
 

 

Title: Systematic Strategies for 3-dimensional Modular Robots 
 
Author: Irene de Parada Muñoz 
 
Advisor: Vera Sacristán Adinolfi 
 
Department: Matemàtica Aplicada II 
 

Academic year: 2014-2015 

Master of Science in 
 Advanced Mathematics and 
Mathematical Engineering 



 



Universitat Politècnica de Catalunya

Facultat de Matemàtiques i Estad́ıstica

Master Thesis
Master in Advanced Mathematics and

Mathematical Engineering

Systematic Strategies for
3-dimensional Modular Robots

Irene de Parada Muñoz
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Modular robots have been studied an classified from different perspectives, generally
focusing on the mechatronics. But the geometric attributes and constraints are the
ones that determine the self-reconfiguration strategies. In two dimensions, robots
can be geometrically classified by the grid in which their units are arranged and the
free cells required to move a unit to an edge-adjacent or vertex-adjacent cell. Since
a similar analysis does not exist in three dimensions, we present here a systematic
study of the geometric aspects of three-dimensional modular robots.

We find relations among the different designs but there are no general models,
except from the pivoting cube one, that lead to deterministic reconfiguration plans.
In general the motion capabilities of a single module are very limited and its motion
constraints are not simple. A widely used method for reducing the complexity
and improving the speed of reconfiguration plans is the use of meta-modules. We
present a robust and compact meta-module of M-TRAN and other similar robots
that is able to perform the expand/contract operations of the Telecube units, for
which efficient reconfiguration is possible. Our meta-modules also perform the
scrunch/relax and transfer operations of Telecube meta-modules required by the
known reconfiguration algorithms. These reduction proofs make it possible to apply
efficient geometric reconfiguration algorithms to this type of robots.
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Chapter 1

Introduction

Modular self-reconfigurable robots are connected sets of units of few different
types that can change their connectivity, varying the shape of the robot.
Thus, these systems can modify their morphology (reconfigure) to better
suit different tasks, locomote, interact with the environment and self-repair.
This makes them more versatile and robust than fixed-shape unique-purpose
robots.

They can be classified according to different criteria: architecture and topol-
ogy, connection mechanisms, degrees of freedom, propulsion method, etc.
We are interested in reconfiguration strategies, that can be formulated as
geometric algorithms given the properties and capabilities of each robotic
unit. Neither of the above-mentioned criteria is precise enough for our pur-
pose: the basic information we need comprises the geometric shape, the
accessible cells and the conditions for each movement and connection (in
terms of the orientation, neighbouring units and free space).

In two dimensions, only three regular polygons can tessellate the plane:
squares, equilateral triangles, and regular hexagons. Universal reconfigura-
tion is possible for all these grids and movements [26]. In contrast, in three
dimensions only one Platonic solid (regular polyhedron) is space-filling, the
cube, but we can consider other space-filling convex polyhedra, not neces-
sarily cell-transitive, for the design of robotic units with surface-to-surface
connections. Examples of these polyhedra are:

• Five polyhedra (Figure 1) that can tessellate space only with transla-
tions (each has forms of varied symmetry):
(1) Parallelepiped.
(2) Hexagonal prism.
(3) Rhombic dodecahedron.
(4) Elongated dodecahedron.
(5) Truncated octahedron.

• Triangular prisms.
• Space-filling square bipyramid (irregular space-filling octahedron).
• Trapezo-rhombic dodecahedron.
• Triakis truncated tetrahedron.
• Gyrobifastigium, the 26th Johnson solid (J26).
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2 1. INTRODUCTION

Fig. 1. Polyhedra tessellating space only with translations.
From left to right: cube, hexagonal prism, rhombic dodeca-
hedron, elongated dodecahedron, truncated octahedron.

• Hill tetrahedra, a family of space-filling tetrahedra.
• Isohedral simple tilings.

The most interesting polyhedra for the design of modular robots among the
above-mentioned are those whose faces are all congruent, like the cube, the
rhombic dodecahedron, the trigonal trapezohedron and the irregular space-
filling octahedron, since less restrictions are needed for potential connections.

We can also consider polyhedra that are not space-filling (configurations
would be less compact but the empty cell constraints for mobility can be
less restrictive) and point-to-point connections. Some lattices in these cases
are the same as the previous ones. For example, there are two different
arrangements of equally sized spheres filling space with the highest possible
average density ( π

3
√
2
' 0.74048): the face-centered cubic (FCC) and the

hexagonal close-packed (HCP). This is the Kepler conjecture, proven by
Hales in 1998. The Voronoi polyhedra are produced augmenting each sphere
with the points in space that are closer to it than to any other sphere. We
obtain rhombic dodecahedra for FCC and trapezo-rhombic dodecahedra for
HCP.

But not all three-dimensional robots have their units necessarily arranged
in a lattice. Chain (or tree) architectures allow a continuous movement not
restricted to a grid, what can contribute to locomotion, allowing different
locomotion gaits. There are also hybrid robots combining features of the
two previous groups.

Thus, there can be many abstract models for the design and reconfiguration
of three-dimensional robots. The most simple one, the sliding cube model
(SCM), considers the lattice robot units as identical cubes able to perform
convex transition and horizontal advance with the free-space requirements
shown in Figure 2. Several reconfiguration algorithms for this case are known
[1, 17, 61], the last one restricted to configurations without holes. However,
as far as we know, there is no physically implemented prototype for applying
this model. It is an example of the difficulties and limitations of practical
implementations.

There is also the pivoting cube model (PCM), in which the cubes are able to
rotate around their edges, so the free-space requirements are different (Fig-
ure 3). A centralized algorithm is known for this model under the restriction



1. INTRODUCTION 3

Fig. 2. Permissible movements in the sliding cube model:
a) convex transition and b) horizontal advance.

Fig. 3. Permissible movements in the pivoting cube model:
a) convex transition and b) horizontal advance.

Fig. 4. Different reconfiguration strategies. In both cases,
the leftmost configuration is the starting one, and the right-
most is the target one. a) Tunnelling algorithm for expand-
able and contractible modules. b) Surface algorithm.

that the initial and target configurations meet sufficient conditions for being
reconfigurable [78]. In this case, the algorithm came after the robot, the
M-Block developed at MIT.

In general, there are two different reconfiguration strategies. All the algo-
rithms mentioned before correspond to surface strategies, in which the units
move along the external boundary of the configuration, as we can see in the
example in Figure 4a. There are robots whose square or cubic units are able
to expand and contract by a factor of two. For this kind of units movements
interior to the robot configuration are possible. Figure 4b shows how the
same reconfiguration is achieved by means of a tunnelling strategy, in which
modules travel through the volume of the robot.
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Fig. 5. Expandable and contractible units. Left: Crystalline
robot. Font: [64]. Right: Telecube robot. Font: [77].

Fig. 6. The need of meta-modules for expandible and con-
tractible units. a) Non-reconfigurable structure. b) Meta-
module.

Physical prototypes of self-reconfiguring systems with square or cubic units
that can can expand and contract by a factor of two in each of their di-
mensions are Crystalline robots [64] in two dimensions and Telecube [77] in
three dimensions (Figure 5).

Several tunnelling algorithms for universal reconfiguration have been pro-
posed for Crystalline and Telecube robots. The melt-grow [63] is a central-
ized algorithm which reconfigures any connected robot of n units in O(n2)
moves and steps. The Pac-Man algorithm [9] and the algorithm in [84]
use O(n2) parallel steps. Maintaining the assumptions of constant velocity
and strength, in-place reconfiguration (space requirement is just the union
of the the source and target configurations) is possible in linear time [3].
The total number of unit moves is O(n2), which is optimal in this setting.
Requiring modules to have linear strength, i.e., to be able to pull or push
a linear number of other modules, the total number of unit moves can be
reduced to O(n) [4]. With this force requirements and allowing velocities to
build up over time, reconfiguration is possible in O(log n) parallel steps and
O(n log n) total moves [5].

For all of these algorithms the units are grouped into meta-modules of at
least 2 × 2(×2) units and of precisely this size (Figure 6b) in the case of
the linear and in-place algorithm [3]. The use of meta-modules is necessary
since, for example, in the line configuration shown in Figure 6a no unit can
be moved to a position outside the line without disconnecting the robot.
In contrast, meta-modules can perform the srunch/relax and the transfer
operations shown in Figure 7.
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Fig. 7. The two operations of the Crystalline and Telecube
meta-modules. a) Scrunch/relax. b) Transfer.

Fig. 8. A M-TRAN unit.

Many current modular robots prototypes have other very convenient proper-
ties but cannot expand and contract. We would like to apply the previously
described algorithms also to some of these robots by constructing meta-
modules with their units, which cannot expand and contract, such that the
whole meta-module can.

One of the most interesting robotic systems developed so far is the M-TRAN
series, from M-TRAN I to M-TRAN III [38]. It was the first hybrid robot,
and similar shape and capabilities as those of their units (Figure 8) can be
found in posterior robots.

For these reasons, there has been interest in designing meta-modules of M-
TRAN units that can expand and contract. Murata and Kurokawa present
in [49] a small and compact meta-module, but it can only expand and
contract in 2 dimensions. For 3D, we are aware of two such meta-modules:
one for Molecule units [37] and another for M-TRAN [2]. The latter meta-
module is also valid for Molecube units [100]. However, the meta-module
of [2] is formed by 58 units and the side length of its minimum axis-aligned
bounding cube when expanded is 32 units. In addition, it is much less
compact than the one by Murata and Kurokawa, making it less robust.

We would be interested in a more realistic meta-module, both in size and
number of modules, and also capable of performing the Telecube meta-
module operations of the reconfiguration algorithms, since then the use of
meta-meta-modules of M-TRAN units would be avoided, reducing the grain
of the configurations.

Given the variety of structures and possible designs of three-dimensional
robots and the existing gap between abstract models and physical imple-
mentations, in contrast to the two-dimensional case, a systematic study of
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3D prototypes from a geometric point of view is presented in Chapter 2.
Other surveys have studied modular robots, but they have used different
criteria [93, 21]. As far as we know, this is the first systematic one in the
geometric context.

In Chapter 3, restricting ourselves to M-TRAN, we present a more robust
and compact meta-module that is able to simulate the operations performed
by Crystalline and Telecube units. From the results of Chapter 2 we derive
that the meta-module we propose is also valid for other robotic systems.
Moreover, since the meta-modules of expandable and contractible units re-
quired in the algorithms would lead to meta-meta-modules of M-TRAN
units, in Chapter 3 we also show that the use of these meta-meta-modules
can be avoided. A shorter version of the last Chapter was presented at the
XVI Spanish Meeting on Computational Geometry [58].



Chapter 2

Study of self-reconfigurable modu-
lar robots from a geometric point
of view

In two dimensions self-reconfigurable modular robots can be arranged in
a square or in a hexagonal lattice. Examples of the former systems are:
Vertical [25], Crystalline [64], Micro units [95], Pneumatic [27], CHOBIE
[28], XBot [89], EM-Cube[6] and Smart Blocks [46]. Examples of the latter
are: Metamorphic [11, 57], Fractum [50], Gear Type Units [81], Octabot
[73] and HexBot [66]. All modular robots whose units can be arranged
in a triangular lattice are stochastically assembled, like Stochastic [88] and
Programmable Parts [7].

In square grids there are two basic movements: horizontal advance and
convex transition. There are different free-space requirements depending on
whether the units or the meta-modules pivot, slide or squeeze. In Figure 1
convex transition for these different models is shown. In the hexagonal
case there is only one basic move with different free-space requirements
depending on the unit. Centralized and distributed reconfiguration and
locomotion algorithms have been presented for these lattices and models
[26, 16, 78, 54].

Fig. 1. 2D convex transition. Depending on the model a
different set of cells is required to be empty. Left: squeezing.
Center: sliding. Right: pivoting. Font: [26].

In this Chapter we present a study and an analysis of physically implemented
three-dimensional self-reconfigurable modular robots. Since our goal is to
provide useful information for designing models and deterministic reconfig-
uration strategies, we limit ourselves to robots able to scale up to large

7



8 2. GEOMETRIC STUDY OF SELF-RECONFIGURABLE MODULAR ROBOTS

enough ensembles. Chain robots are omitted since they are not designed for
general reconfiguration and so are stochastic ones.

1. 3D Prototypes

3D Fractum, 1998. [51]

3D Fractum robot.
Source: [51].

Country and affiliation: Japan; AIST, MEL,
MITI.

Type: Lattice: cubic.
Unit and connectors: Each unit consists of six

arms attached to the six sides of a central
immobile and small cube located in the cen-
ter of the corresponding cubic cell. The
end of each arm has a genderless connect-
ing mechanism.

Moves: A unit can rotate each arm indepen-
dently, an therefore has 6 rotational degrees
of freedoma. However a singe unit cannot
move to another cell without the help of an-
other adjacent unit. This robot presents the
3D checker board limitation: units in black
cells can never be moved to a white cell and
vice versa. Also, as it occurs for the Crys-
talline and Telecube units, universal recon-
figuration is not possible: for example, we
cannot reconfigure a linear string of the unit
into any other shape. The classification of
the reachable configuration set is not known.

Algorithms: A stochastic reconfiguration algo-
rithm was presented in [51].

aWe do not include the degrees of freedom of connectors
in our counting.
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Molecule, 1998. [35]

Molecule unit.
Source: [35].

Country and affiliation: USA; Dartmouth
Robotics Laboratory.

Type: Lattice: cubic.
Unit and connectors: Each unit is composed

of two cubical blocks linked by a rigid 90-
degree link. Each block has five connection
points. There are two kinds of units: the
male Molecules have the active connectors
and the female units have the passive ones.
This does not cause a problem because of the
3D checker board property that this robot
shows.

Moves: Each unit has four rotational degrees of
freedom, two in each block. Two degrees of
freedom allow each block to rotate 180 de-
grees relative to its bond connection, and the
other two degrees of freedom correspond to
two rotating connectors, one in each block,
that allow them (and therefore the entire
Molecule) to rotate 180 degrees relative to
another connected unit. This rotating con-
nector can never be placed in the face of
the block that is opposite to the one con-
nected with the link, but there is no need
for that since the rotation of the link can
lead to the same result. In [35] the class of
three-dimensional objects that can be built
out of Molecules is described. In the same
paper it is also shown how Molecules can
perform, on top of a lattice of identical units,
linear translations in a plane and convex and
concave transitions between two planar sur-
faces.

Algorithms and meta-modules: In [37]
a meta-module allowing tunneling was
proposed. It simplifies reconfiguration
planning dividing it into two layers: the
simpler planning problem for meta-modules
and the trajectory planning for a single
unit. A variation of Dijkstra’s shortest
path algorithm is used for solving the last
problem.
Two types of locomotion algorithms have
been presented in [36].
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I-Cube, 1999. [83]

ICubes.
Source: [82].

Degrees of freedom
of ICubes.
Source: [83].

Country and affiliation: USA; CMU, ICES.
Type: Lattice: cubic.
Unit and connectors: Two distinct elements

compose the I-Cubes system: actuated links
and cubes not capable of moving by them-
selves. The cubes, of side length d, can have
up to six attachment points (one in each
face) for the link connectors and can also be
used as task-oriented units. Links are bent
and have four sections of length d/2, d, d and
d/2. They are capable of connecting to and
disconnecting from the faces of the cubes.

Moves: Links have three degrees of freedom.
They have two joints able to rotate 360◦ (be-
tween the sections of length d/2 and d, called
J1 and J3 in the bottom figure on the left)
and another (J2, between the two sections of
length d) which can only rotate 270 degrees.

Algorithms and meta-modules: A reconfigu-
ration algorithm using meta-modules of 8
cubes and 16 links was presented in [82].
By using these meta-modules the planning
is simplified and separated into two differ-
ent layers: meta-module motions and cube
motions.
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Telecube, 1998. [77]

Telecube unit.
Source: [77].

Country and affiliation: USA; Xerox PARC.
Type: Lattice: cubic extendible.
Unit and connectors: A unit has 6 moveable

faces arranged in a cube. There are actuated
genderless connectors in all of them.

Moves: The 6 prismatic degrees of freedom of
each unit allow it to expand and contract
each face independently.

Algorithms and meta-modules: We can ap-
ply tunnelling strategies for reconfiguration:
[63, 9, 84, 3, 4, 5].



12 2. GEOMETRIC STUDY OF SELF-RECONFIGURABLE MODULAR ROBOTS

ATRON, 2004. [29]

ATRON unit.
Source: [13].

An ATRON configuration.

Collisions are avoided
when the four modules
surrounded by a dashed
circle are moved by the
rotation of a fifth module
in the plane behind the
represented one.
Source: [56].

Country and affiliation: Denmark; USD.
Type: Lattice: surface-centered cubic. The

units are not space-filling, but considering
their Voronoi regions we obtain irregular
space-filling octahedra.

Unit and connectors: Each unit is nearly
spherical, composed of two hemispheres.
Each half has four connectors, two male and
two female, placed so that opposite ones
have the same gender. Connections between
two neighbouring modules are possible in
two different orientations.

Moves: The units have a single degree of free-
dom: the two halves of a unit can be rotated
relative to each other. The module shape
has been designed to prevent collisions dur-
ing basic motions, as we can see in the bot-
tom figure on the left.
In this case the checker board property,
that can prevent connector-gender clashes,
does not hold. Therefore, we need to be
careful about this, placing all ATRONs in
the lattice in a way that no conflicts oc-
cur. For example, we can place all x-
ATRONs (those whose rotation axis is par-
allel to the x-axis) with their male connec-
tors in the y-direction, y-ATRONs with their
male connectors in the z-direction and z-
ATRONs with their male connectors in the
x-direction. But as soon as one ATRON-half
makes a 90◦ rotation, the defined pattern is
no longer adopted and we cannot guarantee
the absence of conflicts. Thus, every rota-
tion of 90◦ requires another rotation of 90◦

of the same half if we want to preserve the
connections pattern.
Reconfiguration is not universal for ATRON
units not even using meta-modules: consider
one unit attached to another two in different
halves, then we cannot obtain the configura-
tion with one unit attached with the other
two in the same half.
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Algorithms and meta-modules: Mobility
can be increased by using meta-modules.
In [13] several meta-modules that are not
lattice-based (the meta-structure is not
permanent, it is only considered when
moving) are proposed and analyzed.
In [12] an algorithm and examples in 3D us-
ing one non-lattice-based meta-module with
three ATRON units are presented.
In [8] a 2D meta-module that consists of
four ATRON modules connected in a square
configuration was proposed. It allows us to
apply two-dimensional reconfiguration algo-
rithms [26, 16]. Also a centralized greedy
planer (that can get stuck in local min-
ima) and a greedy distributed control al-
gorithm for performing locomotion for the
meta-modules were proposed.
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M-blocks, 2013. [62]

M-blocks.
Source: [62].

Country and affiliation: USA; MIT.
Type: lattice: cubic.
Unit and connectors: each unit is cube-

shaped and each face can be connected
to any other in all four possible relative
orientations.

Moves: provided that no collision occurs, ev-
ery unit can pivot around an edge shared
with an adjacent (face-connected) unit. This
robot implements the pivoting cube model
(PCM) in three dimensions. The free-space
requirements for basic movements are shown
in Figure 3. Since the face diagonal of a cube
is longer than the side, the volume swept
is greater when pivoting than when sliding
(under the sliding cube model, see Figure 2).
Not all configurations can be reconfigured
into any other. Sufficient conditions for the
reconfigurable ones are known but they are
far from being necessary.
M-Blocks are also independently mobile. A
single unit can roll, spin in place, and jump
over obstacles up to twice its height.

Relations with other prototypes: see Giant
Helium Catoms.

Algorithms: In [78] a centralized algorithm for
reconfiguration was presented under the re-
striction that the initial and target config-
urations have only convex holes and meet
three sufficient conditions guaranteeing fea-
sibility. The algorithm in these cases is able
to reconfigure the robot into a line in O(n2)
pivot moves.
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Giant Helium Catoms (GHC), 2006. [30]

Design of GHC.
Source: [30].

Country and affiliation: USA; CMU.
Type: lattice: cubic.
Unit and connectors: Each unit is cube-

shaped with four triangular actuated flaps
on each face. Any two flaps can be adhered
to one another.

Moves: the units can rotate around each other
by attaching a flap to a neighbouring cube
and then moving it back together with the
cube as shown in the figure on the left. For
this purpose the flaps can be actuated and
controlled independently.

Relations with other prototypes: as M-
blocks, Catoms are pivoting cubes.

Other: The Giant Helium Catoms are currently
the largest units, with a cube side length of
a approximately 1.9 m. As far as we know
only two catoms have been constructed
(http://www.cs.cmu.edu/~claytronics/
hardware/helium.html).

http://www.cs.cmu.edu/~claytronics/hardware/helium.html
http://www.cs.cmu.edu/~claytronics/hardware/helium.html
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Molecube, 2004. [100, 99]

Robot.
Source: [99].

Country and affiliation: USA; Cornell U.
Type: Hybrid: cubic.
Unit and connectors: Each unit is cube-

shaped with rounded corners and all faces
can be actively connected in any possible
orientation.

Moves: Each cube is decomposed into two ap-
proximately triangular prisms and the two
halves of a unit can rotate relative to each
other. This is the only degree of freedom.
The symmetry axis passes through the cen-
ter of the cube and through two opposite
vertices (at their furthest distance). There-
fore, rotating one of the halves by 120◦ cy-
cles through three faces of the cube. So, a
single unit is not able to move alone. When
connected to another one a unit can reach
at most two neighbouring cells by rotating.
This robots present the 3D checker board
limitation, and even if this constraint is sat-
isfied there are pairs of configurations be-
tween which we cannot move. For example,
similarly to the ATRON counterexample for
universal reconfigurability, if one unit is at-
tached to another two in different halves,
then we cannot reconfigure into a configu-
ration with two units attached to the same
half of a third unit.

Relations with other prototypes: See
Roombot.

Algorithms and meta-modules: A meta-
module simulating Crystalline and Telecube
units was proposed in [2].
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Roombot, 2008. [74]

Roombot unit.
Source: [76].

Degrees of freedom of
a Roombot unit.
Source: [74].

Country and affiliation: Switzerland; EPFL.
Type: Hybrid: cubic.
Unit and connectors: Each unit is cube-

shaped with rounded corners. A single
connection mechanism has both male and
female connector features integrated so it
can be attached to another connector or to a
socket. In some cases only a few connectors
per unit are needed (two are sufficient in
[76]) so in each case we can decide how
many sockets to equip active connection
mechanisms with.

Moves: Each unit has two parallel axes of ro-
tation, as the M-TRAN units, and an ad-
ditional degree of freedom perpendicular to
the two parallel ones, like in Superbot. All
three degrees of freedom (bottom figure on
the left) allow 360◦ rotations.
Roombots present the 3D checker board lim-
itation, and the same counterexample for
Molecubes shows that there are pairs of con-
figurations satisfying the checker board lim-
itation between which we cannot move.

Relations with other prototypes:
Diametrical degrees of freedom were
first presented in the Molecube system.
Both robots are geometrically similar, but
because of the extra degree of freedom
mobility is significantly increased in the
Roombot configurations.

Algorithms and meta-modules: In [74] two
new heuristics were presented for self-
reconfiguration planning. In [76] off-grid
meta-modules of two units are used for in-
creasing mobility during reconfiguration and
locomotion.
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M-TRAN, 1998 [I], 2002 [II], 2005 [III]. [52, 38]

M-TRAN unit.
Source: [38].

Country and affiliation: Japan; AIST.
Type: hybrid: cubic.
Unit and connectors: M-TRAN units consist

of two linked semi-cylindrical cubes. We re-
fer to these semi-cylindrical cubes as blocks.
Each block has a gender (male/female) and
connectors (different for the two genders) on
its three flat surfaces. Connectors of dif-
ferent gender can be attached in all four
possible relative orientations. As long as
the blocks stay in the lattice no connector-
gender clashes can occur because of the 3D
checker board property.

Moves: The units have two degrees of freedom:
each semi-cylindrical block can rotate from
−90◦ to 90◦ with respect to the link joining
both blocks. Reconfiguration is again not
universal: two units attached at their square
faces and with the links aligned cannot ro-
tate any of their links.

Relations with other prototypes: See Su-
perbot, iMobot, Ubot and SMORES.

Algorithms and meta-modules: Different
meta-modules of M-TRAN units that can
expand and contract have been designed.
For 2 dimensions Murata and Kurokawa
present in [49] a small and compact meta-
module. For 3D there is the one of Aloupis
et al. [2]. In Chapter 3 a three-dimensional
compact meta-module is presented.
Small scale reconfiguration has been shown
between different patterns including differ-
ent locomotion modes. For large scale re-
configurations different meta-modules have
been presented [49].
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Superbot, 2005. [67]

Superbot unit in a mode
similar to CONRO.
Source: [67]

Superbot unit in a mode
similar to M-TRAN.
Source: [67]

Country and affiliation: USA; USC.
Type: hybrid: cubic.
Unit and connectors: SuperBot units, as M-

TRAN ones, consist of two linked semi-
cylindrical cubes. Connectors are placed on
all six flat surfaces and in this case they are
genderless. When first proposed no actuated
connecting mechanism was included. In [71]
the SINGO genderless connector was pre-
sented.

Moves: The units have three degrees of freedom:
each semi-cylindrical block can rotate from
−90◦ to 90◦ and the middle joint can rotate
continuously in both directions.

Relations with other prototypes: When the
semicircular square faces both blocks are
aligned, the Superbot unit can reproduce the
M-TRAN moves. If the middle joint is ro-
tated 90◦ then the Superbot has the same
shape as CONRO.

Algorithms and meta-modules: SuperBot
system supports different locomotion gaits
for a wide range of terrains [72].
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Ubot, 2009. [79]

UBot units.
Source: [79].

Country and affiliation: China; HIT.
Type: hybrid: cubic.
Unit and connectors: UBot units have a cu-

bic shape and are composed of two L-type
blocks connected by a right angle shaft.
Each unit has four connecting surfaces, two
in each block. There are female units with
only passive connectors, and male units
with only active ones. Connectors of dif-
ferent gender can be attached in all four
possible relative orientations. As long as
the blocks stay in the lattice no connector-
gender clashes can occur because of the 3D
checker board property.

Moves: Each unit has two rotational degrees of
freedom. Both blocks of a unit can rotate
±90◦ around the right angle shaft alone or si-
multaneously. However, the two blocks can-
not rotate from the zero angle position to-
wards the same direction since they would
collide.

Relations with other prototypes: If we con-
nect two units such that in the zero angle
position two faces of the first unit are aligned
with two faces of the second one, we obtain a
meta-unit with similar (but not equal) shape
and motion capabilities.
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Sambot, 2010. [85]

Sambot robots.
Source: [86].

Source: [85].

Country and affiliation: China; Beihang Uni-
versity.

Type: hybrid: cubic and mobile.
Unit and connectors: Each unit is divided

into a cube-shaped body with two wheels
and an active docking surface. This ac-
tive docking surface can be connected to the
grooves (passive) in the four lateral faces of
a cubic body.

Moves: There are three degrees of freedom, two
of them corresponding to the wheels in the
body. The other one corresponds to the
±150◦ rotation of the active docking surface
around the central axle of the main body.
Therefore, the reconfiguration capability
within the lattice is very limited.

Other: each Sambot module can move au-
tonomously as a swarm robot.
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SMORES, 2012. [15]

SMORES unit.
Source: [15].

Country and affiliation: Australia; U. of
South Wales. USA; Penn.

Type: hybrid: cubic and mobile.
Unit and connectors: SMORES units are

cube-shaped with genderless connectors in
the four lateral faces of the cube. Three
connectors are active (able to attach and
detach) and are located in rotating wheels;
the other is passive. Two passive ports can
get attached but then they cannot discon-
nect. By connecting SMORES modules in
a head-to-tail fashion we can prevent this
from happening.

Moves: each unit has four rotational degrees of
freedom. Three of them correspond to the
continuous rotation of the wheels in which
active connectors are placed. The other,
parallel to two of the previous ones, allows
the passive port to be rotated, this time not
continuously but with a ±90◦ limit. It pro-
duces a bending joint while the other three
can twist connected units. Since the three
active connectors can rotate to any angle,
connected units can be placed in any rela-
tive orientation.

Relations with other prototypes: The
SMORES system can emulate other robots,
as we can see in the following Figure from
[15].
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The following table contains many modular 2D and 3D robots. The red ones
are out of scope for the reason presented in the last column. Black robots
have been already detailed in this chapter, blue ones are chain robots and
green ones have only been simulated so far.

Robot Country, Affiliation Reference Year Dim. Others

CEBOT Japan, Science U. of Tokyo [18] 1988 2D Mobile

RMMS USA, CMU [70, 59] 1988 3D Manually reconfigurable

Metamorphic USA, Johns Hopkins U. [11, 57] 1993 2D

PolyPod USA, Stanford, PARC [91] 1993 3D

Fractum Japan, AIST, MEL, MITI [50] 1994 2D

Biomorphs USA, LANL [24] 1995 2D Mobile

MARS JP, NDCL, Nagoya U. [45] 1995 2D Mobile

TETROBOT USA, RPI [23] 1996 3D Not self-reconfigurable

3D Fractum Japan, AIST, MEL, MITI [51] 1998 3D

Molecule USA, DRL [35] 1998 3D

Vertical Japan, Riken, Meiji U. [25] 1998 2D

Telecube USA, Xerox PARC [77] 1998 3D

CONRO USA, USC, ISI [90, 10] 1999 3D

Crystalline USA, Dartmouth College [64] 1999 2D

I-Cube (ICES Cubes) USA, CMU, ICES [83] 1999 3D

Micro units Japan, AIST [95] 1999 2D

M-TRAN Japan, AIST [52, 38] 1998 3D

PolyBot USA, Xerox PARC [92] 2000 3D

Proteo USA, Xerox PARC [94] 2000 3D Only simulated so far

Pneumatic Japan, TiTech [27] 2002 2D

SMC Rover Japan, TiTech [31] 2002 2D Mobile

CHOBIE Japan, TiTech [28] 2003 2D

Gear-Type Units Japan, U. of the Ryukyus [81] 2003 2D

S-BOT Switzerland, EPFL [48] 2003 2D Mobile

ATRON Denmark, USD [29] 2004 3D

Molecube USA, Cornell U. [100, 99] 2004 3D

Stochastic USA, Cornell U. [88] 2004 2D Stochastic

Y1 Spain, UAM [22] 2004 3D Manually reconfigurable

Amoeba-I Japan, Hokkaido U. [41, 40] 2005 2D Mobile

Catom USA, CMU, Intel Research P. [33, 32] 2005 2D

HYDRON CH, UZ; DK, USD; UK, U. Edin [55] 2005 3D Fluid scenario. No connections

Programmable Parts USA, U. of Washington [7] 2005 2D Stochastic

Stochastic-3D USA, Cornell U. [87] 2005 3D Stochastic

Superbot USA, USC [67, 72] 2005 3D

YaMoR Switzerland, EPFL [47] 2005 2D Manual assemble

CKBot USA, Penn, FAMU, FSU [68, 69] 2006 3D

Giant Helium Catoms USA, CMU [30] 2006 3D

GZ-I DE, U. Hamb.; ES, UAM; CN, ZUT [96] 2006 3D Manual assemble

HitMSR China, HIT [97, 98] 2006 3D

Miche USA, MIT [20] 2006 3D Manual assemble
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Robot Country, Affiliation Reference Year Dim. Others

XBot USA, Penn [89] 2007 2D

EM-Cube Republic of Korea, DCS lab [6] 2008 2D

Octabot Taiwan, NTU, HUST, TMUST [73] 2008 2D

Odin Denmark, USD [42] 2008 3D Manual assemble

Roombots Switzerland, EPFL [75, 76] 2008 3D

HexBot American University of Sharjah [66] 2009 2D

Ubot China, HIT [79] 2009 3D

CrossCube USA, SIT; UK, U. Surrey [43] 2010 3D Only simulated so far

iMobot USA, U. of California [65] 2010 3D Manual assemble

JHU USA, JHU [39] 2010 3D No space filling 3D lattice

Pebbles USA, MIT [19] 2010 3D Manual assemble

Rob. Stoch. Fluidic Assembly USA, Cornell U. [53] 2010 3D Stochastic

Sambot China, Beihang U. [85] 2010 3D

Cross-Ball USA, SIT; UK, U. Surrey [44] 2011 3D Only simulated so far

ModRED USA, UNL, UNO [14] 2011 3D

Milli-Motein USA, MIT [34] 2012 3D Manual assemble

Smart Blocks FR, UFC; DE, TU Ilmenau [46] 2012 2D

SMORES AU, U. of South Wales; USA, Penn [15] 2012 3D

M-blocks USA, MIT [62] 2013 3D

ReBiS India, VNIT [80] 2014 3D Manual assemble

2. Analysis and conclusions

Compared to the two dimensional case, in three dimensions the mechatronic
design and the motion restrictions are more complex. A unit like ATRON,
that has only one degree on freedom, needs the help of another neighbouring
unit to be moved. In general, mechanical design can be simpler at the ex-
pense of the reconfiguration plan and the other way around, so the challenge
is to simplify both aspects at the same time.

In most of the cases, for a large number of units it is too hard to generate a
deterministic motion plan for the units since we would have to consider an
exponential number of configurations. Thus, plans can consider just local
information.

Meta-modules are a widely used method that can eliminate the need for
online trajectory planning. They can increase the mobility, reduce the de-
pendence upon the help of neighbouring units and simplify the motion con-
straints. Thus, reconfiguration is simplified but the grain of the configura-
tions is increased.

An exception is the pivoting cube model that can be applied to the M-blocks
without needing meta-modules. It shows that a balance between mechanical
and algorithmic constraints is possible. We consider that one of the major
issues of self-reconfigurable modular robots is the convergence of theoretical
models designed from the algorithmic perspective and mechanical designs.



Chapter 3

A new meta-module for efficient ro-
bot reconfiguration

The M-TRAN system was the first hybrid robot and it is one of the most
interesting robotic systems developed so far. As we have seen in the previous
chapter, other robots including the SuperBot, and the SMORES are able to
simulate the mobility and connectivity of the M-TRAN units. It is therefore
interesting to study the reconfiguration problem for the M-TRAN robot.

Expandable and contractible units allow tunnelling strategies. This capa-
bility can be exploited to reconfigure in linear time and only using the cells
of the source and target configurations [3, 60]. Moreover, as the volume
of a configuration grows there is proportionally less surface area per mod-
ule. This is an impediment to parallelism in surface strategies, causing the
reconfiguration speed to decrease as the number of modules increases.

The way to apply tunnelling algorithms to other kinds of units is construct-
ing an expandable and contractible meta-module. This reduction was proven
for Molecules by Kotay and Rus [37] and for the M-TRAN units (and also
for the Molecube ones) by Aloupis et al [2].

In the remaining of this chapter we describe a more compact and robust
meta-module that is able to expand and contract. It will also be proven
that there is no need to use meta-meta-modules to be able to apply tun-
nelling algorithms. This was presented at the XVI Spanish Meeting on
Computational Geometry [58].

1. Design and correctness of the meta-module

Our meta-module, illustrated in Figure 1, consists of 6 arms, aligned in three
directions that are parallel to the x, y and z axes.

Each arm is implemented using a 2-unit chain: two units attached at square
flat faces and with the direction of their links aligned, as shown in Figure 2.
The key property of 2-unit chains is that the rotation of the blocks within
the units allows them to contract an expand, while preserving potential
connections.

25
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Fig. 1. Our M-TRAN meta-module. Left: all arms ex-
panded. Center: central blocks. Right: all arms contracted.

Fig. 2. The 2-unit chain is able to contract while maintain-
ing the alignment and the orientation of its potential connec-
tions at both ends.

Lemma 1. The 2-unit chain can be contracted to half its length. During this
operation its two extremal blocks stay aligned and keep their orientation.

Proof. The contraction operation is shown in Figure 2. Its realization is
allowed by the two rotational degrees of freedom and the semi-cylindrical
shape of the blocks. It is easy to see that this operation does not change
neither alignment nor the orientation of the extremal blocks of the chain. ut

The pairs of arms of the meta-module that are oriented in the same direction
are connected to each other, resulting in a 4-unit chain whose blocks are all
aligned. However, the linkages of the two connected arms differ in their
orientation (see Figure 3 left). We call the blocks connecting the two arms
central. The end blocks of a 4-unit chain are called tips.

Since the linkages of the two arms forming a 4-unit chain have different
directions, their contraction and expansion movement takes place on two
orthogonal planes, as illustrated in Figure 3 right.

The six arms of the meta-module form three 4-unit chains, one for each
of the x, y and z directions, attached through their central blocks at their
semicircular faces.

The meta-module can contract or expand each arm independently while
keeping the six central blocks still. An important property of the meta-
module is that the expansion or contraction of an arm can never interfere
with another arm of the same meta-module.
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Fig. 3. Left: connecting two arms into a 4-unit chain. The
central blocks are highlighted in green. Right: the compres-
sion movement.

Lemma 2. No self-intersection is produced when expanding or contracting
any of the six arms of the meta-module.

Proof. Consider the minimum axis-aligned cube containing the expanded
meta-module and decompose it into eight octants. It is easy to see that
each expanded arm is contained in a different octant. The plane on which
the contraction of an arm occurs always has a region in the corresponding
octant, in such a way that when contracting an arm, the module can always
use the octant that is exclusive to that arm. This guarantees that collisions
cannot occur. ut

Lemma 3. During the expansion and contraction of any subset of arms of
a meta-module the structure remains connected.

Proof. While expanding and contracting any arm, the central blocks re-
main immobile. These six blocks maintain the meta-module connected at
all times. Moreover, connectivity with neighbouring meta-modules is pre-
served: if the tip of an arm is attached to the tip of another meta-module
arm, Lemma 1 guarantees that this attachment can be maintained during
expansion and contraction. ut

Theorem 4. The meta-module can perform the Crystalline and Telecube
unit operations: expand, contract, attach and detach.

Proof. From the previous lemmas we conclude that, in any direction, the
length of the meta-module can be reduced by half (when expanded arms
are contracted) or doubled (when contracted arms are expanded) in any of
the x, y and z directions. This can be done while preserving connectivity
(Lemma 3) and avoiding collisions (Lemma 2). ut

The meta-module we have presented uses 12 M-TRAN units. When ex-
panded, its length is 8 units. Thus, the number of units is significantly
reduced with respect to the 58-units meta-module presented in [2] and its
size is scaled down to half. It is also very compact if compared with the
54-Molecule metamodule [37].
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Furthermore, robustness is also improved over the previous meta-module:
when contracted, our meta-module has only two corner joints per arm, as
opposed to the four used in previous work, and leaves no gaps, making it
much more compact.

2. Avoiding meta-meta-modules

By Theorem 4, we can apply the algorithms in [63, 9, 84, 3] for Crystalline
and Telecube units to our meta-module. These algorithms, in turn, use
meta-modules of Crystalline or Telecube units that are able to perform the
scrunch/relax (Figure 4a) and the transfer (Figure 4b) operations.

Fig. 4. Crystalline and Telecube meta-module operations.
a) Scrunch and Relax. b) Transfer.

In the previous section we showed that our meta-module is able to per-
form the Crystalline and Telecube unit operations. In this section we show
that meta-meta-modules of M-TRAN units are not required since our meta-
module is also able to simulate the scrunch/relax and transfer operations.
This decreases the resolution of the configurations that we can handle, both
in size and number of units.

Figure 5 illustrates two adjacent meta-modules before and after a scrunch/
relax operation. In a scrunch operation one of the meta-modules stays still,
guaranteeing the connectivity of the overall structure. The other meta-
module adopts a position that we call canonical, and has the following prop-
erties:

• The 4-unit chains of the moving meta-module are parallel to those
of the still meta-module, and they are all connected at their central
blocks.
• The symmetry of the resulting configuration allows to perform a relax

operation on the moving meta-module to place it in any of the six
adjacent lattice cells.

In a transfer operation two adjacent meta-modules stay still, while the other
moves from the canonical position attached to one of the still meta-modules
to the canonical position attached to the other.

The low density [54] of the configuration with two meta-modules in the same
bounding box, as shown in Figure 5, allows performing the scrunch/relax
and transfer operations. Their actual implementation is rather involved.
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Fig. 5. a) The scrunch/relax operation. b) The transfer
operation. Notice the canonical position of the blue meta-
module in the bottom figure.

It comprises 56 independent moves of the six 2-unit chains of the moving
meta-module for the scrunch operation and 68 for the transfer operation.
This leads to the following result.

Theorem 5. The meta-module can perform the Crystalline and Telecube
meta-module operations scrunch/relax and transfer.

The details of the implementation are provided in the two following sub-
sections. Geometric and visual proofs are presented for some steps whose
feasibility might not be immediate. The view from the opposite perspective
is also provided when needed.

2.1. Scrunch/Relax operation.

(0)
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(1) (2)

(3)

(4) (5) (6)

(7)
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(8)

(9) (10) (11)

(12) (13) (14)

(15)

(16)
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(17) (18) (19)

(20) (21) (22)

(23) (24) (25)

(26) (27) (28)

(29) (30) (31)
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(32) (33) (34)

(35) (36) (37)

(38)

(39)

(40)
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(41)

(42)

(43)

(44)
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(45)

(46)

(47)

(48)

(49)
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(50)

(51)

(52)

(53)

(54)
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(55) (56)

2.2. Transfer operation.

(0) (1) (2)

(3) (4) (5)

(6) (7) (8)

(9) (10) (11)
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(12) (13) (14)

(15) (16) (17)

(18) (19) (20)

(21) (22)

(23)
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(24)

(25)

(26)

(27)
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(28)

(29)

(30)

(31)

(32)
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(33)

(34)

(35)

(36)

(37)
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(38)

(39) (40)

The configuration after step 40 is almost the same as after step 28 of the
scrunch/relax operation of the meta-module. The only difference is the pres-
ence of an immobile meta-module in the adjacent cell of the moving (blue)
one. Along steps 29-56 of the scrunch/relax operation the space occupied
by the adjacent immobile meta-module is not used for reconfiguration, so
steps 41-68 of the transfer operation are exactly the same.

3. Conclusions

In this section we have presented a new compact and robust meta-module
that can simulate Telecubes. Moreover, it is the first time that it has been
proved that the tunnelling algorithms, that have been shown to satisfy the
most interesting properties, can be applied avoiding the use of meta-meta
modules. We hope that similar reductions can be proved to other modular
robotic systems other than M-TRAN, SuperBot and SMORES.
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