBSTA !E-1,0)
SACTIV

Path reactivation VI
2
SPATHS N*101 T0,-1,PATHS T-1,0,OBSTA !(!T0,1,OBSTA !E0,1)
SACTIV

Path reactivation VII
2
SPATHS N01*0 T-1,0,PATHS !(!T1,0,OBSTA !E1,0) T-1,1,OBSTA
SACTIV

Path reactivation VIII
2
SPATHS N0*11 T1,0,PATHS !(!T-1,0,OBSTA !E-1,0) T0,-1,OBSTA
SACTIV

Path reactivation IX
2
SPATHS N0001 T0,-1,PATHS T-1,-1,OBSTA
SACTIV

Path reactivation X
2
SPATHS N1001 T0,1,OBSTA T0,-1,PATHS E1,-1
SACTIV

Bridge E Formation
10
SACTIV !(!T1,1,OBSTA !T0,1,OBSTA !T-1,1,OBSTA) E1,0 !(!E1,-1 !T1,-1,OBSTA)
!T-1,0,OBSTA !(!(!E0,-1 !T0,-1,OBSTA) !T-1,0,PATHS !T-1,0,BRIS*) !(!T0,-
1,OBSTA !T0,-1,PATHS !T0,-1,BRIS*)

10.11. RULES 187

SBRISE C000 + 0000 0001

Reactivation BridE I
5
SBRISE N10** T0,1,PATHS E1,0 !(!E0,-1 !T0,-1,OBSTA) E-1,1
SACTIV P-1,1 A**1*

Reactivation BridE II
5
SBRISE N*1*0 T-1,0,PATHS !(!E1,0 !T1,0,OBSTA) E-1,-1
SACTIV P-1,-1 A**1*

Reactivation BridE III
5
SBRISE N10*0 T0,1,PATHS !(!T-1,1,PATHS !T-1,1,*BRID !T-1,1,BRIS* !T-
1,1,BRID*) !(!E1,0 !T1,0,OBSTA) E-1,0
SACTIV P-1,0 A**1*

Path over a BridE
5
SACTIV T0,-1,BRISE T1,0,OBSTA
SPATHS C000 + 0000 0001

Path over a BridE II
5
SACTIV T1,0,BRISE !(!T1,1,OBSTA !T0,1,OBSTA)
SPATHS C000 + 0000 0001

North over a BridE I
2
!(!SACTIV !SINACT) N0*1* T1,0,PATHS T1,1,BRISE !T-1,0,INACT !(SIN-
ACT T-1,0,ACTIV) !(T0,2,BBRID !(!T-1,1,PATHS !T-1,1,ACTIV))
P0,1 SACTIV A****

North over a BridE II
2
!(!SACTIV !SINACT) N0*1* T1,0,BRISE !T-1,0,INACT T1,1,PATHS !(SIN-
ACT T-1,0,ACTIV) !(T0,2,BBRID !(!T-1,1,PATHS !T-1,1,ACTIV))
P0,1 SACTIV A****

North-east over a BridE
2
!(!SACTIV !SINACT) N0*1* T1,0,BRISE E1,1 !(!E-1,0 !(T-1,0,PATHS SAC-
TIV)) !(SINACT T-1,0,ACTIV)
P1,1 SACTIV A***1

188 CHAPTER 10. GENERAL OBSTACLES

East over a BridE
2
SACTIV N0*01 T1,-1,BRISE
P1,0 SACTIV A***1

North-west reactivation over a BridE (Path reactivation and movement)
6
SPATHS N10** E-1,1 T0,1,BRISE !(!T1,0,OBSTA !E1,0) !(!T0,-1,OBSTA !E0,-
1)
P-1,1 SACTIV A1*1*

West reactivation over a BridE (Path reactivation and movement)
2
SPATHS N10** !(!E0,-1 !T0,-1,OBSTA) T0,1,BRISE T-1,1,PATHS !(!T1,0,OBSTA
!E1,0) !(T-2,0,CBRID !(!T-1,-1,PATHS !T-1,-1,ACTIV))
P-1,0 SACTIV A11*1

North reactivation over bridE (Path reactivation and movement)
10
SPATHS N001* !T0,-1,PATHS T1,0,BRISE T1,1,PATHS !(T0,2,BBRID !(!T-
1,1,PATHS !T-1,1,ACTIV))
SACTIV P0,1 A****

BridN Formation
10
SACTIV !(!T-1,1,OBSTA !T-1,0,OBSTA !T-1,-1,OBSTA) E0,1 !(!E1,1 !T1,1,OBSTA)
!T0,-1,OBSTA !(!(!E1,0 !T1,0,OBSTA) !T0,-1,PATHS !T0,-1,BRID* !T0,-1,BRIS*
) !(!T1,0,OBSTA !T1,0,PATHS !T1,0,BRID* !T1,0,BRIS*)
SBRISN C000 + 0000 0001

Reactivation BridN I
5
SBRISN !(!E1,0 !T1,0,OBSTA) E0,-1 E-1,-1
P-1,-1 A1*** SACTIV

Reactivation BridN II
5
SBRISN E1,0 !(!T0,-1,PATHS !T0,-1,BRIS* !T0,-1,BRID*) E1,-1
P1,-1 A1*** SACTIV

Reactivation BridN III
5

10.11. RULES 189

SBRISN E0,-1 T-1,0,PATHS !(!T-1,-1,PATHS !T-1,-1,*BRID !T-1,-1,BRID* !T-
1,-1,BRIS*) !(!E1,0 !T1,0,OBSTA) !(!E0,1 !T0,1,OBSTA)
P0,-1 A*1** SACTIV

Path formation over a BridN I
5
SACTIV T1,0,BRISN T0,1,OBSTA
SPATHS C000 + 0000 0001

Path formation over a BridN II
5
SACTIV !(!T-1,0,OBSTA !T-1,1,OBSTA) T0,1,BRISN
SPATHS C000 + 0000 0001

North over a BridN
2
!(!SACTIV !SINACT) N001* T1,1,BRISN !(T0,2,BBRID !(!T-1,1,PATHS !T-
1,1,ACTIV))
P0,1 SACTIV A****

West over a BridN I
2
SACTIV N10*0 T-1,1,BRISN !(T-2,0,CBRID !(!T-1,-1,PATHS !T-1,-1,ACTIV))
P-1,0 A11*1

North-west over a BridN
2
SACTIV N10** E-1,1 T0,1,BRISN
P-1,1 A1*1*

West over a BridN (Path reactivation and movement)
2
SPATHS N10*0 T0,1,BRISN !T1,0,PATHS !T1,0,BRIS* !T1,0,BRID* T-1,1,PATHS
!(T-2,0,CBRID !(!T-1,-1,PATHS !T-1,-1,ACTIV))
P-1,0 A11*1 SACTIV

South-west over a BridN (Path reactivation and movement)
6
SPATHS N*1*0 !(!E0,1 !T0,1,OBSTA) !(!E1,0 !T1,0,OBSTA) T-1,0,BRISN E-
1,-1
P-1,-1 A11** SACTIV

South over a BridN (Path reactivation and movement)
6
SPATHS N*1*0 !(!T-1,-1,PATHS !T-1,-1,BRID* !T-1,-1,BRIS*) T-1,0,BRISN
!(!E0,1 !T0,1,OBSTA) !(!E1,0 !T1,0,OBSTA) !(T0,-2,DBRID !(!T1,-1,PATHS

190 CHAPTER 10. GENERAL OBSTACLES

!T1,-1,ACTIV))
P0,-1 A*1*1 SACTIV

BridO Formation
10
SACTIV !(!T-1,-1,OBSTA !T0,-1,OBSTA !T1,-1,OBSTA) E-1,0 !(!E-1,1 !T-1,1,OBSTA)
!T1,0,OBSTA !(!(!E0,1 !T0,1,OBSTA) !T1,0,PATHS !T1,0,BRID* !T1,0,BRIS*)
!(!T0,1,PATHS !T0,1,BRID* !T0,1,BRIS* !T0,1,OBSTA)
SBRISO C000 + 0000 0001

Reactivation BridO I
5
SBRISO !(!E0,1 !T0,1,OBSTA) E1,0 E1,-1
SACTIV P1,-1 A*111

Reactivation BridO II
5
SBRISO E0,1 T1,0,PATHS E1,1
SACTIV P1,1 A**11

Reactivation BridO III
5
SBRISO !(!E0,1 !T0,1,OBSTA) !(!T-1,0,OBSTA !E-1,0) !(!T0,-1,PATHS !T0,-
1,BRISS) !(!T1,-1,PATHS !T1,-1,*BRID !T1,-1,BRID* !T1,-1,BRIS*) E1,0
SACTIV P1,0 A**11

Path formation over a BridO
5
SACTIV T0,1,BRISO T-1,0,OBSTA
SPATHS C000 + 0000 0001

Path formation over a BridO II
5
SACTIV T-1,0,BRISO !(!T0,-1,OBSTA !T-1,-1,OBSTA)
SPATHS C000 + 0000 0001

South over a BridO
6
SACTIV N*1*0 T-1,0,PATHS T-1,-1,BRISO !(T0,-2,DBRID !(!T1,-1,PATHS
!T1,-1,ACTIV))
P0,-1 A*1*1

South over a BridO II
6
SACTIV N*1*0 T-1,0,BRISO T-1,-1,PATHS !(T0,-2,DBRID !(!T1,-1,PATHS
!T1,-1,ACTIV))

10.11. RULES 191

P0,-1 A*1*1

South-west over a BridO
6
SACTIV N*1*0 T-1,0,BRISO E-1,-1
P-1,-1 A11**

West over a BridO
6
SACTIV N10** T-1,1,BRISO !(T-2,0,BBRID !(!T-1,-1,PATHS !T-1,-1,ACTIV))
P-1,0 A11*1

South-east over a BridO
6
SACTIV N**01 T0,-1,BRISO E1,-1 !(!E0,1 !T0,1,OBSTA)
P1,-1 A*111

South-east reactivation over a BridO (Path reactivation and movement)
6
SPATHS N**01 T0,-1,BRISO !(!E0,1 !T0,1,OBSTA) !(!E-1,0 !T-1,0,OBSTA)
E1,-1
SACTIV P1,-1

East reactivation over a BridO (Path reactivation and movement)
2
SPATHS N0*01 T0,-1,BRISO T1,-1,PATHS !(!T-1,0,OBSTA !E-1,0) !(T2,0,ABRID
!(!T1,1,PATHS !T1,1,ACTIV))
P1,0 SACTIV A1*11

South reactivation over BridO (Path reactivation and movement)
10
SPATHS N*100 !T0,1,PATHS T-1,0,BRISO T-1,-1,PATHS !(T0,-2,DBRID !(!T1,-
1,PATHS !T1,-1,ACTIV))
SACTIV P0,-1 A*1*1

BridS Formation
10
SACTIV !(!T1,-1,OBSTA !T1,0,OBSTA !T1,1,OBSTA) E0,-1 !(!E-1,-1 !T-1,-
1,OBSTA) !T0,1,OBSTA !(!(!E-1,0 !T-1,0,OBSTA) !T0,1,PATHS !T0,1,BRID*
!T0,1,BRIS*) !(!T-1,0,OBSTA !T-1,0,PATHS !T-1,0,BRID* !T-1,0,BRIS*)
SBRISS C000 + 0000 0001

Reactivation BridS I
5
SBRISS N0*1* !(!T-1,0,OBSTA !E-1,0) E0,1 E1,1
SACTIV P1,1 A1*11

192 CHAPTER 10. GENERAL OBSTACLES

Reactivation BridS II
5
SBRISS E-1,0 !(!T0,1,PATHS !T0,1,BRID* !T0,1,BRIS*) E-1,1
SACTIV P-1,1 A**11

Reactivation BridS III
5
SBRISS E0,1 !(!E-1,0 !T-1,0,OBSTA) !(!T0,-1,OBSTA !E0,-1) T1,0,PATHS !(!T1,1,PATHS
!T1,1,*BRID !T1,1,BRID* !T1,1,BRIS*) !(T0,2,BBRID !(!T-1,1,PATHS !T-1,1,ACTIV))
SACTIV P0,1 A**1*

Path formation over a BridS I
5
SACTIV T-1,0,BRISS T0,-1,OBSTA
SPATHS C000 + 0000 0001

Path formation over a BridS II
5
SACTIV T0,-1,BRISS !(!T1,0,OBSTA !T1,-1,OBSTA)
SPATHS C000 + 0000 0001

North over Brids
6
SACTIV N0*1* T1,0,BRISS !(!T-1,0,OBSTA !E-1,0) T1,1,PATHS !(T0,2,BBRID
!(!T-1,1,PATHS !T-1,1,ACTIV))
P0,1 A**1*

Nordest Brids
2
SACTIV N0*1* T1,0,BRISS E1,1
P1,1 SACTIV A***1

East over a BridS
6
SACTIV N**01 !(!T1,-1,BRISS !T0,-1,BRISS) !(!T1,-1,BRISS !T1,-1,PATHS)
!(T2,0,ABRID !(!T1,1,PATHS !T1,1,ACTIV))
P1,0 A*011

South-east over a BridS
6
SACTIV N**01 T0,-1,BRISS E1,-1 !(!E0,1 !T0,1,OBSTA)
P1,-1 A*111

South over a BridS

10.11. RULES 193

6
SACTIV N*1*0 T-1,-1,BRISS !(!E1,0 !T1,0,OBSTA) !(T0,-2,DBRID !(!T1,-1,PATHS
!T1,-1,ACTIV))
P0,-1 A*1*1

East over a BridS (Path reactivation and movement)
2
SPATHS N0*01 T0,-1,BRISS !T-1,0,PATHS !T-1,0,BRID* T1,-1,PATHS !(T2,0,ABRID
!(!T1,1,PATHS !T1,1,ACTIV))
P1,0 A1*11 SACTIV

North-east over a BridS (Path reactivation and movement)
6
SPATHS N0*1* !(!E0,-1 !T0,-1,OBSTA) !(!E-1,0 !T-1,0,OBSTA) T1,0,BRISS
E1,1
P1,1 A**11 SACTIV

North over a BridS (Path reactivation and movement)
6
SPATHS N0*1* !(!T1,1,PATHS !T1,1,BRID* !T1,1,BRIS*) T1,0,BRISS !(!E0,-
1 !T0,-1,OBSTA) !(!E-1,0 !T-1,0,OBSTA) !(T0,2,BBRID !(!T-1,1,PATHS !T-
1,1,ACTIV))
P0,1 A1*1* SACTIV

Bridge A
100
SACTIV !(!T0,1,PATHS !T0,1,BRID* !T0,1,BRIS*) !(!T0,-1,PATHS !T0,-1,DIAG*
!T0,-1,BRIS*) !(!T1,1,PATHS !T1,1,BRID* !T1,1,BRIS*) !(!T1,-1,PATHS !T1,-
1,BRID* !T1,-1,BRIS* !T1,-1,TRAS*) !(!E-1,1 !(T-1,1,PATHS T0,1,*BRID))
!E1,0 !T1,0,ACTIV !T1,0,TRAS* !(T1,0,*BRID T-1,0,*BRID) !(T0,1,*BRID
T0,-1,*BRID) E-1,0
SABRID

North over Bridge A
5
SACTIV N0*1* T1,0,ABRID !(!T1,1,PATHS !T1,1,DIAG* !T1,1,BRID* !T1,1,BRIS*
!T1,1,*BRID) !(T0,2,BBRID !(!T-1,1,PATHS !T-1,1,ACTIV)) !(T0,2,ACTIV E1,2)
P0,1 A1*1*

North over Bridge A II
4
SACTIV N0*1* T1,1,ABRID !(!T1,0,PATHS !T1,0,DIAG* !T1,0,BRID* !T1,0,*BRID
!T1,0,BRIS*) !(T0,2,BBRID !(!T-1,1,PATHS !T-1,1,ACTIV)) !(T0,2,ACTIV E1,2)
P0,1 A1*1*

Bridge A movement

194 CHAPTER 10. GENERAL OBSTACLES

100
SABRID !(!T-1,1,PATHS !T-1,-1,BRIS*) !(!T-1,-1,PATHS !T-1,-1,BRIS*) E-1,0
P-1,0 A11*1

Bridge A reactivation
100
SABRID E0,-1 E-1,0
SACTIV

Bridge A reactivation II
100
SABRID E0,-1 !(!T-1,0,BBRID !T-1,0,PATHS) E-1,-1 !T1,-1,ACTIV
SACTIV P-1,-1

Module reactivation over a Bridge A
5
SPATHS T0,1,ABRID E-1,0 E-1,1 !(!T0,-1,OBSTA !E0,-1 !(T0,-1,PATHS T-1,-
1,OBSTA))
SACTIV P-1,1 A**1*

Module reactivation over a Bridge A III
5
SPATHS T0,1,ABRID !(!T-1,1,BBRID !T-1,1,PATHS) E-1,0 !(!T0,-1,OBSTA
!E0,-1) T1,-1,OBSTA
SACTIV P-1,0 A11*1

West over a bridge A
5
SACTIV T-1,1,ABRID T0,1,PATHS !(!E0,-1 !T0,-1,OBSTA) E-1,0 !(!T-2,1,BBRID
!T-2,1,PATHS)
P-1,0 A11**

North-West over a bridge A
5
SACTIV N10*0 E-1,1 T0,1,ABRID
P-1,1 A1*1*

Bridge B
100
SACTIV !(!T1,0,PATHS !T1,0,DIAG* !T1,0,BRIS* !T1,0,BRID*) !(!T-1,0,PATHS
!T-1,0,DIAG* !T-1,0,BRID* !T-1,0,BRIS*) !(!E-1,-1 !(T-1,-1,PATHS T-1,0,*BRID))
!(!T1,1,PATHS !T1,1,BRID* !T1,1,BRIS*) !(!T-1,1,PATHS !T-1,1,BRID* !T-
1,1,BRIS*) !E0,1 !T0,1,ACTIV !T0,1,TRAS* !(T1,0,*BRID T-1,0,*BRID) !(T0,1,*BRID
T0,-1,*BRID) E0,-1
SBBRID

10.11. RULES 195

West over a bridge B
5
SACTIV N10** T0,1,BBRID !(!T-1,1,PATHS !T-1,1,DIAG* !T-1,1,BRID* !T-
1,1,BRIS* !T-1,-1,*BRID) !(T-2,0,CBRID !(!T-1,-1,PATHS !T-1,-1,ACTIV))
P-1,0 A11**

West over a bridge B II
5
SACTIV N10** T-1,1,BBRID !(!T0,1,PATHS !T0,1,DIAG* !T0,1,BRID* !T0,1,*BRID
!T0,1,BRIS*) !(T-2,0,CBRID !(!T-1,-1,PATHS !T-1,-1,ACTIV))
P-1,0 A11**

South-west over a bridge B
5
SACTIV N11*0 T0,1,BBRID T-1,0,PATHS E-1,-1
P-1,-1 A11**

South-west II over a bridge B
5
SACTIV N11*0 T-1,0,BBRID E-1,-1
P-1,-1 A11**

South over a bridge B II
5
SACTIV N*1*0 T-1,-1,BBRID !(!T-1,-2,CBRID !T-1,-2,PATHS) T-1,0,PATHS
!(T0,-2,DBRID !(!T1,-1,PATHS !T1,-1,ACTIV)) !(!E1,0 !T1,0,OBSTA)
P0,-1 A11**

South over a bridge B III
4
SACTIV N*1*0 T-1,0,BBRID T-1,-1,PATHS !(T0,-2,DBRID !(!T1,-1,PATHS
!T1,-1,ACTIV)) !(!E1,0 !T1,0,OBSTA) !(!T-1,-1,CBRID !T-1,-1,PATHS)
P0,-1 A11**

Bridge B movement
100
SBBRID !(!T-1,-1,PATHS !T-1,-1,BRIS*) !(!T1,-1,PATHS !T1,-1,BRIS*) E0,-1
P0,-1 A*111

Bridge B reactivation
100
SBBRID E1,0 E0,-1
SACTIV

Bridge B reactivation II
100
SBBRID E1,0 !(!T0,-1,CBRID !T0,-1,PATHS) E1,-1 !T1,1,ACTIV
SACTIV P1,-1

Module reactivation over a Bridge B

196 CHAPTER 10. GENERAL OBSTACLES

5
SPATHS T-1,0,BBRID E0,-1 E-1,-1 !(!T1,0,OBSTA !E1,0 !(T1,0,PATHS T1,-
1,OBSTA))
SACTIV P-1,-1 A**1*

Module reactivation over a Bridge B III
5
SPATHS T-1,0,BBRID !(!T-1,-1,CBRID !T-1,-1,PATHS) E0,-1 !(!T1,0,OBSTA
!E1,0) T1,1,OBSTA
SACTIV P0,-1 A*11*

Bridge C
100
SACTIV !(!T0,1,PATHS !T0,1,TRAS* !T0,1,DIAG* !T0,1,BRID* !T0,1,BRIS*)
!(!T0,-1,PATHS !T0,-1,DIAG* !T0,-1,BRID* !T0,-1,BRIS*) !(!E1,-1 !(T1,-1,PATHS
T0,-1,*BRID)) !(!T-1,-1,PATHS !T-1,-1,BRID* !T-1,-1,BRIS*) !(!T-1,1,PATHS
!T-1,1,BRID* !T-1,1,BRIS*) !E-1,0 !T-1,0,ACTIV !T-1,0,TRAS* !(T1,0,*BRID
T-1,0,*BRID) !(T0,1,*BRID T0,-1,*BRID) E1,0
SCBRID

Bridge C Movement
100
SCBRID !(!T1,1,PATHS !T1,1,BRIS*) !(!T1,-1,PATHS !T1,-1,BRIS*) E1,0
P1,0 A1*11

Bridge C reactivation
100
SCBRID E0,1 E1,0
SACTIV

Bridge C reactivation II
100
SCBRID E0,1 !(!T1,0,DBRID !T1,0,PATHS) E1,1 !T-1,1,ACTIV
SACTIV P1,1

Module reactivation over a Bridge C
5
SPATHS T0,-1,CBRID E1,0 E1,-1 !(!T0,1,OBSTA !E0,1 !(T0,1,PATHS T1,1,OBSTA))
SACTIV P1,-1 A**11

Module reactivation over a Bridge C III
5
SPATHS T0,-1,CBRID !(!T1,-1,DBRID !T1,-1,PATHS) E1,0 T-1,1,OBSTA !(!T0,1,OBSTA
!E0,1)
SACTIV P1,0 A**11

10.11. RULES 197

South over a Bridge C
7
SACTIV N*1*0 T-1,0,CBRID !(!T-1,-1,PATHS !T-1,-1,DIAG* !T-1,-1,BRID*
!T-1,-1,*BRID !T-1,-1,BRIS*) !(T0,-2,DBRID !(!T1,-1,PATHS !T1,-1,ACTIV))
P0,-1 A11**

South over a Bridge C II
7
SACTIV N*1*0 T-1,-1,CBRID !(!T-1,0,PATHS !T-1,0,DIAG* !T-1,0,BRID* !T-
1,0,BRIS* !T-1,0,*BRID) !(T0,-2,DBRID !(!T1,-1,PATHS !T1,-1,ACTIV))
P0,-1 A11**

East over a Bridge C
6
SACTIV T1,-1,CBRID !(!T2,-1,PATHS !T2,-1,DBRID) !(!T0,1,OBSTA !E0,1)
T-1,1,OBSTA
P1,0 A**01

South-East over a Bridge C
6
SACTIV T0,-1,CBRID T1,-2,PATHS E1,0 E1,-1
P1,-1 A***1

Bridge D formation
100
SACTIV !(!T-1,0,PATHS !T-1,0,DIAG* !T-1,0,BRID* !T-1,0,BRIS*) !(!T1,0,PATHS
!T1,0,DIAG* !T1,0,BRID* !T1,0,BRIS*) !(!T1,-1,PATHS !T1,-1,BRID* !T1,-
1,BRIS*) !(!T-1,-1,PATHS !T-1,-1,BRID* !T-1,-1,BRIS*) !(!E1,1 !(T1,1,PATHS
T1,0,*BRID)) !T0,-1,ACTIV !E0,-1 !T0,-1,TRAS* !(T1,0,*BRID T-1,0,*BRID)
!(T0,1,*BRID T0,-1,*BRID) E0,1
SDBRID

Bridge D movement
100
SDBRID !(!T1,1,PATHS !T1,1,BRIS*) !(!T-1,1,PATHS !T-1,1,BRIS*) E0,1
P0,1 A111*

Bridge D reactivation
100
SDBRID E-1,0 E0,1
SACTIV

Bridge D reactivation II
100
SDBRID !(!T0,1,ABRID !T0,1,PATHS) E-1,1 E-1,0 !T-1,-1,ACTIV
SACTIV P-1,1

198 CHAPTER 10. GENERAL OBSTACLES

Module reactivation over a Bridge D
5
SPATHS T1,0,DBRID E0,1 E1,1 !(!T-1,0,OBSTA !E-1,0 !(T-1,0,PATHS T-1,1,OBSTA))
SACTIV P1,1 A**11

Module reactivation over a Bridge D III
5
SPATHS T1,0,DBRID !(!T1,1,ABRID !T1,1,PATHS) E0,1 !(!T-1,0,OBSTA !E-
1,0) T-1,-1,OBSTA
SACTIV P0,1 A**11

East over a Bridge D
8
SACTIV N**01 T0,-1,DBRID !(!T1,-1,PATHS !T1,-1,DIAG* !T1,-1,BRID* !T1,-
1,*BRID !T1,-1,BRIS*) !(T2,0,ABRID !(!T1,1,PATHS !T1,1,ACTIV)) !(T2,0,ACTIV
E2,-1) !(T2,1,ACTIV E2,0 T1,1,PATHS)
P1,0 A11**

East over a Bridge D II
6
SACTIV N**01 T1,-1,DBRID !(!T0,-1,PATHS !T0,-1,DIAG* !T0,-1,BRID* !T0,-
1,*BRID !T0,-1,BRIS*) !(T2,0,ABRID !(!T1,1,PATHS !T1,1,ACTIV)) !(T2,0,ACTIV
E2,-1) !(T2,1,ACTIV E2,0 T1,1,PATHS)
P1,0 A11**

North over a Bridge D
6
SACTIV T1,1,DBRID !(!T1,2,ABRID !T1,2,PATHS) !(!E-1,0 !T-1,0,OBSTA)
E0,1 !(!T0,-1,OBSTA !E0,-1)
P0,1 A**1*

North over a Bridge D II
6
SACTIV T1,0,DBRID !(!T1,1,ABRID !T1,1,PATHS) !(!E-1,0 !T-1,0,OBSTA)
E0,1 !(!T0,-1,OBSTA !E0,-1)
P0,1 A**1*

North-East over a Bridge D
6
SACTIV N0**1 T1,0,DBRID E1,1
P1,1 A1*11

Bridge F
100

10.11. RULES 199

SACTIV !(!E1,0 !T1,0,ACTIV) T0,1,PATHS (!V0,1,C000 0001W0,1,C000 0001)
T0,-1,PATHS E-1,1 !(!E1,1 !T1,1,ACTIV !T1,1,*BRID !T1,1,BRID* !T1,1,BRIS*)
!(!E1,-1 !T1,-1,ACTIV !T1,-1,*BRID !T1,-1,BRID* !T1,-1,BRIS*) SBRIDF

Bridge F II
100
SACTIV T1,0,BRIDF T0,-1,PATHS T0,1,PATHS
SBRIDF

Bridge F reactivation
15
SBRIDF E0,-1 E-1,0
SACTIV

Path reactivation over a bridge F
15
SPATHS T0,1,BRIDF E-1,0 E-1,1 !(!E0,-1 !T0,-1,OBSTA !(T0,-1,PATHS T-1,-
1,OBSTA))
SACTIV P-1,1 A**1*

North over a bridge F
6
SACTIV N0*1* T1,0,BRIDF T1,1,PATHS
P0,1 A1***

North over a bridge F II
6
SACTIV N0*1* T1,1,BRIDF T1,0,PATHS
P0,1 A1***

Bridge G
100
SACTIV !(!E0,1 !T0,1,ACTIV) T-1,0,PATHS (!V-1,0,C000 0001 W-1,0,C000
0001) T1,0,PATHS E-1,-1 !(!E-1,1 !T-1,1,ACTIV !T-1,1,CBRID !T-1,1,BRISO)
!(!E1,1 !T1,1,ACTIV !T1,1,ABRID !T1,1,BRISE) SBRIDG

Bridge G II
100
SACTIV T0,1,BRIDG T-1,0,PATHS T1,0,PATHS
SBRIDG

Bridge G reactivation
15

200 CHAPTER 10. GENERAL OBSTACLES

SBRIDG E1,0
SACTIV

Path reactivation over a bridge G
15
SPATHS T-1,0,BRIDG E0,-1 E-1,-1 !(!E1,0 !T1,0,OBSTA !(T1,0,PATHS T1,-
1,OBSTA))
SACTIV P-1,-1 A1***

North-west over a bridge G
6
SACTIV N10*0 E-1,1 T0,1,BRIDG
P-1,1 A1*1*

West over a bridge G
6
SACTIV N10*0 T-1,1,BRIDG T0,1,PATHS E-1,0
P-1,0 A1***

South-west over a bridge G
6
SACTIV T-1,0,PATHS T0,1,BRIDG E0,-1 E-1,-1
P-1,-1 A1***

Bridge H
100
SACTIV !(!E-1,0 !T-1,0,ACTIV) T0,1,PATHS T0,-1,PATHS (!V0,-1,C000 0001
W0,-1,C000 0001) E1,-1 !(!E-1,1 !T-1,1,ACTIV !T-1,1,BBRID !T-1,1,BRISN)
!(!E-1,-1 !T-1,-1,ACTIV !T-1,-1,DBRID !T-1,-1,BRISS) SBRIDH

Bridge H II
100
SACTIV T-1,0,BRIDH T0,-1,PATHS T0,1,PATHS
SBRIDH

Bridge H reactivation
15
SBRIDH E0,1 E1,0
SACTIV

Path module over a bridge H
15
SPATHS T0,-1,BRIDH E1,0 E1,-1 !(!E0,1 !T0,1,OBSTA !(T0,1,PATHS T1,1,OBSTA))
SACTIV P1,-1 A**1*

10.11. RULES 201

South over a bridge H
6
SACTIV N*1*0 T-1,0,BRIDH T-1,-1,PATHS !(!T1,0,ACTIV !E1,0)
P0,-1 A*1*1

South over a bridge H II
6
SACTIV N*100 T-1,-1,BRIDH T-1,0,PATHS
P0,-1 A*1*1

Bridge K
100
SACTIV !(!E0,-1 !T0,-1,ACTIV) T-1,0,PATHS T1,0,PATHS (!V1,0,C000 0001
W1,0,C000 0001) E1,1 !(!E-1,-1 !T-1,-1,ACTIV !T-1,-1,CBRID !T-1,-1,PATHS)
!(!E1,-1 !T1,-1,ACTIV !T1,-1,ABRID !T1,-1,TRASE !T1,-1,PATHS) SBRIDK

Bridge K II
100
SACTIV T0,-1,BRIDK T-1,0,PATHS T1,0,PATHS
SBRIDK

Bridge K reactivation
15
SBRIDK E-1,0 E0,1
SACTIV

Path reactivation over a bridge K
15
SPATHS T1,0,BRIDK E0,1 E1,1 !(!E-1,0 !T-1,0,OBSTA !(T-1,0,PATHS T-1,1,OBSTA))
SACTIV P1,1 A1***

East over a bridge K
6
SACTIV N0*01 T1,-1,BRIDK T0,-1,PATHS E1,0
P1,0 A*1*1

East over a bridge K II
6
SACTIV N0*01 T1,-1,PATHS T0,-1,BRIDK E1,0
P1,0 A*1*1

Bridge M
100
SACTIV E0,-1 !(!E0,1 !T0,1,ACTIV) T-1,0,PATHS (!V-1,0,C000 0001W-1,0,C000

202 CHAPTER 10. GENERAL OBSTACLES

0001) T1,0,PATHS E-1,-1 !(!E-1,1 !T-1,1,ACTIV !T-1,1,CBRID) T1,1,PATHS
SBRIDM

Bridge M II
100
SACTIV !(!T0,1,BRIDM !T0,1,TRAS*) T-1,0,PATHS T1,0,PATHS
SBRIDM

Bridge M III
100
SACTIV !(!E0,1 !T0,1,ACTIV) T-1,0,PATHS (!V-1,0,C000 0001 W-1,0,C000
0001) T1,0,PATHS E-1,-1 !(!E1,1 !T1,1,ACTIV !T1,1,ABRID !T1,1,BRISE) T-
1,1,PATHS SBRIDM

Bridge M reactivation
15
SBRIDM E1,0
SACTIV

Reactivation over a bridge M
15
SPATHS T-1,0,BRIDM E0,-1 E-1,-1 !(!E1,0 !T1,0,OBSTA !(T1,0,PATHS T1,-
1,OBSTA))
SACTIV P-1,-1 A1***

North-west over a bridge M
6
SACTIV N10*0 E-1,1 T0,1,BRIDM
P-1,1 A1*1*

West over a bridge M
6
SACTIV N10** T-1,1,BRIDM T0,1,PATHS E-1,0 !(!T0,-1,OBSTA !E0,-1)
P-1,0 A1***

South-west over a bridge M
6
SACTIV T-1,0,PATHS T0,1,BRIDM E0,-1 E-1,-1
P-1,-1 A1***

Bridge P
100

10.11. RULES 203

SACTIV !(!E0,-1 !T0,-1,ACTIV !T0,-1,TRAS*) T-1,0,PATHS T1,0,PATHS (!V1,0,C000
0001 W1,0,C000 0001) (!V1,0,C001 0001 W1,0,C000 0001) E1,1 !(!T1,-1,PATHS
!T1,-1,*BRID !T1,-1,BRID*) !(!E-1,-1 !T-1,-1,ACTIV !T-1,-1,*BRID !T-1,-1,BRID*)
SBRIDP

Bridge P II
100
SACTIV !(!T0,-1,BRIDP !T0,-1,TRAS*) T-1,0,PATHS T1,0,PATHS
SBRIDP

Bridge P III
100
SACTIV !(!E0,-1 !T0,-1,ACTIV !T0,-1,TRAS*) T-1,0,PATHS T1,0,PATHS (!V1,0,C000
0001W1,0,C000 0001) E1,1 T-1,-1,PATHS !(!E1,-1 !T1,-1,ACTIV !T1,-1,ABRID
!T-1,-1,CBRID) SBRIDP

Bridge P reactivation
15
SBRIDP E-1,0 E0,1
SACTIV

Path reactivation over a bridge P
15
SPATHS T1,0,BRIDP E0,1 E1,1 !(!E-1,0 !T-1,0,OBSTA !(T-1,0,PATHS T-1,1,OBSTA))
SACTIV P1,1 A1***

East over a bridge P
6
SACTIV N**01 T1,-1,BRIDP T0,-1,PATHS E1,0 !(!T0,1,ACTIV !E0,1)
P1,0 A*1*1

East sover a bridge P II
6
SACTIV N**01 T1,-1,PATHS T0,-1,BRIDP E1,0 !(!T0,1,ACTIV !E0,1)
P1,0 A*1*1

Bridge Q
100
SACTIV !(!E-1,0 !T-1,0,ACTIV !T-1,0,TRAS*) T0,1,PATHS T0,-1,PATHS (!V0,-
1,C000 0001 W0,-1,C000 0001) !(!E1,-1 !T1,-1,TRAS*) !(!E-1,-1 !T-1,-1,ACTIV
!T-1,-1,*BRID !T-1,-1,BRID* !T-1,-1,BRIS*) T-1,1,PATHS
SBRIDQ

Bridge Q II
100
SACTIV !(!T-1,0,BRIDQ !T-1,0,TRAS*) T0,-1,PATHS T0,1,PATHS
SBRIDQ

Bridge Q III

204 CHAPTER 10. GENERAL OBSTACLES

100
SACTIV !(!E-1,0 !T-1,0,ACTIV !T-1,0,TRAS*) T0,1,PATHS T0,-1,PATHS (!V0,-
1,C000 0001 W0,-1,C000 0001) E1,-1 !(!E-1,1 !T-1,1,ACTIV !T-1,1,ABRID !T-
1,1,CBRID) T-1,-1,PATHS SBRIDQ

Bridge Q reactivation
15
SBRIDQ E0,1 E1,0
SACTIV

Path reactivation over a bridge Q
15
SPATHS T0,-1,BRIDQ E1,0 E1,-1 !(!E0,1 !T0,1,OBSTA !(T0,1,PATHS T1,1,OBSTA))
SACTIV P1,-1 A*11*

South over a bridge Q
6
SACTIV N***0 T-1,0,BRIDQ T-1,-1,PATHS !(!T1,0,ACTIV !E1,0)
P0,-1 A*1*1

South over a bridge Q II
6
SACTIV N**00 T-1,-1,BRIDQ T-1,0,PATHS
P0,-1 A*1*1

Bridge R
100
SACTIV !(!E1,0 !T1,0,ACTIV !T1,0,TRAS*) T0,1,PATHS (!V0,1,C000 0001
W0,1,C000 0001) T0,-1,PATHS E-1,1 !(!E1,1 !T1,1,ACTIV !T1,1,*BRID !T1,1,BRID*
!T1,1,BRIS*) T1,-1,PATHS SBRIDR

Bridge R II
100
SACTIV !(!T1,0,BRIDR !T1,0,TRAS*) T0,-1,PATHS T0,1,PATHS
SBRIDR

Bridge R III
100
SACTIV !(!E-1,0 !T-1,0,ACTIV !T-1,0,TRAS*) T0,1,PATHS (!V0,1,C000 0001
W0,1,C000 0001) T0,-1,PATHS E-1,1 !(!E1,-1 !T1,-1,ACTIV !T1,-1,*BRID) T1,1,PATHS
SBRIDR

Bridge R reactivation
15
SBRIDR E0,-1 E-1,0
SACTIV

10.11. RULES 205

Path reactivation over a bridge R
15
SPATHS T0,1,BRIDR E-1,0 E-1,1 !(!E0,-1 !T0,-1,OBSTA !(T0,-1,PATHS T-1,-
1,OBSTA))
SACTIV P-1,1 A*11*

North over a bridge R
6
SACTIV N0*1* T1,0,BRIDR T1,1,PATHS !(!T-1,0,ACTIV !E-1,0 !T-1,0,PATHS)
P0,1 A*1*1

North over a bridge R II
6
SACTIV N0*1* T1,0,PATHS T1,1,BRIDR !(!T-1,0,ACTIV !E-1,0)
P0,1 A**1*

Bridge W
100
SACTIV !(!E1,0 !T1,0,ACTIV !T1,0,TRAS*) T0,1,PATHS T0,-1,PATHS E-
1,1!(!E-1,-1 !T-1,-1,ACTIV) !(!E1,1 !T1,1,ACTIV !T1,1,ABRID !T1,1,CBRID)
T1,-1,PATHS
SBRIDW

Bridge W reactivation
15
SBRIDW E0,-1 E-1,0
SACTIV

Path reactivation over a bridge W
15
SPATHS T0,1,BRIDW E-1,0 E-1,1 !(!E0,-1 !T0,-1,OBSTA !(T0,-1,PATHS T-1,-
1,OBSTA))
SACTIV P-1,1 A*11*

North over a bridge W
6
SACTIV N001* T1,0,BRIDW T1,1,PATHS
P0,1 A*1*1

North over a bridge W II
6
SACTIV N001* T1,0,PATHS T1,1,BRIDW
P0,1 A**1*

Bridge Z
100

206 CHAPTER 10. GENERAL OBSTACLES

SACTIV !(!E0,1 !T0,1,ACTIV) T-1,0,PATHS T1,0,PATHS E-1,-1 !(!E-1,1 !T-
1,1,ACTIV !T-1,1,CBRID) T1,1,PATHS !(!E1,-1 !T1,-1,ACTIV)
SBRIDZ

Bridge Z reactivation
15
SBRIDZ E1,0
SACTIV

Path reactivation over a bridge Z
15
SPATHS T-1,0,BRIDZ E0,-1 E-1,-1 !(!E1,0 !T1,0,OBSTA !(T1,0,PATHS T1,-
1,OBSTA))
SACTIV P-1,-1 A1***

North-east over a bridge Z
6
SACTIV N10*0 E-1,1 T0,1,BRIDZ
P-1,1 A1*1*

West over a brige Z
6
SACTIV N10*0 T-1,1,BRIDZ T0,1,PATHS E-1,0
P-1,0 A1***

South-west over a bridge Z
6
SACTIV T-1,0,PATHS T0,1,BRIDZ E0,-1 E-1,-1
P-1,-1 A1***

Bridge J
100
SACTIV !(!E0,-1 !T0,-1,ACTIV !T0,-1,TRAS*) T-1,0,PATHS T1,0,PATHS E1,1
T-1,-1,PATHS !(!E1,-1 !T1,-1,ACTIV !T1,-1,*BRID) !(!E-1,1 !T-1,1,ACTIV)
SBRIDJ

Bridge J reactivation
15
SBRIDJ E-1,0 E0,1
SACTIV

Path reactivation over a bridge J
15
SPATHS T1,0,BRIDJ E0,1 E1,1 !(!E-1,0 !T-1,0,OBSTA !(T-1,0,PATHS T-1,1,OBSTA))
SACTIV P1,1 A1***

10.11. RULES 207

East over a bridge J
6
SACTIV N0*01 T1,-1,BRIDJ T0,-1,PATHS E1,0
P1,0 A*1*1

East over a bridge J II
6
SACTIV N0*01 T1,-1,PATHS T0,-1,BRIDJ E1,0
P1,0 A*1*1

Bridge Y
100
SACTIV !(!E-1,0 !T-1,0,ACTIV !T-1,0,TRAS*) T0,1,PATHS T0,-1,PATHS E1,-
1 !(!E1,1 !T1,1,ACTIV) !(!E-1,-1 !T-1,-1,ACTIV !T-1,-1,*BRID !T-1,-1,BRISS)
T-1,1,PATHS
SBRIDY

Bridge Y reactivation
15
SBRIDY E0,1 E1,0
SACTIV

Path reactivation over a bridge Y
15
SPATHS T0,-1,BRIDY E1,0 E1,-1 !(!E0,1 !T0,1,OBSTA !(T0,1,PATHS T1,1,OBSTA))
SACTIV P1,-1 A*11*

South over a bridge Y
6
SACTIV N**00 T-1,0,BRIDY T-1,-1,PATHS
P0,-1 A*1*1

South over a bridge Y II
6
SACTIV N**00 T-1,-1,BRIDY T-1,0,PATHS
P0,-1 A*1*1

Transversal bridge A
100
SACTIV N*01* T1,0,PATHS T-1,1,PATHS !(!T0,1,ACTIV !E0,1) !(!T0,-1,ACTIV
!E0,-1) !T0,2,*BRID !T0,2,BRID* !T0,2,BRIS* !(!T1,1,ACTIV !E1,1) !V-1,1,C000
0001 W-1,1,C000 0001 !E1,-1
STRASA

208 CHAPTER 10. GENERAL OBSTACLES

Transversal bridge A reactivation
100
STRASA E1,0 T-1,0,PATHS E0,-1
SACTIV

North-west over a transversal bridge A
7
SACTIV N10** T0,1,TRASA E-1,1
P-1,1 A111* SPATHS C002 + 0000 0001 C000 + 0000 0001

West over a transversal bridge A
6
SACTIV N10** !(!T-1,1,TRASA !T0,1,TRASA)
P-1,0 A11*1

Path reactivation over a transversal bridge A
15
SPATHS N*110 T-1,0,TRASA T1,0,PATHS E0,-1 E-1,-1
SACTIV P-1,-1 A11**

Transversal bridge B
100
SACTIV N*10* T-1,0,PATHS T1,-1,PATHS !(!T0,-1,ACTIV !E0,-1) !(!T0,1,ACTIV
!E0,1) !T0,-2,*BRID !T0,-2,BRID* !(!T-1,-1,ACTIV !E-1,-1) !V1,-1,C000 0001
W1,-1,C000 0001 !E-1,-1
STRASB

Transversal bridge B Reactivation
100
STRASB E-1,0 T1,0,PATHS E0,1
SACTIV

South-east over a transversal bridge B
7
SACTIV N0*01 T0,-1,TRASB E1,-1
P1,-1 A111* SPATHS C002 + 0000 0001 C000 + 0000 0001

East over a transversal bridge B
6
SACTIV N0*01 !(!T1,-1,TRASB !T0,-1,TRASB)
P1,0 A**11

10.11. RULES 209

Path reactivation over a transversal bridge B
15
SPATHS N011* T1,0,TRASB T-1,0,PATHS E0,1 E1,1
SACTIV P1,1 A1*11

Transversal bridge C
100
SACTIV N1*0* !(!T-1,0,PATHS !E-1,0 !T-1,0,ACTIV) T0,1,PATHS T1,-1,PATHS
!(!T1,1,ACTIV !E1,1) !(!E0,-1 !T0,-1,ACTIV) !V1,-1,C000 0001W1,-1,C000 0001
STRASC

Transversal bridge C reactivation
100
STRASC E0,1 T1,0,PATHS E1,1 !(!T-1,0,PATHS !E-1,0) E-1,1
SACTIV P1,1

South over a transversal bridge C
6
SACTIV N*100 !(!T-1,-1,TRASC !T-1,0,TRASC)
P0,-1 A111* SACTIV

North-east over a transversal bridge C
6
SACTIV N0111 T1,0,TRASC E1,1 T-1,0,OBSTA
P1,1 A111* SACTIV

East over transversal bridge C
6
SACTIV N**01 !(!T1,-1,TRASC !T0,-1,TRASC) !(!E0,1 !T0,1,OBSTA) !(!E-1,0
!T-1,0,OBSTA)
P1,0 A111* SACTIV

Path formation over a transversal bridge C
10
SACTIV T-1,0,TRASC T0,-1,PATHS
SPATHS C002 + 0000 0001 C000 + 0000 0001

Path reactivation over a transversal bridge C
15
SPATHS N0*01 T0,-1,TRASC E1,0 E1,-1
SACTIV P1,-1 A1*1*

Path reactivation over a transversal bridge II C
15

210 CHAPTER 10. GENERAL OBSTACLES

SPATHS N0*01 T0,-1,TRASC E1,0 T1,-1,PATHS
SACTIV P1,0 A1*1*

Transversal bridge D
100
SACTIV N*0*1 !(!T1,0,PATHS !E1,0 !T1,0,ACTIV) T0,-1,PATHS T-1,1,PATHS
!(!T-1,-1,ACTIV !E-1,-1) !(!E0,1 !T0,1,ACTIV) !V-1,1,C000 0001 W-1,1,C000
0001 !E0,-2
STRASD

Reactivation of a transversal bridge D
100
STRASD T-1,0,PATHS !(!T1,0,PATHS !T0,1,ACTIV !E0,1) E-1,-1 E0,-1 E1,-1
SACTIV P-1,-1

North over a transversal bridge D
6
SACTIV N0*1* !(!T1,1,TRASD !T1,0,TRASD) !(!E-1,0 !T-1,0,ACTIV)
P0,1 A111* SACTIV

Path formation over transversal D
10
SACTIV T1,0,TRASD T0,1,PATHS
SPATHS C002 + 0000 0001 C000 + 0000 0001

Module activation over transversal D
15
SPATHS N10** T0,1,TRASD E-1,0 T-1,1,PATHS !(!T0,-1,OBSTA !E0,-1)
SACTIV A1*1*

West over a transversal D
15
SACTIV N10** T0,1,TRASD T-1,1,PATHS !(!T0,-1,OBSTA !E0,-1)
P-1,0 A1*1*

West over a transversal D II
15
SACTIV N10** T-1,1,TRASD T0,1,PATHS !(!T0,-1,OBSTA !E0,-1)
SACTIV P-1,0 A1*1*

10.11. RULES 211

Transversal bridge E
100
SACTIV N***1 !(!T-1,0,ACTIV !E-1,0) T0,-1,PATHS T1,1,PATHS !(!T1,-1,ACTIV
!E1,-1) !(!E1,0 !T1,0,ACTIV) !V1,1,C000 0001 W1,1,C000 0001 !E-1,-1 STRASE

Transversal bridge E reactivation
100
STRASE E0,-1 T0,1,PATHS E-1,0
SACTIV

North over a transversal bridge E
6
SACTIV N0*1* !(!T1,1,TRASE !T1,0,TRASE) !E1,1
P0,1 A111* SACTIV

North-east over a transversal bridge E
6
SACTIV N0*1* T1,0,TRASE E1,1
P1,1 A111* SPATHS C002 + 0000 0001 C000 + 0000 0001

Path reactivation over a transversal bridge E
15
SPATHS N10*1 T0,-1,PATHS T0,1,TRASE E-1,0 E-1,1
SACTIV P-1,1 A1*1*

Transversal bridge F
100
SACTIV N1*** T0,1,PATHS !(!T-1,0,ACTIV !E-1,0) !(!T1,0,ACTIV !E1,0) T-
1,-1,PATHS !(!T-1,1,ACTIV !E-1,1) !(!E0,-1 !T0,-1,ACTIV) !V-1,-1,C000 0001
W-1,-1,C000 0001 !E1,1
STRASF

Transversal bridge F reactivation
100
STRASF E0,1 T0,-1,PATHS E1,0
SACTIV

South over a transversal bridge F
6
SACTIV N*1*0 !(!T-1,-1,TRASF !T-1,0,TRASF) !E-1,-1
P0,-1 A11*1 SACTIV

South-west over a transversal bridge F
6
SACTIV N*1*0 T-1,0,TRASF E-1,-1
P-1,-1 A11*1 SPATHS C002 + 0000 0001 C000 + 0000 0001

212 CHAPTER 10. GENERAL OBSTACLES

Path reactivation over a transversal bridge F
15
SPATHS N**01 T0,-1,TRASF T0,1,PATHS E1,0 E1,-1
SACTIV P1,-1 A1*1*

Transversal bridge G
100
SACTIV N**10 !(!E0,1 !T0,1,PATHS) T1,0,PATHS T-1,-1,PATHS !(!T1,-1,ACTIV
!E1,-1) !(!E-1,0 !T-1,0,ACTIV) !V-1,-1,C000 0001 W-1,-1,C000 0001
STRASG

Transversal bridge G reactivation
100
STRASG E1,0 T-1,0,PATHS !(!E0,-1 !T0,-1,ACTIV)
SACTIV

Transversal bridge G reactivation II
100
STRASG E1,0 T-1,0,PATHS T0,-1,PATHS E1,-1
SACTIV

Path formation over a transversal bridge G
100
SACTIV T1,0,TRASG T0,-1,PATHS
SPATHS C000 + 0000 0001 C002 + 0000 0001

South-west over a transversal bridge G
6
SACTIV T0,1,TRASG E-1,-1 T-1,0,PATHS
P-1,-1 A11**

West over a transversal bridge G
6
SACTIV N10** !(!T-1,1,TRASG !T0,1,TRASG) !E-1,1
P-1,0 A11*1

Path reactivation over a transversal bridge G
15
SPATHS N*100 T-1,0,TRASG T0,1,PATHS E-1,-1
SACTIV P-1,-1 A11**

Path reactivation over a transversal bridge G II
15
SPATHS N*100 T-1,0,TRASG T0,1,PATHS !(!T-1,-1,CBRID !T-1,-1,PATHS)
SACTIV P0,-1 A11**

10.11. RULES 213

Path reactivation over a transversal bridge G III
15
SPATHS N0001 T0,-1,PATHS E1,-1
SACTIV P1,-1 A111*

Transversal bridge H
100
SACTIV N01** !(!T0,-1,PATHS !E0,-1) T-1,0,PATHS T1,1,PATHS !(!T1,0,ACTIV
!E1,0) !(!E-1,1 !T-1,1,ACTIV) !V1,1,C000 0001 W1,1,C000 0001
STRASH

North over a transversal bridge H
100
SACTIV E0,1 T1,1,TRASH !(!E-1,0 !T-1,0,OBSTA) E-1,1
P0,1 SACTIV

North over a transversal bridge H II
100
SACTIV T1,0,TRASH !(!E-1,0 !T-1,0,OBSTA) E0,1
P0,1 SACTIV

Transversal bridge H reactivation
100
STRASH E-1,0 T0,1,PATHS E-1,1 E-1,-1
SACTIV

Path formation over a transversal bridge H
100
SACTIV T0,-1,TRASH T1,0,PATHS
SPATHS C000 + 0000 0001 C002 + 0000 0001

East over a transversal bridge H
6
SACTIV N**01 !(!T1,-1,TRASH !T0,-1,TRASH) !E1,-1
P1,0 A11*1

Path reactivation over a transversal bridge H
15
SPATHS N0*11 T1,0,TRASH !(!T-1,0,OBSTA !E-1,0)
SACTIV P0,1 A**1*

214 CHAPTER 10. GENERAL OBSTACLES

Diagonal A
100
SACTIV N*100 T-1,0,PATHS T-1,1,PATHS T1,-2,PATHS E-1,-1 !V1,-2,C000
0001 W1,-2,C000 0001 !T2,-1,OBSTA !T2,-2,OBSTA
SDIAGA

Diagonal B
100
SACTIV N*001 T0,-1,PATHS T-1,1,DIAGA !(!T0,1,ACTIV !E0,1)
SDIAGB

East over diagonal A
6
SACTIV N*101 T1,-1,DIAGA
P1,0 A***1

South-east over diagonal A and B
6
SACTIV N**01 !(!T0,-1,DIAGA !T0,-1,DIAGB) !(!T-1,0,PATHS !T-1,0,DIAGA
!E-1,0) E1,-1
P1,-1 A*1*1

South over diagonal B
6
SACTIV N*100 T-1,0,DIAGB T-1,-1,PATHS
P0,-1 A*101 SPATHS C000 + 0000 0001

Diagonal A reactivation
100
SDIAGA N0100 E-1,1 E-1,-1
SACTIV P-1,-1

Diagonal B reactivation
100
SDIAGB N0001 !T-1,1,DIAGA
SACTIV P1,0

Diagonal B reactivation II
100
SDIAGB N0011 !T-1,1,DIAGA T1,0,DBRID E1,1
SACTIV P1,1

Diagonal C
100

10.11. RULES 215

SACTIV N0*01 T-1,-1,PATHS T0,-1,PATHS T2,1,PATHS E1,-1 !V2,1,C000
0001 W2,1,C000 0001 !T1,2,OBSTA !T2,2,OBSTASDIAGC

Diagonal D
100
SACTIV N0*10 T1,0,PATHS T-1,-1,DIAGC !(!T-1,0,ACTIV !E-1,0)
SDIAGD

North-East over diagonal C e D
6
SACTIV N0*1* !(!T1,0,DIAGC !T1,0,DIAGD) E1,1
P1,1 A**11

North over diagonal C
6
SACTIV N0011 T1,1,DIAGC T1,0,PATHS
P0,1 A**1*

East over diagonal C
6
SACTIV N0*01 T0,-1,DBRID T1,-1,DIAGC
P1,0 A**1*

Diagonal C reactivation
100
SDIAGC N0001 T0,-1,PATHS E-1,-1 E1,-1
SACTIV P1,-1 A*1**

Diagonal D reactivation
100
SDIAGD N0010 !T-1,-1,DIAGC
SACTIV P0,1 A**1*

Diagonal D reactivation
100
SDIAGD N1010 !T-1,-1,DIAGC T0,1,*BRID E-1,1
SACTIV P-1,1 A**1*

Diagonal E
100
SACTIV N10*0 T1,1,PATHS !T-2,-2,OBSTA T0,1,PATHS !(!T-1,0,ACTIV !E-
1,0) T-2,-1,PATHS E-1,1 !V-2,-1,C000 0001 W-2,-1,C000 0001 !T-1,-2,OBSTA
!T1,0,OBSTA SDIAGE

Diagonal F
100

216 CHAPTER 10. GENERAL OBSTACLES

SACTIV N01*0 T-1,0,PATHS T1,1,DIAGE !(!T1,0,ACTIV !E1,0)
SDIAGF

South-west over diagonal E e F
6
SACTIV N*100 !(!T-1,0,DIAGE !T-1,0,DIAGF) !(!T0,1,PATHS !T0,1,DIAGE
!E0,1) E-1,-1
P-1,-1 A*1*1

South-west over diagonal F II
6
SACTIV N1100 T0,1,DIAGF T-1,0,PATHS E-1,-1
P-1,-1 SPATHS C000 + 0000 0001 A11**

South over diagonal E
6
SACTIV N1100 T-1,0,PATHS T-1,-1,DIAGE
P0,-1 A*1**

Diagonal E reactivation
100
SDIAGE N1000 E1,1 E-1,1
SACTIV P-1,1 A**1*

Diagonal F reactivation
100
SDIAGF N0100 T-1,0,PATHS !T1,1,DIAGE
SACTIV P0,-1 A*1**

Diagonal F reactivation II
100
SDIAGF N010* T-1,0,PATHS !T1,1,DIAGE T0,-1,CBRID E1,-1
SACTIV P1,-1 A*1**

Diagonal G
100
SACTIV N001* !T-2,2,OBSTA T1,0,PATHS T1,-1,PATHS !(!T0,-1,ACTIV !E0,-
1) T-1,2,PATHS E1,1 !V-1,2,C000 0001 W-1,2,C000 0001 !T-2,1,OBSTA
SDIAGG

Diagonal H
100
SACTIV N100* T0,1,PATHS T1,-1,DIAGG !(!T0,-1,ACTIV !E0,-1)
SDIAGH

10.11. RULES 217

North-west over diagonal G e H
6
SACTIV N10** !(!T0,1,DIAGG !T0,1,DIAGH) !(!T1,0,PATHS !T1,0,DIAGG
!E1,0) E-1,1 !(!T0,-1,ACTIV !E0,-1 !(T0,-1,PATHS T1,0,PATHS T0,1,DIAGG))
P-1,1 A1*1*

North over diagonal G
6
SACTIV N001* T1,1,DIAGG T1,0,PATHS !(!T0,-1,ACTIV !E0,-1)
P0,1 A1*1*

North over diagonal H
6
SACTIV N0010 T1,0,DIAGH T1,1,PATHS
P0,1 A1*1*

West over diagonal G
6
SACTIV N101* T0,1,PATHS T-1,1,DIAGG !(!E0,-1 !T0,-1,OBSTA)
P-1,0 A1***

Diagonal G reactivation
100
SDIAGG N0010 E1,-1 E1,1
SACTIV P1,1 A**11

Diagonal H reactivation
100
SDIAGH N1000 T-1,1,PATHS !T1,-1,DIAGG
SACTIV P-1,0 A1***

Diagonal H reactivation II
100
SDIAGH N1100 T-1,0,*BRID !T1,-1,DIAGG E-1,-1
SACTIV P-1,-1 A11**

Auxiliary path reactivation 1
100
SPATHS N0100 T-1,0,PATHS !T-1,1,ACTIV !T-1,-1,ACTIV = C002 0001
SACTIV C002 + 0000 0000

Auxiliary path reactivation 2
100

218 CHAPTER 10. GENERAL OBSTACLES

SPATHS N0010 T1,0,PATHS !T1,1,ACTIV !T1,-1,ACTIV = C002 0001
SACTIV C002 + 0000 0000

Auxiliary path reactivation 3
100
SPATHS N1000 T0,1,PATHS !T1,1,ACTIV !T-1,1,ACTIV = C002 0001
SACTIV C002 + 0000 0000

Auxiliary path reactivation 4
100
SPATHS N0001 T0,-1,PATHS !T1,-1,ACTIV !T-1,-1,ACTIV = C002 0001
SACTIV C002 + 0000 0000

Auxiliary path reactivation - corner 1
100
SPATHS N1100 T-1,0,PATHS T0,1,PATHS T1,1,PATHS = C002 0001
SACTIV C002 + 0000 0000

Auxiliary path reactivation - corner 2
100
SPATHS N0101 T-1,0,PATHS T0,-1,PATHS T-1,-1,PATHS = C002 0001
SACTIV C002 + 0000 0000

Auxiliary path reactivation - corner 3
100
SPATHS N0011 T1,0,PATHS T0,-1,PATHS T1,-1,PATHS = C002 0001
SACTIV C002 + 0000 0000

Auxiliary path reactivation - corner 4
100
SPATHS N1010 T1,0,PATHS T0,1,PATHS T1,1,PATHS = C002 0001
SACTIV C002 + 0000 0000

Chapter 11

Conclusions

11.1 Presented results

The principal aim of this work was to propose a set of distributed algorithms for
the in-shape locomotion of a 2-dimensional rectangular system, on free ground
and in the presence of obstacles, speci�c for a parallel evaluation of all the rules
of the algorithm to each module of the system at each step. This goal has been
achieved, and the results presented go beyond the principal goal, as they have
been extended to the case of 2-dimensional systems con�gured as histograms.
Each algorithm presented is accompanied not only with a correctness proof and
a complexity analysis, but with a direct implementation in a simulator, that
allows the direct observation of the e�ect of the rules over di�erent systems and
obstacles. The algorithms presented are quite e�cient, an the total number of
time steps of the system analyzed in the di�erent cases is proportional to the
number of moves per module, as the rules are run in parallel. Although the
sets of rules presented are conceived for a synchronous execution, an extension
to an asynchronous context in which each module acts following an internal
clock should be easy to implement without changing the strategy of the move-
ment and without drastic modi�cations in the rules; in this case, though, the
communication between the modules should be increased.

11.2 Open problems

There are di�erent possible natural extensions for the treated problems; some
of them have just been introduced due to lack of time, and some have not been
treated in this thesis.

Overpassing of general shaped obstacles: the most interesting extension
is the study of the overpassing of general shaped obstacles; a strategy for
the locomotion in presence of a general connected obstacle is proposed in
Chapter 10, but completing the systematic study of this problem has not
been possible due to lack of time.

Locomotion of general shaped system: the existent rules for the shape
transformation of 2-dimensional general-shaped system presented in [4]
are easily adaptable to produce a locomotion of general shaped systems;

219

220 CHAPTER 11. CONCLUSIONS

the rules by [4] produce the transformation of the shape of the system
passing through an intermediate worm shape; the locomotion could then
be achieved by applying our rules for the free locomotion of Chapter 2
to such intermediate shape, and blocking the advance of the system at
the position in which we want to recon�gure the system into the goal
con�guration.

Notice that although the same existent rules could be applied to pro-
duce the locomotion of rectangular and histogram-shaped systems, the
complexity of such rules is justi�able only in the case of the complex con-
�gurations for which they have been created, and not for regular systems
for which a more simple set of rule that exploit their properties can be
applied, as we have proved.

3-dimensional extensions: the locomotion of 3-dimensional rectangles and
histograms could be achieved by an ideal subdivision of the system into
di�erent layers on the z-axis and the separate application of the same set
of rules to each layer of the system, as proposed in [8] ; such extension is
not immediate though, as the problems of disconnection of the layers need
to be controlled with speci�c preconditions.

Hexagonal lattice systems: in the future, the sets of rules presented for
rectangular modules could be extended to hexagonal lattice based systems.
In this context, a few di�erences need to be considered in the adaptation
of the rules; �rstly, a grid position would have six neighbors, and each
rule would need to be considered not in 4 but in 6 di�erent directions, so
an increment in the number of rules should be expected. Moreover, the
study of the di�erent types of bottlenecks should be modi�ed, due to the
di�erences in the shape of the modules.

References

[1] B.K. An. Em-cube: cube-shaped, self-recon�gurable robots sliding on struc-
ture surfaces. Proc. of the IEEE International Conference on Robotics and
Automation (ICRA), pages 3149-3155, 2008.

[2] D. Rus and M. Vona. Crystalline robots: Self-recon�guration with com-
pressible unit modules. Autonomous Robots, 10(1):107-124, 2001.

[3] E. Yoshida, S. Kokaji, S. Murata, K. Tomita, and H. Kurokawa. Minia-
turization of selfrecon�gurable robotic system using shape memory alloy
actuators. Journal of Robotics and Mechatronics, 12(2):96-102, 2000.

[4] F. Hurtado, E. Molina, S. Ramaswami, V. Sacristán. Distributed universal
recon�guration of 2D lattice based modular robots. European Workshop on
Computational Geometry, Braunschweig (Germany), March 17-20, 2013.

[5] J. W. Suh, S. B. Homans, and M. Yim. Telecubes: Mechanical design of
a module for selfrecon�gurable robotics. Proc. of the IEEE International
Conference on Robotics and Automation (ICRA), pages 4095-4101, 2002.

[6] R. Wallner. A system of autonomously self-recon�gurable agents, Degree
thesis, Institute for Software Technology, Graz University of Technology,
Graz, Austria, 2009.

[7] Simulator: http://www-ma2.upc.edu/vera/AgentSystems/
Last visited: October 1srt, 2013.

[8] Z. Butler, K. Kotay, D. Rus, K. Tomita. Generic decentralized control
for lattice-Based self-recon�gurable robots The International Journal of
Robotics Research 2004; 23; 919

221

