Reconfiguracion distribuida de robots cristalinos

Manuel Perera Paquico

Proyecto de Fin de Carrera
Directora: Vera Sacristan Adinolfi
Departamento: Matematica Aplicada II

Ingenieria informatica
Facultad de Informatica de Barcelona
Universitad Politécnica de Catalunia

23 de marzo de 2015

La libertad no consiste en tener un buen amo,
sino en no tenerlo.
Marco Tulio Cicerén

Indice general

2. El modelo y la simulacion|

2.1. Movimientos modulares,
[2.1.1. Compresion|
2.1.2. Expansion|.
[2.1.3. Paso de médulos comprimidos|

[2.1.4. Otras operaciones|
[2.2. Algoritmo distribuido|
[2.2.1. LasReglas|
2.2.2. Precondicidénl o

3. Mejoras al algoritmo originall

[3.1. Algoritmo con senal de parada hasta interseccion|
[3.1.1. Objetivo|.o
[3.1.2. Estrategia] L.

13
13
13
14
14
15
15
16
17
19
21
21
22
23
23
24
24
25

4 INDICE GENERAL
[3.2. Algoritmo con senal de parada hastaraizl 33
[3.2.1. Objetivo|. 33
[3.2.2. Estrategia] 0oL 33
3.2.3. Reglas| 00000 34
824, Problemas., 34
3.2.5. Alternativas/.o 35
[3.2.6. Modelos de pruebal 0. 35

13.3. Algoritmo con senal de parada para toda la configuracion| . . 36
[3.3.1. Objetivo|. 36
[3.3.2. Estrategia] oo 37
3.3.3. Reglag| L 37
3.34. Problemad. 0. 37
3.3.5. Alternativas/.o 38
[3.3.6. Modelos de pruebal L. 38

[3.4. Version multilider del algoritmo| 39
[3.4.1. Objetivo|. 39
[3.4.2. Estrategia] o0 o 40
3.4.3. Reglas| L 41
8.4.4. Problemas. 41
3.4.5. Alternativas/.o 42
[3.4.6. Modelos de pruebal L. 42

4. Implementacion del algoritmo multilider| 45
M.1. Arbol Inicial [S]|. 45
[4.1.1. Inicio del algoritmo|. 45
|4.1.2. Cadena de mensajes candidatos|. 45
4.1.3. Mensaje recibido en las hojas| 46
[4.1.4. Cadena de mensajes de las hojas| 46
415, Creacidbndelarald 47
|4.1.6. Conocer la configuracion objetivo|. 47
|4.1.7. Cadena de mensajes Slave| 48

[4.2. Reglas de compresion [Cl| L. 48
4.2.1. Compresion| o v v v 48
4.2.2. Paso de moédulos comprimidos en fase de compresion| . 49

[4.3. Reglas de expansion [E[| 49
4.3.1. Expansion del lider|. 50
|4.3.2. Expansion a una posicion ocupada conexa ol
|4.3.3. Expansion a una posicion vacial 51
|4.3.4. Expansion a una posicion ocupada no conexal 51
4.3.5. Actualizacion de los registros contadores de modulos| . 53
4.3.6. Paso de mdédulos comprimidos en fase de expansion|. . 54
|4.3.7. Direccidon de viaje de un modulo comprimido| 55
[43.8. Retornodellider 55

[4.4. Fin de la reconfiguracion [End|| 56

INDICE GENERAL 5
[4.4.1. Reglas de reparacién| 56

[6. Complejidad de los algoritmos y analisis experimental] 57
|5.1. Complejidad de los algoritmos|. 57
[>.1.1. Algoritmo con senal de parada hasta interseccion| . . . 57

[5.1.2. Algoritmo con senal de parada hasta raizl 61

[>.1.3. Algoritmo con senal de parada para toda la configu- |

| racionl 62
[>.1.4. Algoritmo multiliderf 63

[5.2. Analisis experimental de las modificaciones| 68
B.2.1. Introduccion a los resultadosl 68

(6.2.2. Herramientas utilizadasl 69

[6.2.3. Juegos de pruebal 69

[5.2.4. Movimientos segun el numero de modulos| 70

[5.2.5. Mensajes segun el numero de modulos| 71

[5.2.6. Orden de compresion en los algoritmos|. 75

[5.2.7. Impacto de la orientacién en figuras densas| 78

[5.2.8. Impacto de la orientacion en figuras poco densas| . . . 80

[5.2.9. Reconfiguracion de figuras sin ciclog| 83

6. Analizador sintactico de acciones| 85
|6.1. jPara qué necesitamos un parser de acciones?| 85
[6.2. Menu principall oo o 85
[6.2.1. Repair Rules File| 86

6.2.2. Numerate and Parse Rules 86

[6.2.3. Parselog File| 87

6.2.4. Exitl 87

[6.3. Ventana de analisis estadisticd 87
[6.4. ;Como ftunciona?l 88
[6.5. Requisitos| 89

[7. Gestion del proyecto| 91
[c.1. Planificacionl oo 91
[7.2. Presupuesto| 93
8. Conclusiones| 97
[8.1. Resultados obtenidos| 97
[8.2. Dificultades encontradaso 97
[8.3. Futuro del proyecto|. L. 99
[8.4. Valoracion personall. 99
[Referencias] 101

INDICE GENERAL

Capitulo 1

Introduccion

Este proyecto estd dedicado al diseno, la implementacién y el analisis de
nuevos algoritmos de reconfiguracion de robots cristalinos de forma distri-
buida. Este capitulo empieza describiendo las caracteristicas de los robots
modulares, sus diferencias con los robots especializados y las caracteristicas
del modelo utilizado en nuestro proyecto. Seguidamente, se describen los
objetivos del proyecto y, finalmente, la organizaciéon de esta memoria.

1.1. Robots modulares

Un robot es una entidad virtual o mecénica artificial que, mediante técni-
cas de inteligencia artificial o a través de un programa predefinido, realiza
tareas de forma automatica. Aunque normalmente un robot puede desarro-
llar multiples tareas de manera flexible segin su programacién, los robots
mas comunes hoy en dia son los robots especializados. Pueden verse algunos
ejemplos en la Figura Estos robots estan disenados para realizar una
Unica tarea y estan limitados por su forma y construccién. Por ejemplo, un
brazo mecanico de una cadena de montaje, aunque preciso, es incapaz de
cambiar su ubicacién a no ser que haya sido dotado de algin sistema de
movimiento. En un intento de solventar estas limitaciones se disenaron los
robots modulares.

Un robot modular es aquél que esta formado por médulos o unidades
independientes mas pequenos, y que es capaz de cambiar su forma para
adaptarse a cualquier situacion a la que pueda enfrentarse. La Figura [1.2
muestra algunos ejemplos. Los mddulos son idénticos y, por tanto, inter-
cambiables entre si. De esta forma si una unidad resulta danada durante
una accién puede ser substituida por otra, reparando asi el robot modular.
Siguiendo el ejemplo anterior, si creamos un robot modular con forma de
brazo mecanico de una cadena de montaje, una vez que este deje de ser
necesario en su linea de la cadena puede cambiar su base para desplazarse a
otras lineas y reforzarlas o substituir un robot averiado. Todas estas carac-

7

8 CAPITULO 1. INTRODUCCION

Figura 1.1: Esta figura muestra dos ejemplos de robots especializados. A
la izquierda, imagen a, los robots Ava y RPVITA, especializados en tele-
asistencia y telepresencia. A la derecha, imagen b, el robot Makr Shakr,
especializado en la preparacion de cécteles. Los tres robots estdn disenados
para realizar funciones muy especificas y ninguno puede realizar el trabajo
de los otros.

teristicas dan a los robots modulares una gran flexibilidad asi como un gran
nimero de usos.

1.2. Robots cristalinos

Los robots con los que trabajamos en este proyecto son robots auto-
reconfigurables reticulares cuadrados o cibicos. Cada cara de cada unidad
permite tanto acoplarse y desacoplarse a sus vecinos como extenderse en di-
reccion a la normal de la cara y contraerse en direcciéon contraria. La Figura
[I-3] muestra diversos prototipos de este tipo de robot. De esta forma pode-
mos formar toda una estructura de unidades conectadas por sus caras en
donde una unidad puede empujar o estirar a su vecino. En nuestros algorit-
mos, cada unidad del robot es independiente y toma sus propias decisiones
sin necesidad de un controlador central. Ademas, los 4tomos pueden enviar
informacién a sus vecinos y almacenarla en registros internos.

1.3. Objetivo del trabajo

Este proyecto consiste en implementar y estudiar una serie de algoritmos
en dos dimensiones que buscan mejorar el algoritmo de Joan Soler Pascual
descrito en su proyecto de final de carrera Reconfiguracid de robots cristal-lins
[3] el cual es una versién distribuida de un algoritmo original de Aloupis et
al [2]. Dicho algoritmo consigue que un robot formado por metamédulos de

1.3. OBJETIVO DEL TRABAJO 9

Figura 1.2: Esta figura muestra diferentes tipos de robots modulares tanto
reales como ficticios. La imagen ¢ muestra un grupo de imanes electroper-
manentes para materia programable (2010), capaces de reproducir cualquier
forma que sus vecinos hayan rodeado. La imagen b muestra un modelo de un
atomo microbot de la dltima pelicula de Disney Big Hero 6 (2014), capaces
de recrear cualquier forma, realizar tareas de construcciéon y de transpor-
te. Por 1ltimo, en la imagen ¢, podemos ver un robot modular MTRAN3
(2005), que cuenta con la habilidad de cambiar de forma para moverse como
una serpiente, caminar o incluso rodar.

robots méas pequenos sea capaz de cambiar su forma inicial a cualquier otra
forma que se le indique, siempre y cuando tenga suficientes mdédulos para
ello. Para llegar a la forma final el algoritmo interpreta tanto esta como la
forma inicial como dos arboles generadores que comparten la misma raiz y
que tienen médulos de robots por nodos. Primero mueve los mdédulos hacia
la raiz siguiendo las ramas de la forma inicial para luego expandir dichos
modulos formando, de una en una, las ramas de la forma final.

La accién maés costosa posible que puede realizar un robot modular es
moverse, mucho méas que enviar un mensaje o almacenar datos en sus regis-
tros, por eso en este proyecto buscamos reducir el nimero de movimientos
del algoritmo original.

El proyecto ha sido dividido en los siguientes objetivos:

= Diseno e implementacion de cuatro algoritmos distribuidos en 2D que
buscan mejorar el rendimiento del algoritmo original. Todos estos al-
goritmos se encuentran descritos en el Capitulo [3[de esta memoria.

10 CAPITULO 1. INTRODUCCION

s Andlisis y experimentacién de los algoritmos 2D.

1.4. Estructura de la memoria
La memoria se divide en ocho capitulos:

s Capitulo 1: Introduccién a los robots modulares y breve explicacion
del modelo usado en nuestro trabajo.

s Capitulo 2: Explicacién de los movimientos béasicos de los robots cris-
talinos y del funcionamiento del simulador.

s Capitulo 3: Descripcién sencilla de los algoritmos de mejora presenta-
dos en el proyecto.

s Capitulo 4: Implementacion del algoritmo multilider, el més complejo
de todos los algoritmos presentados en este proyecto.

= Capitulo 5: Estudio de la complejidad y andlisis experimental tanto
de los algoritmos presentados en este proyecto como del algoritmo
original.

s Capitulo 6: Manual de usuario de un analizador de acciones disenado
para facilitar la fase experimental del Capitulo 5.

s Capitulo 7: Gestion del proyecto.

= Capitulo 8: Conclusiones y reflexién sobre el resultado del proyecto.

Al final de esta memoria se puede encontrar una lista de referencias con-
sultadas durante el proyecto y un anexo en donde se detallan las diferentes
fases de una reconfiguracién y el significado de los estados, senales y registros
usados por los dtomos del robot modular.

1.4. ESTRUCTURA DE LA MEMORIA 11

Figura 1.3: (a) Primer prototipo de robot cristalino [I], el cual solo puede
expandir o contraer sus cuatro caras al mismo tiempo. (¢) Segundo proto-
tipo de robot cristalino [I] que consigue expandir y contraer a la vez caras
opuestas, ofreciendo un mayor grado de libertad de movimiento a las uni-
dades del robot. (b) Diseno final de un robot telecube[4] que puede mover
cada una de sus caras de forma independiente y en tres dimensiones.

12

CAPITULO 1. INTRODUCCION

Capitulo 2

El modelo y la simulacién

En este capitulo se describen las caracteristicas del simulador de ro-
bots cristalinos [6] desarrollado por Reinhard Wallner [5] y del robot modu-
lar que simula. Este simulador permite experimentar con robots modulares
cristalinos formados por unidades como las descritas en el Apartado
agrupadas en metamodulos de tamano 2 x 2. Esta agrupacion de unidades
en metamddulos, junto con las operaciones bésicas descritas anteriormente
(acoplarse, desacoplarse, expandir y contraer), permite realizar operaciones
mucho més complejas que no son posibles a nivel atémico [2].

2.1. Movimientos modulares

A continuacién se presenta una descripcién de estas operaciones e image-
nes de cémo se ven desde el punto de vista del simulador. Todas las ope-
raciones descritas se realizan sobre dos moédulos vecinos conectados entre si
por las caras de dos de sus unidades. Mas informacién sobre la ejecucion
de estas operaciones desde un punto de vista atémico puede hallarse en el
Apéndice de [2].

2.1.1. Compresion

Los médulos con los que trabajamos tienen la capacidad de alojarse en el
interior de sus vecinos siempre y cuando ninguno de los dos contenga ya otro
modulo en su interior, tal como se ilustra en la Figura [2.1] Esta operacion
es posible gracias a que un médulo al expandir las caras interiores de sus
atomos, las que estan conectadas a otro d4tomo del médulo, crea suficiente
espacio en su interior como para poder alojar otros cuatro atomos. De esta
forma, el médulo que se comprime pasa a ocupar la misma posicién que el
modulo que hace de anfitrion. Una vez realizada la operacion, el simulador
no permite dar 6rdenes a un mdédulo comprimido directamente, por lo que
todas las érdenes de movimiento o descompresién que deban aplicarse al

13

14 CAPITULO 2. EL MODELO Y LA SIMULACION

modulo comprimido deben ser ejecutadas por el médulo anfitrién.

L} == [}

(a)

(b)
Figura 2.1: El proceso de compresién. En la imagen superior, a, a la izquierda
vemos tres modulos, uno de los cuales, el derecho, esta a punto de ser alojado
por el médulo central. A la derecha vemos el estado de los tres médulos
una vez ha acabada la operaciéon de compresién. El médulo de la derecha,
representado ahora como un cuadrado negro contenido en el médulo central,

ha pasado a ocupar la misma posiciéon del moédulo central. La vista superior
es modular, la inferior, imagen b, es atémica.

2.1.2. Expansion

La expansioén, ilustrada en la Figura es el movimiento inverso a la
compresion. El médulo anfitriéon indica al médulo comprimido la direccion
por la que debe expandirse y este obedece y pasa a ocupar la posicién indi-
cada. Para el correcto funcionamiento de esta operacion la posicién indicada
por el moédulo anfitrion debe permanecer vacia durante la ejecucién de la
operacion.

2.1.3. Paso de mdédulos comprimidos

Esta operacién consiste en el paso de un médulo comprimido a uno de los
vecinos de su anfitrién. Se ilustra en la Figura[2.3] En el simulador el anfitrién
ordena al médulo comprimido que cambie a un nuevo anfitrién indicando la

2.2. ALGORITMO DISTRIBUIDO 15

— = [

Figura 2.2: El proceso de expansion es el inverso del de compresion.

direcciéon de este. Una vez ha terminado la operacion el médulo comprimido
ha pasado a ocupar la misma posicién que el nuevo médulo anfitrién. Para
que la operacién se realice con éxito el nuevo médulo anfitrion debe estar
vacio mientras dura la ejecucién de la operacion.

2.1.4. Otras operaciones

El simulador no soporta ningtin otro tipo de operacién entre médulos a
parte del envio de senales, entre las que se incluyen la consulta de estados
y registros de médulos vecinos. Aun asi, los dtomos de este tipo de robot
modular pueden realizar otras operaciones, como cambiar los papeles de
un moédulo anfitrién y su moédulo comprimido, pasando el anfitrién a estar
comprimido y el comprimido a ser anfitrién, o el envio doble, en donde dos
modulos anfitriones vecinos se intercambian sus médulos comprimidos.

2.2. Algoritmo distribuido

Los robots modulares son un sistema distribuido de unidades idénticas
e intercambiables conectadas entre si, por tanto, para explotar toda su ca-
pacidad, todas las unidades del robot deben ejecutar un mismo algoritmo
que permita que cada unidad funcione de forma independiente. Esta clase

16 CAPITULO 2. EL MODELO Y LA SIMULACION

(a)

(b)
Figura 2.3: El proceso de paso de médulo comprimido. En la imagen supe-
rior, a, a la izquierda vemos tres modulos, uno de los cuales, representado
como un cuadrado negro, se encuentra alojado dentro del médulo de la iz-
quierda. A la derecha vemos el estado de los tres médulos una vez ha acabado
la operacién de paso de mdédulo comprimido. El médulo de la derecha, que
antes se encontraba vacio, es ahora anfitrién del médulo que anteriormente

se encontraba alojado en el médulo de su izquierda. La vista superior es
modular, la inferior, imagen b, es atémica.

de algoritmos, pensados para ejecutarse en un sistema distribuido, se llaman
algoritmos distribuidos.

Hasta ahora los algoritmos existentes utilizados para la reconfiguracién
de robots cristalinos no eran totalmente distribuidos. Por ejemplo, si bien el
algoritmo de Joan Soler consigue que la fase de compresién sea totalmente
distribuida, todos los médulos se comprimen hacia la raiz siempre que les
es posible, la fase de expansién sigue siendo secuencial y dependiente de un
tnico modulo que dirige el proceso.

En este proyecto hemos desarrollado un algoritmo totalmente distribuido
que aprovecha todas las caracteristicas del sistema distribuido.

2.2.1. Las Reglas

Cada una de las reglas del algoritmo distribuido que ejecuta cada uno
de los médulos del robot cristalino estd compuesta por cuatro lineas que son

2.2. ALGORITMO DISTRIBUIDO 17

interpretadas por el simulador:

1. Nombre: La primera linea de una regla es su nombre. Al principio de
esta linea puede verse ademds la fase a la que pertenece la regla. Esto
dltimo no es obligatorio para el funcionamiento del simulador, pero
permite al usuario del simulador entender mucho mejor el funciona-
miento de las reglas.

2. Prioridad: La prioridad de una regla es un ntimero entero de 1 a 32767
que marca la importancia de la regla respecto a las demés. Una vez se
ha decidido que reglas pueden aplicarse a un médulo concreto, estas se
ordenan de forma decreciente segin su prioridad, siendo asf las reglas
con mayor prioridad las primeras en ejecutarse.

3. Precondicién: Lista de condiciones que deben cumplirse para que una
regla pueda aplicarse a un mddulo.

4. Acciones: Acciones que lleva a cabo un médulo que cumple las precon-
diciones establecidas por la regla, al ejecutarla.

En la Figura podemos ver una de la reglas del algoritmo multilider.

[F]Make Root §
100

SCanbF A0DO1 MSBack_

SRootF C002+00010000 MSSlave C0134#5010000

Figura 2.4: Regla del algoritmo multilider. La primera linea muestra su
nombre, la segunda su prioridad, la tercera su precondicion y la cuarta su
accién.

2.2.2. Precondicion

La precondicién puede consistir en una o mas de las siguientes partes.

Vecinos N____

Indica, para cada direccion del moédulo, si el médulo debe tener un vecino
o una posicién vacia. Las cuatro posiciones que siguen a la N indican las
cuatro caras del moédulo: norte, oeste, este y sur. El nimero 0 indica que
no debe haber vecino, 1 que debe haber vecino y * que no importa. Por
ejemplo, N0O10 indica que el médulo debe tener un dnico vecino al este.

Espacio vacio Edx,dy

Esta precondicién comprueba si la posicién relativa indicada por niimeros
enteros o contadores del moédulo estd vacia.

18 CAPITULO 2. EL MODELO Y LA SIMULACION

Espacio ocupado Fdx,dy

Esta precondicion es la contraria que la de espacio vacio.

Prioridad de los vecinos P____

Comprueba si la prioridad de las reglas aplicadas por los los vecinos del
norte, oeste, este o sur es menor o igual a la del médulo. < indica que la
prioridad del vecino en esa direcciéon debe ser menor que la del modulo, =
indica que debe ser igual y * que no importa.

Prioridad menor remota Ldx,dy

Esta precondiciéon comprueba si la prioridad de los mddulos indicados
por la posicién relativa dada por niimeros enteros o registros del médulo es
menor que la del médulo.

Prioridad menor o igual remota Qdx,dy

Esta precondicién comprueba si la prioridad de los médulos indicados
por la posicién relativa dada por niimeros enteros o registros del médulo es
menor o igual que la del médulo.

Conexiones A____

Indica si el médulo debe estar conectado o no a otro médulo vecino. Las
cuatro posiciones que siguen a la A indican las cuatro caras del mddulo:
norte, oeste, este y sur. El niimero 0 indica que no debe estar conectado, 1
que debe estar conectado y * que no importa. Por ejemplo, A0010 indica
que el médulo debe estar conectado a otro mddulo solo por su cara este.

Estado S_____

Estado en que debe encontrarse el médulo. Debe contar siempre con 5
caracteres. El asterisco indica que el cardcter en esa posicién de la cadena
de caracteres no importa. Por ejemplo, SPaus* indica que el estado debe
empezar por Paus.

Estado remoto Tdx,dy,_____

Comprueba el estado del mdédulo indicado por la posicién relativa dada
por numeros enteros o por registros del médulo.

2.2. ALGORITMO DISTRIBUIDO 19

Mensaje de texto M______

Indica que el médulo debe haber recibido un determinado mensaje de
texto. La primera posicion indica la direcciéon por la que ha recibido el men-
saje (N,W,E,S) mientras que el resto indican el contenido del mensaje. Como
el estado, un mensaje debe constar siempre de 5 caracteres. En la precon-
dicién, el cardcter * indica que el cardcter en esa posicién de la cadena
de caracteres no importa o, si estd en primera posicién, que no importa la
direccién por la que haya recibido el mensaje.

Comparacion numérica _ ____ ____

Compara los mensajes numéricos recibidos por el médulo en la iteracion
actual y el valor de los registros. La primera posicion debe estar ocupada
por uno de los tres signos de comparacién >,< o =. Las siguientes ocho
posiciones indican los canales numérico, registros o enteros a comparar. Un
canal numérico viene indicado por le simbolo # seguido de la direccién
(N,W,E,S) y del ntiimero del canal (entre 01 y 08). Los registros se indican
con un C0 seguido del niimero del registro (entre 00 y 25). Cada valor puede
llevar un signo negativo delante (—).

Comparaciéon numérica remota Vdx,dy,C__ ____ , Wdx,dy,C__ ____

Funciona igual que la comparacién numérica y el resto de comprobacio-
nes remotas. La V comprueba si el primer valor es estrictamente menor que
el segundo y la W si el primer valor es menor o igual que el segundo.
Negacion !

Niega cualquier parte de la precondicion.

Agrupacién ()

Agrupa condiciones de la precondiciéon. Normalmente se usa junto con
la negacién.
2.2.3. Acciones

La tultima linea de una regla indica las acciones a seguir durante la eje-
cucion de la regla. La nomenclatura de las acciones es la misma que la de
las precondiciones de mismo nombre.

Cambio de posicién Pdx,dy

Indica la posicién relativa a la que debe moverse el médulo. Esta accion
no se utiliza en ninguno de los algoritmos distribuidos existentes.

20 CAPITULO 2. EL MODELO Y LA SIMULACION

Conexiones A____

Esta accion indica a qué vecinos debe conectarse o de qué vecinos debe
desconectarse el médulo.

Estado S____

Esta accion indica el nuevo estado al que debe cambiar el médulo.

Mensaje de texto M______

Indica la direccién y el mensaje que debe enviar el moédulo.

Calculos numéricos y envio de senales numéricas C__ _ ____ ____,

Ho

Esta accién indica si debe realizarse un célculo numérico o el envio de
una senial numérica. El cdlculo numérico se expresa de forma parecida a la
comparacién numérica, solo que en este caso, antes del signo de la operacién,
se debe anadir el registro destino del resultado. El envio de senales se expresa
de la misma manera que el calculo numérico solo que en lugar de indicar
el registro de destino, se indica el canal y la direccién por la que enviar el
resultado de la operacion. Obligatoriamente, al enviar un mensaje numérico,
debe realizarse un calculo numérico. Las operaciones permitidas son la suma
(4+), la resta (—), la multiplicacién (x), la divisién (/), el médulo (M), el
méximo (A) y el minimo (I).

Intercambio de médulos comprimidos X_

Indica la direccién del vecino con el cual debe realizarse una operacion
de intercambio de médulos. Actualmente ningin algoritmo distribuido para
el simulador usa esta operacién.

Compresion Z_

Esta accion indica la direccién a la que el médulo debe comprimirse.

Descomprimir z_.S_____

La primera posicién indica la direccién hacia la que el médulo anfitrion
debe descomprimir el médulo comprimido que aloja. Las siguientes cinco
posiciones indican el estado al que debe pasar el médulo comprimido una
vez descomprimido.

2.3. EL SIMULADOR 21

Paso de médulo comprimido x_

La primera posicién indica la direccién hacia la que el médulo anfitrién
debe enviar el médulo comprimido que aloja. La posicién indicada por esta
accion debe estar ocupada por un mddulo que no contenga ningiin otro
médulo comprimido.

2.3. El simulador

En este apartado se explica, en primer lugar, las diferentes pantallas
del simulador y, por iltimo, las caracteristicas generales de los mdédulos de
atomos con los que trabaja. Para una informacién mas detallada sobre el
simulador y su funcionamiento constltese el manual de usuario en su pagina
web [6].

2.3.1. Universe

El universo es la representacion del mundo 2D sobre el que trabaja el
simulador y sus caracteristicas. Ser compone de una serie de botones que
permiten viajar en el tiempo del universo, un contador de tiempo y una
imagen interactiva del estado del universo en cada momento.

Exit_Universe Agents Rules Actions Positions Errors Agents generator Options Help
Universe | Agents and Rules | actionslog | positions.log | errorlog | Agents generator
[start stop [Back to start [

my |
S—

Heration 0

s
B

Figura 2.5: Pantalla de Universe del simulador.

El tiempo en el simulador se expresa en iteraciones. Una iteracion repre-
senta una ejecucién de todas las reglas por parte de todos las médulos. Como
el sistema es distribuido, durante una iteracién todos los médulos ejecutan
una tunica vez todo un conjunto de reglas. Aunque este hecho indica que el
simulador y todos sus modulos son sincronos, esto no es mas que una manera
de simular el paso del tiempo. Para llevar a cavo una ejecuciéon asincrona,
habria que introducir un sistema de aleatorizaciéon de pausas y ajustar el

22 CAPITULO 2. EL MODELO Y LA SIMULACION

sistema de handshaking utilizado en las reglas de los algoritmos presentados
en este proyecto.

Una vez pulsado el botén Start, los botones que controlan el paso del
tiempo permiten avanzar o retroceder en el tiempo un nimero determinado
de iteraciones segun el botén o, en el caso de ejecutar el algoritmo indefi-
nidamente, pausar la ejecucién. Entre los botones y la representacién del
universo 2D podemos encontrar un contador de iteraciones que indica el
momento en el tiempo en que nos encontramos. Toda ejecucion comienza en
la iteracién 0.

A la derecha del contador de iteraciones podemos ver dos contadores que
indican el nimero de errores y avisos generados hasta la iteracion actual de
la ejecucién en curso.

La representacion del universo consta de una pantalla cuadriculada con
filas y columnas numeradas en donde cada cuadrado representa una posicion
en el universo 2D. En esta vista podemos ver dibujados los mddulos del
robot modular, su color (véase la Figura y, si pausamos la ejecucion
y pulsamos con el botén derecho encima del médulo que nos interese, sus

datos internos (Figura [2.11]).

2.3.2. Agents and Rules

Esta pantalla, tal como se ilustra en la Figura[2.6] permite cargar, visua-
lizar y modificar los ficheros de reglas y de médulos que utiliza el simulador
en su ejecucion. Una vez ha empezado una ejecucion, la modificacion de
alguno de estos ficheros o el cambio de uno de ellos por otro distinto obliga
al simulador a reiniciar la reconfiguracién.

Exit Universe Agents Rules Actions Positions Errors Agents generator Options Help
Universe | Agents and Rules | actionslog | positionslog | errordog | Agents generator

Current file: agents.txt; 1000 agents read. Current file: rules.txt; 726 rules read.

0,69 SStart AO0T1
1,60 SStart AO110 lea: Start creating tree from leftmost-topmost candidates m
2,60 SStart AO110) q

3,60 SStart A0110

4,60 SStart A0O110

5,60 SStart AO110

6,60 SStart AO110

7,60 SStart A0110

8,69 SStart A0T10

9,60 SStart AO110

10,60 SStart A0110
11,69 SStart A0110
12,69 SStart AO110
13,69 SStart A0110
14,69 SStart A0110
15,69 SStart A0110
16,69 SStart A0110 dx dy: Coding restricts the relative range of agents to +/- 50 in x and y direction
17,60 SStart AD110 Parent

18,69 SStart A0110 9 N .. 1000

19,60 SStart A0110 9 0100

20,69 SStart A0110 9 E ... 0010

21,69 SStart A0110 °
22,69 SStart A0110
23,60 SStart A0110
24,69 SStart A0110
0,40 SStart A1010

0,41 SStart A1001

0,42 SStart A1001 0 es cor d
0.43 SStart A1001 9 o
0,44 SStart A1001 <l

ait for one iteration; afterwards: Forwc
ack message from all directions: Root_

ount

eceived from, same coding as C1

Final Root

Figura 2.6: Pantalla de Agents and Rules del simulador.

2.3. EL SIMULADOR 23

2.3.3. Actions

Lista de todas las reglas ejecutadas por cada médulo segtn la iteraciéon
en que tuvo lugar. Desde esta vista, ilustrada en la Figura no solo es
posible la visualizacién de la lista de acciones realizada sino que, ademas,
también permite exportar el fichero a nuestro ordenador.

Exit Universe Agents Rules Actions Positions Errors Agents generator Options Help
Universe | Agents and Rules | actionslog | positions.log | erroriog | Agents generator |

% Crystal Simulator v1.0

e ETE}TETETETETETETETETTT

Figura 2.7: Pantalla de Actions.log del simulador.

2.3.4. Position

Lista de la posicién y los datos internos de cada médulo en cada iteracion
de la ejecucién. Esta ventana (véase la Figura
el fichero a nuestro ordenador.

también permite exportar

Exit Universe Agents Rules Actions Positions Errors Agents generator Options Help
Universe | Agents and Rules | actionslog | positions.log | erroriog | Agents generator |

freteno-o]] _smaas |
% Crystal Simulator v1.0

% Iteration 0 iE‘
1:0/69 A0D11 SStart C00 0 CO1 0 C02 0 CO3 0 CO4 0 CO5 0 CO6 0 CO7 0 CO8 0 C09 0 C10 0 C110 C120 C130 C14 0,
€150 C160C170C180C190C20 0 C210 C220 C230C24 0 C250
2:1/69 A0110 SStart C00 0 CO1 0 C02 0 CO3 0 CO4 0 CO5 0 CO6 0 CO7 0 C08 0 C09 0 C100 C110 C120 C130C14 0\
C150C160 C170C180C190 C20 0 C210 C220 C23 0 C24 0 C250
3:2/69 A0110 SStart C00 0 CO1 0 C02 0 C03 0 CO4 0 CO5 0 C06 0 CO7 0 C08 0 C09 0 C10 0 C110 C120 C130 C14 0,
C150C160C170C180C190C20 0 C210 C220 C23 0 C24 0 C250
4:3/69 A0110 SStart C00 0 CO1 0 C02 0 CO3 0 CO4 0 CO5 0 CO6 0 CO7 0 CO8 0 C09 0 C10 0 C110 G120 C130 C14 0\,
€150 C160C170C180C190C20 0 C210C220C230C24 0 C250
5:4/69 A0110 SStart C00 0 CO1 0 C02 0 CO3 0 CO4 0 CO5 0 CO6 0 CO7 0 CO8 0 C09 0 C10 0 C110 C120 C130 C14 0
C150C160C170C180C190C200 C210C220C230C24 0 C250
6:5/69 A0110 SStart C00 0 CO1 0 C02 0 C03 0 CO4 0 CO5 0 CO6 0 CO7 0 C08 0 C09 0 C10 0 C110 C120 C130C14 0\
€150 C160C170C180C190C20 0 C210 G220 C230C24 0 C250
7:6/69 A0110 SStart C00 0 CO1 0 CO2 0 CO3 0 CO4 0 CO5 0 CO6 0 CO7 0 CO8 0 C09 0 C10 0 C110 C120 C130 C14 0\
C150C160C170C180C190C20 0 C210 C220 C23 0 C24 0 C250
8:7/69 A0110 SStart C00 0 CO1 0 C02 0 C03 0 CO4 0 CO5 0 C06 0 CO7 0 C08 0 C09 0 C10 0 C110 C120 C130 C14 0,
€150 C160C170C180C190C20 0 C210 C220 C23 0 C24 0 C250
9: 8/69 A0110 SStart C00 0 CO1 0 C02 0 C03 0 CO4 0 CO5 0 CO6 0 CO7 0 C08 0 C09 0 C10 0 C110 C120C130C14 0\
150 C16 0 C17 0 C18 0 C19.0 C20 0 C21 0 C22 0 C23 0 C24 0 C250
10: 9/69 A0110 SStart C00 0 CO1 0 C02 0 CO3 0 CO4 0 C05 0 CO6 0 CO7 0 C08 0 C09 0 C10 0 C110 C120 C130C140 W
€150 C160C170C180C190C20 0 C210 C220 C230C24 0 C250
11: 10/69 A0110 SStart C00 0 CO1 0 C02 0 CO3 0 C04 0 CO5 0 CO6 0 CO7 0 CO8 0 CO9 0 C10 0 C110 C120 C130 G140\
€150 C160 C170C180C190 C20 0 C210 C220 C23 0 C24 0 C250
12: 11/69 A0110 SStart C00 0 CO1 0 C02 0 CO3 0 C04 0 CO5 0 CO6 0 CO7 0 CO8 0 CO9 0 C10 0 C110 C120 C130 C1401
C150C160C170C180C190C200 C210C220C230C240C250
13: 12/69 A0110 SStart C00 0 CO1 0 C02 0 CO3 0 C04 0 C05 0 CO6 0 CO7 0 CO8 0 CO9 0 C10 0 C110 C120 C130 C14 0
€150 C160C170C180C190 C20 0 C210 C220 C23 0 C24 0 C250
14: 13/69 A0110 SStart C00 0 CO1 0 C02 0 CO3 0 C04 0 CO5 0 CO6 0 CO7 0 CO8 0 CO9 0 C10 0 C110C120 C130C140\
C150C160C170C180C190 C20 0 C210 C220 C23 0 C24 0 C250
15: 14/69 A0110 SStart C00 0 CO1 0 C02 0 CO3 0 C04 0 C05 0 CO6 0 CO7 0 CO8 0 CO9 0 C10 0 C110 C120 C130 C140\
€150 C160C170C180C190C20 0 C210 C220 C23 0 C24 0 C250

Figura 2.8: Pantalla de Position del simulador.

24 CAPITULO 2. EL MODELO Y LA SIMULACION

2.3.5. Errors

Lista de los errores y avisos generados por la ejecucién del conjunto de
reglas en cada iteracion de la ejecucién. Esta ventana (Figura [2.9) también
permite exportar el fichero a nuestro ordenador.

Exit Universe Agents Rules Actions Positions Erors Agentsgenerator Options Help
Universe | Agents and Rules | actionsJog [positions.og | errorlog | Agents generator |
ot 1)
% Crystal Simulator v1.0 =
=]

Figura 2.9: Pantalla de Errors del simulador.

2.3.6. Agents generator

Editor que permite generar o modificar de forma sencilla un robot mo-
dular sobre el que ejecutar un conjunto de reglas. Se ilustra en la figura
2. 10

Exit Universe Agents Rules Actions Positions Errors Agentsgenerator Options Help
Universe | Agents and Rules | actionslog | positions.og | errorlog | Agents generator |
New | open | modiy | rerresn

Il mEm]

Current ile: agents.txt; 1000 agents.

[il» |

0,60 SStart A0D11 E‘
1,69 SStart A0110

2,69 SStart A0O110
3,60 SStart A0110
4,60 Sstart AO110
5,69 SStart A0110
6,60 SStart A0O110
7,69 SStart A0110
8,60 Sstart AO110
9,69 SStart A0O110
10,69 SStart A0110
11,69 SStart A0110
12,69 SStart A0110
13,60 Sstart AO110
14,69 SStart A0110
15,69 SStart A0110
16,69 SStart A0110
17,60 Sstart AO110
18,69 SStart A0110
19,69 SStart A0110
20,69 Sstart A0110
21,60 Sstart AO110
22,69 SStart A0110
23,60 SStart A0110
24,69 Sstart A0110
0,40 SStart A1010
0,41 SStart A1001
0,42 SStart A1001

Figura 2.10: Pantalla de Agents generator del simulador.

2.3. EL SIMULADOR 25

2.3.7. Mobdulos

Como hemos mencionado anteriormente en este capitulo, el simulador
muestra médulos de cuatro atomos. Todos los médulos ejecutan el mismo
conjunto de reglas y tienen las mismas limitaciones. Cada mddulo tiene
cuatro caras (norte, oeste, este y sur), un color, un nimero de identificacién
unico que es utilizado por el simulador pero no puede usarse en las reglas
que siguen los algoritmos, una posicién dada por dos coordenadas (z e y)
que las reglas tampoco pueden usar, un registro que almacena los vecinos a
los que esta conectado, un registro que guarda su estado actual, 26 registros
internos de 16-bits en donde almacenar niimeros enteros y un ltimo registro
que indica la prioridad del médulo a la hora de aplicar reglas. Cabe destacar
que la posicion de un mdédulo es tinica exceptuando el caso de un médulo
anfitrién y un médulo comprimido, que comparten posicién. Exceptuando su
nimero de identificacién y su orientacién respecto el universo del simulador,
todos los demés campos pueden alterarse durante la ejecucion de un conjunto
de reglas.

Cada médulo consta ademas de 8 canales por los que puede tanto recibir
como enviar mensajes de texto y numéricos. Los mensajes de texto tienen
un limite de 5 caracteres y los mensajes de texto solo pueden transmitir
numeros enteros de 16-bits. Un mdédulo solo puede enviar mensajes a sus
vecinos inmediatos de cada una de los cuatro puntos cardinales.

Id: 280
Pos: 22,54
A1111
SWaits
C00=5057 CO1=1000 C02=0 C03=0 C04=0 C05=0 CO6=0 CO7=0 C08=0 C09=0
IC10=0 C11=0 C12=0 C13=0 C14=0 C15=0 C16=0 C17=0 C18=0 C19=0

IC20=0 C21=0 C22=0 C23=0 C24=0 C25=0
iCurrentPriority: 200

Humeric Message 1 from North: 5751
Humeric Message 1 from West: 5850

Figura 2.11: Imagen que muestra el simulador cuando se pulsa el botéon
derecho del ratén sobre uno de los médulos de la pantalla Universe. En esta
imagen se puede ver toda la informacién contenida en el médulo: su id, su
posicién, los vecinos a los que esta conectado, su estado, el contenido de sus
26 registros, su prioridad actual y los mensajes, indicando el canal por el
que los ha recibido y su direccién de origen, que ha recibido en la iteracion
actual.

La Figura muestra los datos de un médulo que el simulador muestra
el pulsar el botén derecho sobre este.

26

CAPITULO 2. EL MODELO Y LA SIMULACION

Capitulo 3

Mejoras al algoritmo original

Aunque el algoritmo original es eficaz y resuelve la reconfiguracién de
robots cristalinos, no es todo lo eficiente que podria llegar a ser. Es por eso
que hemos intentado mejorarlo y refinarlo para reducir en todo lo posible los
recursos utilizados, como los movimientos de los médulos o el tiempo total
de la reconfiguracion.

Una de las mayores fuentes de movimientos innecesarios es el movimiento
de médulos comprimidos hacia el lider cuando este vuelve de haber comple-
tado una rama del arbol generador de la configuracién final. Para intentar
evitar estos movimientos proponemos una serie de mejoras: senal de parada
hasta interseccién, senal de parada hasta raiz, senal de parada global y el
uso de multiples médulos lider de forma simultanea.

Las tres primeras modificaciones son versiones del mismo algoritmo. En
cambio, la versién multilider intenta aprovechar la capacidad de trabajo dis-
tribuido de los robots junto con lo aprendido en las anteriores modificaciones
para sacar aun mas partido a la reconfiguracion.

A continuacién, presentamos dichas modificaciones.

3.1. Algoritmo con senal de parada hasta intersec-
cién
3.1.1. Objetivo

El objetivo es reducir el nimero de movimientos innecesarios en la fase
de construccién de la configuracién final, por la via de mantener en esta-
do de inactividad todos los médulos entre un médulo hoja y la siguiente
interseccion o, de no haberla, hasta la misma raiz del arbol.

Para conseguirlo, se emite una senal de pausa desde el médulo hoja en
direccién a la raiz, hasta los médulos mencionados anteriormente.

Ademsds, un objetivo secundario es llevar esto a cabo s6lo con el paso de
seniales y cambios de estado, sin contadores ni nuevas consultas a estados

27

28 Mejoras al algoritmo original
vecinos.

3.1.2. Estrategia

Nuestro punto de partida en este caso es la iteracién siguiente a aquella
en que el lider alcanza la posicion de un mddulo hoja del arbol generador
de la configuracion final.

Con esto entendemos que el médulo hoja, que estaba expandiéndose, es el
iltimo moédulo de su rama en la configuracién final y que ya ha comprobado
que no debe expandirse en ninguna direccion.

En este punto, como en el algoritmo original, el médulo hoja devuelve el
estado de lider a su padre. Es en este mismo momento, al cambiar el padre
su estado a lider, cuando el nuevo lider envia la senal de parada a su padre.

A partir de entonces, cuando un médulo recibe la sefial de parada, entra
en estado pausa y propaga el mismo mensaje que ha recibido en direccién a
su padre.

En el momento que la senal llega a un médulo que atin debe expandirse
en alguna direccién, o al médulo raiz del drbol, este ignora la senal de pausa,
evitando asi que se extienda mas alld.

Con esto, se crea un camino sin bifurcaciones desde el lider hasta el ya
mencionado médulo hoja, todo compuesto de mdédulos en estado de pausa.

Estos médulos en estado pausa, asi como los moédulos que llevan otro
médulo comprimido en su interior, permanecen quietos, sin realizar accién
alguna, hasta que el lider les cede su estado de lider. Sabemos que todo
moédulo en pausa acaba recibiendo el estado de lider ya que este se desplaza
en la misma direccién que la senal de pausa, en la direcciéon al mdédulo raiz,
tal como dicta el algoritmo original.

De este modo evitamos que un cierto niimero de médulos transiten hasta
la hoja para luego dar media vuelta y deshacer parte del camino recorrido.

3.1.3. Reglas

Las reglas que se han utilizado o modificado pertenecen todas al grupo
[E], més especificamente, dentro de este grupo, a las reglas de retorno del
lider al padre y las de cambio de lider de un mdédulo en fase de expansion
a otro en fase de compresién (expansién de una rama usando moédulos que
estén en el camino del lider).

Las senales de esta categoria (menos [E/Receive Signal Root Lider), se
han modificado para que propaguen la senial numérica de pausa (una senal
numérica con valor 9999) en direccién al padre del médulo que las aplica.
Otra modificacion es la condicion en las reglas para poder aplicarlas sobre
los médulos en estado pausa.

Ademsds, se han anadido una serie de reglas para extender la senal de
pausa, una vez recibida, en la direccién del padre. Estas reglas, al mismo

Algoritmo con senal de parada hasta interseccion 29

tiempo, cambian el estado del médulo que las aplica a pausa. Estan prepara-
das para que no se puedan aplicar ni a un médulo que aiin deba expandirse
en alguna direccién ni a la raiz.

Por ltimo se ha modificado la funcién del registro C020 asi como todas
las reglas de expansion de rama mediante médulos en fase de compresion
(paso del estado lider de un médulo en fase de expansién a otro en fase de
compresion). Todas estas modificaciones se deben a un error del algoritmo
original, el cual perdia el mdédulo lider al intentar pasar este estado de un
modulo en fase de expansion a una hoja de una rama en fase de compre-
sién que ya se habia comprometido a comprimirse. Estas modificaciones se
describen con mas detalle en el Apartado .

3.1.4. Problemas
Prioridad de las reglas

Aunque puede no llegar a considerarse un problema de prioridades, si
que es cierto que, al menos, deriva de ellas.

Al principio se plante6 que la senal de pausa fuera un mensaje de texto,
sin embargo, el hecho de tratar una senal de texto y no una numérica,
alteraba ligeramente el orden en que el simulador evaliia y, por tanto, ejecuta
las reglas.

Habia ocasiones en que esta prioridad interrumpia un paso de moédulo
comprimido ya confirmado (con el mensaje CANSZ) entre dos mddulos.
Esto aparentemente no suponia ningin problema, es més, permitia ahorrar
un movimiento extra, sin embargo, este suceso provocaba un error en el
simulador, el cual dejaba de funcionar a las pocas iteraciones.

Al intentar cambiar la prioridad de estas reglas para evitar la colisién con
las de paso de modulo comprimido tanto al aumentar como al disminuir dicho
valor, las reglas dejaban de aplicarse cuando deben. Por tanto, bajar o subir
la prioridad de las operaciones de pausa no era una opcién, estas operaciones
debian ejecutarse con la misma prioridad que el resto de operaciones de la
categoria [E] para funcionar.

Al final, cambiando la senal de un mensaje de texto a uno numérico, la
ejecucién de una regla de pausa frente a una de paso de médulo comprimido
quedaba relegada a un segundo puesto. De esta forma, si un moédulo debe
entrar en estado pausa pero ya ha confirmado una operacion de paso de
moédulo comprimido, primero aceptara el nuevo médulo comprimido antes
de entrar en pausa.

Esta modificaciéon no afecta en absoluto al resto de reglas.

Perdida del modulo lider

Un error del algoritmo original permitia la desaparicion del estado de
lider y por tanto obligaba a la reconfiguracién a terminar antes de tiempo.

30 Mejoras al algoritmo original

El problema se daba cuando un moédulo hoja en fase de compresién se
comprimia en direccion a su padre y, durante la misma iteraciéon en que
se realizaba la compresion, un médulo lider vecino le intentaba mandar un
mensaje de cambio de rama. Para entender la causa del problema hay que
fijarse en las opciones del simulador bajo las que funciona tanto el algoritmo
original como sus modificaciones. Las opciones especifican que primero se
deben mover los médulos que deban moverse antes de enviar los mensajes.
Esto quiere decir que primero se evalian las normas a ejecutar en cada
modulo, en este caso la compresion de la hoja y el envio del mensaje de
cambio de rama, luego se mueven los moédulos, accién que naturalmente
comprimia la hoja, y para terminar se envian los mensajes haciendo que el
lider enviara su mensaje a un espacio vacio para luego, sin siquiera esperar
confirmacion que indicase si se habia recibido el mensaje, pasara a estado
de expansion. El algoritmo original no estaba pensado para reaccionar ante
esta situacién.

Una primera solucién fue la de intentar restaurar los valores de los re-
gistros del médulo lider cuando este detectara que el médulo hoja se habia
comprimido, pero el modulo lider no disponia de la informacién necesaria ni
para poder restaurar sus registros ni para detectar el fallo. La siguiente solu-
cién que se intent6 fue la de alargar en una iteracion el proceso de compresion
de todos los médulos hoja que tuvieran un lider por vecino para conseguir
asi recibir la senal de cambio de rama y, asi, solucionar el problema.

Esta solucion funcioné perfectamente para esta situacién pero los cam-
bios que se introdujeron en el algoritmo original para poder solucionar el
problema interferian con algunas de las medidas que habia implementado el
autor del algoritmo original para solucionar los problemas de intentar expan-
dir una rama pasando por una posicién ocupada por una hoja que pretende
comprimirse. Al no encontrar otra manera posible de solucionar el problema,
original se opté por buscar nuevas soluciones a este antiguo problema que
habiamos reencontrado.

Antes de buscar estas nuevas soluciones decidimos que intentariamos
siempre que nos fuera posible mantener la prioridad de una compresién por
encima de un cambio de rama. Si no fuera asi, como nos habiamos visto
obligados a aumentar la duracién de la compresién y, por tanto, el tiempo
que el padre de la hoja mantenia en sus registros el dato de que ya disponia
de un médulo comprimido (el padre da por supuesto que se realizard la
compresién al enviar la confirmacién de compresion), podriamos provocar
en caso de cancelar la compresion que el padre de la hoja intentara entregar
un médulo comprimido que no tiene, parando asi la reconfiguracién. Una
vez decidido esto nos dispusimos a afrontar el nuevo problema.

Este problema se daba cuando un moédulo hoja en fase de compresion
que habia pedido permiso para comprimirse recibia una senal de cambio
de rama (de una rama en compresién a una en expansién) emitida por el
lider actual. En el momento en que el lider enviaba la senal de cambio de

Algoritmo con senal de parada hasta interseccion 31

rama este daba por sentado que el médulo hoja pasaria su estado a lider y
que cambiaria de rama, por eso el lider cambiaba su estado a expansidn (o
Ezxpnd). Una iteracién mas tarde, cuando la hoja habia pasado a ser lider
de la rama en expansién, recibia ademas el mensaje de que tenia permiso
para comprimirse. Esto provocaba que el lider cambiara otra vez a estado
de compresion (o Cmprs) y que se comprimiera en direccién a su antigua
rama.

Para evitarlo se tomaron tres medidas: la primera, para ahorrar compli-
caciones en las reglas, fue incrementar permanentemente las iteraciones que
tarda un médulo en ejecutar la orden de cambio de rama en una iteracion,
la segunda fue el uso del registro C16 para almacenar la direccién por la que
se habia recibido la senal de cambio de rama ademéds de cambiar el registro
20 para almacenar en el lider hacia donde se ha enviado la senial de cambio
de rama en vez de ser simplemente un booleano y la tercera fue la creacion
de una nueva senial de aviso.

Ahora, al encontrarnos en la misma situacién que ocasionaba este proble-
ma, al recibir la senal de cambio de rama después de haber pedido permiso
para comprimirse, el médulo hoja espera una iteracién més para comprobar
si recibe confirmacién para la compresion. Si no la recibe se realiza el cam-
bio de rama pero, en caso de recibirla, el médulo hoja envia un mensaje de
advertencia usando la direccién del registro C16 para indicar al antiguo lider
de que no se efectuard el cambio de rama y no ejecuta ninguna otra opera-
cién durante esa iteracién. Al esperar una iteracién y asegurarnos de que el
mensaje llega al antiguo lider, ahora en estado de expansion, conseguimos
sincronizar dos eventos, el de compresién de la hoja y el de la lectura del
aviso de que no se efectuard el cambio de rama. Ahora el antiguo lider no
solo recupera su estado de lider sino que, ademas, evita enviar otra senal de
cambio de rama ya que, cuando trata el aviso enviado por la hoja, este sabe
que no debe aplicar ninguna otra regla de expansién de la rama durante esa
iteracion.

Esta solucién se tuvo que aplicar no solo a esta modificacién del algo-
ritmo sino también al algoritmo original, ya que le era imposible ejecutar
satisfactoriamente alguno de los juegos de prueba usados en el estudio de
las modificaciones.

3.1.5. Alternativas

La tnica alternativa planteada al crear esta mejora del algoritmo fue
la de utilizar un mensaje de texto en vez de uno numérico para propagar
la senal de pausa. Era una opciéon mas clara de cara a un lector o a un
programador humano. Sin embargo al ver los problemas que surgieron al
utilizar texto se optd por otra solucion.

Para arreglarlo, podriamos haber intentado modificar el simulador en
lugar del tipo de mensaje, pero esta opcién, ademas de lenta, podia aca-

32 Mejoras al algoritmo original

rrear consecuencias no deseadas en otros algoritmos ya programados sobre
el mismo simulador.

3.1.6. Modelos de prueba

Para comprobar el correcto funcionamiento de estas nuevas reglas se
realizaron todo un conjunto de pruebas. Sin embargo, debido a la cantidad
de casos necesarios para comprobar que el resto de reglas siguen funcionando
correctamente pese a la aplicacién de nuestras nuevas reglas, solo mostramos
los modelos de prueba mas significativos o que han dado mas problemas.

Interseccién de la senal de pausa y de paso de médulo comprimido

En el modelo de prueba ilustrado en la Figura |3.1] podemos observar
como la senal de pausa llega a un moédulo que ya se ha comprometido a
aceptar un médulo comprimido, tal como se explica en el Apartado de
problemas de esta modificaciéon. En la iteracion siguiente, como intercambio
de modulos tiene prioridad sobre el cambio a estado pausa, dicho médulo
acepta primero el médulo comprimido y después cambia su estado.

¥mgc| ininin; nlnlnlnls
1ofalo OO

Figura 3.1: Partiendo del arbol actual y generador final mostrados en (a)
en una misma iteracién el médulo marcado en (b) recibe la senal de pausa
del este justo cuando comunica a su vecino del oeste, sefialado en (c), y
se compromete a aceptar su médulo comprimido. Una iteracion mas tarde,
tal como se ve en (d), el médulo mencionado en (b) primero ha aceptado
el médulo comprimido del oeste y luego ha entrado en estado de pausa
(indicado por su color verde).

3.2. ALGORITMO CON SENAL DE PARADA HASTA RAIZ 33

3.2. Algoritmo con senal de parada hasta raiz

3.2.1. Objetivo

El objetivo de esta modificacion es no solo la de evitar que los médulos
comprimidos entren en una rama ya completada del drbol generador de
la configuracién final, sino también evitar que otros modulos pasen de un
subarbol de la raiz al otro a no ser que sean necesarios.

Pretendemos asi controlar atin més el movimiento de los médulos com-
primidos, extendiendo la senal de pausa més alld de un cruce, llevandola
hasta la misma raiz del arbol.

Como en el caso anterior, el objetivo es llevar esto a cabo sélo con el
paso de senales y cambios de estado, sin contadores ni nuevas consultas a
estados vecinos.

3.2.2. Estrategia

El punto de partida es el mismo que en la modificacién anterior: la itera-
cion siguiente a aquella en que el lider alcanza la posicién de un moédulo hoja
que ha llegado al final de la configuraciéon de una rama del arbol generador
de la configuracién final. La estrategia, esta vez, se divide en dos fases:

Transmisiéon y expansién del mensaje. El procedimiento es el mis-
mo: al retornar la senal de lider en direccién a la raiz, extendemos la senal
de pausa de un moédulo a otro, de hijo a padre, en direccién a la raiz. Sin
embargo, esta vez no detenemos la expansién de la senal al llegar a un cruce
que no haya sido completado, sino que seguimos expandiendo la senal hasta
llegar a la raiz, la cual ignora por completo la senal de pausa, evitando asi
que se extienda ain mas.

Reactivar los médulos pausados. Esta fase puede llegar a no darse
en algunas configuraciones, sin embargo, si entre la raiz del arbol y el médu-
lo lider existe algiin médulo que necesite expandir una rama, cuando este
modulo obtenga el estado de lider e intente expandir el camino la configura-
cién de los médulos quedard dividida en tres partes: entre la raiz del drbol
y el médulo lider, compuesta por médulos en pausa, el subarbol que consta
del médulo lider y todos sus hijos, y el conjunto de médulos restantes (si los
hay), tanto en fase comprimida como ya ubicados en su posicién final.

El subarbol del lider, ya parcialmente reconfigurado, puede que no con-
tenga modulos suficientes en estado de compresién o expansion como para
completar la rama que el médulo lider quiere expandir. Para solucionarlo,
basta con enviar una senal de reanudacién en el momento en que el lider
intente expandirse y no tenga un moédulo comprimido cerca para hacerlo.
Esta senal se transmite de la misma forma que la senal de pausa, de hijo a
padre, hasta la raiz.

De esta manera, el cuello de botella (médulos en estado de pausa), que
bloquean el paso de mdédulos de una rama a otra se reactiva hasta que la

34 Mejoras al algoritmo original

rama se completa y vuelve a emitir una senal de pausa.

Al final, cuando la senal de lider llega a la raiz no queda ningin mddulo
en pausa en la configuracién.

3.2.3. Reglas

Las reglas que se han utilizado o cambiado para esta modificacion per-
tenecen todas al grupo [E], més especificamente, a las reglas de retorno del
lider al padre y a las de expansién. Las senales de este grupo se han cam-
biado para permitir aplicar el estado de Pausa a moédulos intersecciéon y
se han anadido reglas extra para emitir la sefial de reanudacién (una sefnal
numérica con valor 9998).

3.2.4. Problemas
Cambio de estado de una interseccion

Al modificar las normas de extensién de la sefial de parada para permitir
cambiar el estado de los mdédulo interseccion a Pause, inicialmente no se
previé que el paso de lider de un médulo simple a un médulo intersecciéon
tuviera precondiciones diferentes al caso del paso de lider de un mddulo
simple a otro. Es por esto que aunque el paso de lider de un médulo simple
a otro también simple en estado Pause funcionaba, al encontrarnos con el
paso de lider a un médulo interseccion pausado el simulador se quedaba sin
reglas que aplicar.

Para solucionarlo se modificaron las reglas de paso de estado de lider a
un modulo interseccién para que pudieran aplicarse también cuando dicho
modulo estuviera en estado de Pausa.

Falta de mdédulos

En un principio no se previd la posibilidad de que el médulo lider que
intentaba extender una rama no tuviera suficientes mdédulos comprimidos
activos para acabarla. Esto ocurria porque la senal de pausa cerraba el paso
a nuevos moédulos muy por encima de dicha rama.

La solucién fue sencilla, la creacién de la senal de reanudacion, que per-
mitia activar el paso de moédulos.

Sin embargo, esta soluciéon deja otros problemas pendientes. Al no usar
contadores, no disponemos de medios para contar cuantos mddulos com-
primidos activos hay en la configuracion que puedan llegar a un lider en
expansién y tampoco podemos saber si una rama de la raiz necesita mas
modulos para reconfigurarse o si, por el contrario, tiene de sobra. Estos
problemas se solucionaron en modificaciones posteriores del algoritmo.

Algoritmo con senal de parada hasta raiz 35

3.2.5. Alternativas

Se consideraron algunas alternativas como anadir contadores y consultas
de estado, pero se opté por implementarlas en la dltima modificacién.

3.2.6. Modelos de prueba

Para comprobar el correcto funcionamiento de estas nuevas reglas se
realizaron todo un conjunto de pruebas. Sin embargo, debido a la cantidad
de casos necesarios para comprobar que el resto de reglas siguen funcionando
correctamente pese a la aplicaciéon de nuestras nuevas reglas, solo mostramos
los modelos de prueba més significativos o que han dado mas problemas.

Cambio de estado de una interseccion

En este modelo de pruebas se puede apreciar como un médulo intersec-
cion en estado de pausa recibe la senal de cambio a lider. Como se ve en la
Figura[3.2] el problema de cambio de estado de una interseccién descrito en
el Apartado ya no se produce y el médulo interseccién pasa a tener el
estado lider.

MY
B

IO

mmmmmm

CHICHHCT

10

Figura 3.2: Partiendo del arbol actual y generador final mostrados en (a)
podemos ver un moédulo intersecciéon que ain debe expandir una de sus
ramas hacia el este y que ademds se encuentra en estado pausa (b). Este
modulo recibe de su vecino del sur (marcado en (c)) una senal para cambiar
su estado a lider y, como se puede ver en (d), una iteracién més tarde el
moédulo mostrado en (b) ha cambiado su estado a lider con total normalidad.

Falta de mdédulos

En este apartado se muestra la solucién aplicada al problema de falta de
moédulos descrito en el Apartado En la Figura [3.3] podemos ver que

36 Mejoras al algoritmo original

el moédulo lider no dispone de mdédulos activos suficientes para completar
una rama del arbol generador final. En este instante el moédulo lider emite
una senal de reanudacién que se extiende de médulo a médulo permitiendo
la entrada del nimero de moédulos necesarios para alcanzar la configuracion
final. Debido a la falta de contadores, senal se emite siempre que un lider
intenta expandir una rama desde un mddulo que haya estado pausado, por
los problemas mencionados en el Apartado

o IO
CIOICCHCHICOO0HT
1 GO0

Figura 3.3: Partiendo del arbol actual y generador final mostrados en (a)
vemos que el médulo en estado lider marcado en (b) ain debe expandir una
de sus ramas hacia el este. En este caso no puede recibir médulos compri-
midos de su vecino del norte ya que estan en estado pausa y, aunque use
todos los médulos comprimidos que le puedan llegar por su vecino del sur, e
incluso teniendo en cuenta los médulos que pueda incorporar al expandirse,
le serd imposible completar la expansiéon de la rama. Para evitar situaciones
como esta el modulo lider expande una senal de reanudacion a su vecino del
norte antes de expandirse (imagen (c)) y este vuelve a estado de expansién
(indicado por el cambio de color de verde a azul) a la iteracién siguiente
(imagen (d)) volviendo a permitir el paso de mdédulos comprimidos.

3.3. Algoritmo con senal de parada para toda la
configuracién

3.3.1. Objetivo

Como en las dos modificaciones anteriores, el objetivo es el de intentar
evitar al maximo los movimientos innecesarios en la fase de construccién de
la configuraciéon final, usando solo mensajes de pausa y cambios de estado,
solo que esta vez lo que se busca es ver los beneficios y el coste de mantener
en estado de pausa a todos los mdédulos de la configuracion, incluyendo los

Algoritmo con senal de parada para toda la configuracion 37

que estan en estado de compresion.

3.3.2. Estrategia

La estrategia es analoga a las dos modificaciones anteriores, solo que esta
vez extendemos la senal de pausa y reanudacion no solo de hijo a padre, sino
a absolutamente todos los médulos de la configuracién.

Esto implica que las condiciones de emisién de las dos senales, pausa
y reanudacién, son las mismas que antes, sin embargo, a diferencia del an-
terior caso, no pararan de difundirse hasta que encuentren una hoja de la
configuracién.

Naturalmente, esto se hace evitando que la senal rebote indefinidamente
entre padre e hijo. Tampoco existe ningin peligro de que una misma senal se
expanda ciclicamente entre los médulos: al estar todos conectados en forma
de arbol, no existen ciclos.

3.3.3. Reglas

Como esta modificacion solo afecta a la fase de expansion del arbol,
todas las normas afectadas son de la categoria [E]. Se ha creado una gran
cantidad de reglas nuevas para poder pausar y reanudar los médulos tanto
en expansiéon como en compresion.

Se han anadido varios estados nuevos como PausR o PausC para dis-
tinguir entre modulos pausados que tenian estado Root o Comp de los que
estaban en expansion.

3.3.4. Problemas
Envio de senales a mddulos desconectados

El simulador permite el paso de mensajes a moédulos que estan desconec-
tados del emisor siempre que sean vecinos inmediatos, es decir, que estén
a una unidad de distancia del emisor. En una primera implementacién de
esta modificacion, las reglas enviaban las senales de parada y reanudacion
a hacia todas direcciones exceptuando la direccion por la que se habia re-
cibido dicha senal, con la idea de que si en una direccién no habia ningin
modulo conectado la senal no se propagaria hacia alli pero si hacia las demas
direcciones. Por supuesto, este conjunto de reglas fallaba por lo explicado al
principio de este paragrafo.

Para solucionar este problema se cre6 una nueva regla por cada combi-
nacién posible de entrada/salida de senal (incluyendo direccién de entrada).
Es decir, por cada direcciéon posible de entrada a un moédulo de las senales
de parada o reanudacion, existe una norma para cada caso en que dicho
modulo solo esté conectado a 2 médulos (un padre de donde viene la senal y

38 Mejoras al algoritmo original

un hijo por donde enviarla), otra por cada caso en que en que esté conectado
a 3 modulos y otra par cada caso en que esté conectado a 4 médulos.

Esta es una de las causas de que, de todos los conjuntos de reglas vistos
hasta ahora, este es el mas largo con diferencia.

Expansién de senal al terminar la reconfiguracion

Una vez alcanzada la forma final al acabar la dltima rama, el padre de
dicha hoja emite una senal de pausa. Esta sefial se expande por toda la con-
figuracion. Incluso cuando se ha alcanzado la configuracion final, si la senal
aun no ha alcanzado todos los médulos seguira propagandose, retrasando el
final de la reconfiguracion.

Sin el uso de contadores, este problema es imposible de solucionar, ya
que no hay manera alguna de que los médulos sepan que han llegado al final
de la reconfiguracién y que por tanto ya no es necesario extender esta senal.
Unicamente se pudo mitigar el problema eliminando reglas que permitian el
paso de la senal de parada de la segunda rama de la raiz (la rama del Este)
a la primera (la rama Sur).

3.3.5. Alternativas

Se considerd la posibilidad de implementar un sistema de contadores
en cada médulo que mantuvieran la cuenta de cudntos mdédulos se necesi-
tan en cada direccién para alcanzar la reconfiguracion final. Finalmente se
implemento este sistema en el algoritmo multilider.

3.3.6. Modelos de prueba

Para comprobar el correcto funcionamiento de estas nuevas reglas se
realizaron todo un conjunto de pruebas. Sin embargo, debido a la cantidad
de casos necesarios para comprobar que el resto de reglas siguen funcionando
correctamente pese a la aplicacién de nuestras nuevas reglas, solo mostramos
los modelos de prueba mas significativos o que han dado mas problemas.

Envio de senales de pausa desde un médulo interseccién

En este modelo de prueba, mostrado en la Figura podemos ver un
ejemplo del funcionamiento del conjunto de reglas en una situacién como
la descrita en envio de sefiales a médulos desconectados (Apartado [3.3.4)).
Cuando la senal llega a un médulo interseccion vecino a otro médulo al
que no estd conectado, el conjunto de reglas distingue la situacién segin las
conexiones y expande el mensaje de pausa en las direcciones necesarias.

3.4. VERSION MULTILIDER DEL ALGORITMO 39

Figura 3.4: Partiendo del &rbol actual y generador final mostrados en (a)
podemos observar un caso como el descrito en el Apartado [3.3.4] En este
ejemplo podemos ver en (b) un médulo en estado de pausa que tiene por
vecinos a un modulo en estado lider y a tres médulos en estado de expansion
(véase (c)). Como dicho médulo solo estd conectado a dos de sus tres vecinos
en expansion, solo envia dos mensajes de pausa, tal como se observa en (d).

Expansién de senal al terminar la reconfiguraciéon

En la Figura |3.5] se muestra un caso de expansién de la senal de pausa
una vez llegado al final de la reconfiguracién (descrito en el Apartado .
Como se puede apreciar en (a) y en (b), una vez acabada la reconfiguracién
se extiende una senal de pausa. Incluso cuando el lider vuelve a la raiz, la
senal sigue expandiéndose como muestra (c), hasta pausar todos los médulos
posibles como se puede ver en (d). Como ningtin médulo sabe si la senal es
necesaria o no, es imposible pararla. Sin embargo, como la rama sur de la
raiz siempre acaba su reconfiguraciéon antes que la rama este, la raiz no
propaga la senal de parada por dicha rama, ahorrando asi pasos de senal
innecesarios.

3.4. Version multilider del algoritmo

3.4.1. Objetivo

El objetivo de esta modificacién es el de reducir el nimero de movimien-
tos innecesarios, mejorando la distribucién de los médulos durante la fase
de construccion de la reconfiguracién final.

Para conseguirlo mejoramos el conocimiento de la configuracién final
que tiene cada médulo, y aplicamos cambios de estado y paso de senales
parecidos a los usados en las modificaciones anteriores.

40 Mejoras al algoritmo original

2
o

o358
o

B

Ba oy

"ol Bo "o
fuls) inta] fuln mlu} aln]

(b) () (d)

Figura 3.5: Partiendo del arbol actual y generador final mostrados en (a), el
modulo lider emite una senal de pausado a su vecino del sur tal como muestra
(b). Iteraciones més tarde, incluso cuando la senal de lider ha vuelto a la
raiz, la senal sigue expandiéndose, véase (c), hasta llegar a todos los médulos
posibles. Como se puede observar en (d) los tinicos médulos que no quedan
en estado de pausa son, en este caso, los médulos por los que ha vuelto la
senial de lider hasta la raiz, reanudando los médulos a su paso.

»
el
s
E -

il il
L -

|

=
o
[N

3.4.2. Estrategia

En este caso, la estrategia depende de que en todo momento, desde el
instante en que se crean los arboles generadores inicial y final hasta que
finaliza la reconfiguracién, cada mddulo tanto del arbol generador actual
como del final sepa exactamente cuantos modulos cuelgan de cada una de
sus ramas. El primer recuento de médulos se realiza en la fase de buisqueda
del moédulo raiz ya que se aprovecha la senal Back que viaja de de las hojas
a la raiz para contar los médulos de cada rama. Utilizando esta informacion,
ya que todo lider se encuentra siempre en su posicién final de la reconfigura-
cién, cuando un moédulo entra en estado lider puede comparar el niimero de
modulos que cuelgan de sus ramas con su equivalente en el arbol generador
de la configuracion final para saber exactamente cuantos médulos le sobran
o le hacen falta en cada direccién.

Esto permite coger médulos de las ramas en donde sobren y expandirlos
en las direcciones que haga falta. Al expandir por primera vez en una nueva
direccion las reglas dan el estado lider al primer médulo de la rama, creando
asi mas de un lider y avanzando por miltiples ramas del arbol a la vez. Al
repartir los médulos entre las direcciones en las que sean necesarias, las reglas

Version multilider del algoritmo 41
dan prioridad a las direcciones que necesitan mayor cantidad de médulos.

3.4.3. Reglas

En esta modificacién se han editado practicamente todas y cada una de
las reglas de todos los grupos del algoritmo original para que acepten los
nuevos cambios de estado, las nuevas senales de recuento de médulos y los
efectos derivados de la presencia de multiples médulos en estado LIDER.

Por supuesto, para implementar todos estos mecanismos se han creado
una gran cantidad de nuevas reglas, haciendo de esta la modificacién con
mayor numero de reglas de todo el proyecto.

3.4.4. Problemas
Interseccién de senales

El algoritmo original no estaba pensado para funcionar con mas de un
lider activo y era este el que emitia la gran mayoria de las sefiales, por eso
mismo era mas sencillo saber cuando y como cambiar de estado o realizar una
accion. Ahora, con muchos médulos en estado lider expandiéndose a la vez y
la gran cantidad de senales que viajan a través de los arboles generadores, la
manera de interpretar las senales originales crea situaciones absurdas como
la de dar el estado de lider a un mdédulo que ya se ha comprometido con
otro a comprimirse o pedir a un médulo que expanda el médulo contenido
en su interior cuando en realidad no tiene ninguno.

Estos problemas se deben principalmente a que un médulo no puede com-
probar qué mensajes ha recibido o enviado su vecino y, por tanto, desconoce
sus intenciones.

Para evitar estas situaciones se ha creado todo un conjunto de estados
que expresan la situacién de cada modulo y facilitan a los mdédulos el saber
si pueden pedir algo a su vecino o no. De esta forma si un médulo quiere dar
el estado de lider a otro que estd en estado SASKC1 (esperando a recibir
confirmacién de que puede comprimirse) el primero sabe que debe esperar a
ver si su vecino vuelve al estado Cmprs (la compresién no ha podido llevarse
a cabo) o si por el contrario se comprime.

Repeticiones ciclicas de un mismo conjunto de estados

La creacién de un conjunto de estados que expresan la situacién de ca-
da médulo facilita mucho el control sobre cuando aplicar un determinado
tipo de normas o no, sin embargo también puede generar una repeticién de
cambios de estado que impide el avance de la reconfiguracion.

Por ejemplo, un médulo lider puede estar esperando a enviar a su vecino
una sefial DISAL mientras este cambia entre los estados SCmprs, SASKC1
y SASKC?2 de forma ciclica (probar a comprimirse, no recibir confirmacién

42 Mejoras al algoritmo original

y volver a intentarlo). Como al intento de enviar una senal DISAL le siguen
un par de estados de espera de respuesta, y dicha senal solo puede aplicarse
si el vecino esta en estado SCmprs, es posible que siempre se intente enviar
la senal cuando este se encuentra en estado SASKC1 o SASKC?2, atascando
la reconfiguracion.

Para solucionar este problema se han creado nuevos cambios de estado
que permitan la salida de dichos bucles. En el caso comentado anteriormente,
por ejemplo, al recibir la senial DISAL en el estado SASKC1 o SASKC?2, se
pasa a SCmD*1 o SCmD?*2 respectivamente (donde * es una de las cuatro
direcciones) haciendo que después de SCmD*2 se ejecute la accién provocada
por la sefial DISAL en vez de volver al estado SCmprs.

No perder la cuenta de los médulos robados

Como se ha mencionado en la seccion Fstrategia de esta modificacion
(Apartado es esencial que cada mdédulo sepa cuantos médulos cuelgan
de cada una de sus ramas. Esta tarea se ve dificultada por la acciéon DISAL,
que ocurre cuando un lider decide incorporar un conjunto de médulos que
cuelgan de otra rama diferente del drbol generador.

Eliminar un nimero determinado de moédulos de una rama y anadirlos
a otra afecta, obviamente, a la cantidad de médulos necesarios para llegar a
la configuracién final en dichas ramas y, por tanto, a la direcciéon y cantidad
de mdédulos que circulan por estas. Para evitar que mdédulos innecesarios se
muevan por una rama solo para encontrarse con que ya no son necesarios,
se han creado un conjunto de senales como las de pausa o reanudacion de
las modificaciones anteriores, que informan a todos los médulos del arbol
ubicados entre el modulo afectado y la raiz del arbol de que ese camino
especifico ha perdido/ganado un nimero determinado de médulos. Al recibir
esta senal, los médulos actualizan los datos sobre los médulos que cuelgan
de sus ramas, pudiendo cambiar asi la direccién a la que envian o de la que
reciben médulos.

Por supuesto esto no soluciona del todo los movimientos innecesarios ya
que, hasta que no llega la senal de aviso, los médulos de la rama no saben
nada sobre el cambio en el nimero necesario de médulos.

3.4.5. Alternativas

No se consideraron maés alternativas para este algoritmo.

3.4.6. Modelos de prueba

Para comprobar el correcto funcionamiento de estas nuevas reglas se
realizaron todo un conjunto de pruebas. Sin embargo, debido a la cantidad
de casos necesarios para comprobar que el resto de reglas siguen funcionando

Version multilider del algoritmo 43

correctamente pese a la aplicaciéon de nuestras nuevas reglas, solo mostramos
los modelos de prueba més significativos o que han dado mas problemas.

Cambio de estados e interseccion de senales

Figura 3.6: Partiendo del arbol actual y generador final mostrados en (a) ve-
mos un par de mdédulos que acaban de empezar la accién de paso de médulo
comprimido. Como podemos ver en (b) uno de los médulos ha enviado a su
vecino del norte una senal para iniciar el paso de médulo comprimido y al
hacerlo ha pasado a estado ASKC1 (de color rosa). Una iteracién més tarde,
como muestra (c) el vecino del norte (ahora en estado ASKC1) ha aceptado
la sefial enviando un mensaje de confirmacién al médulo que inicié la comu-
nicacién, el cual ha pasado a estado ASKC2 (color morado). Para finalizar
el proceso, el médulo en estado ASKC2 ha enviado el médulo comprimido a
su vecino del norte y luego ha pasado a estado Cmprs. Dicho vecino acepta
el médulo y pasa a estado ASKC2. Este ultimo paso puede verse en (d).

En este modelo de prueba se pueden apreciar situaciones como las des-
critas en los problemas interseccion de senales y repeticiones infinitas de un
mismo conjunto de estados (ambos problemas estan descritos en el Apartado
. FEn la Figura se puede ver como un moédulo, al pedir permiso para
pasar un moédulo comprimido a un vecino, va cambiando de estado en cada
iteracién hasta recibir confirmacién de que puede llevar a cabo la operacion.

La Figura[3.7] muestra la interseccién de una sefial DISAL con un estado
ASKC1. En este caso el médulo cambia al estado CmDNI para evitar caer
en un bucle infinito como el descrito en los problemas citados anteriormente.

44 Mejoras al algoritmo original

Figura 3.7: Partiendo del drbol actual y generador final mostrados en (a) y
fijandonos més concretamente en los médulos senialados en (b), vemos un
médulo en estado ASKC1 (acaba de pedir a su vecino del norte que acepte su
médulo comprimido) de color rosa que recibe una sefial para desconectarse
de su rama actual y conectarse a la rama de su vecino del oeste. Al recibir
la senal, el médulo pasa a estado CmDW1 y su vecino, como emisor de esta,
pierde el estado de lider y pasa a estado de expansion tal y como se puede
ver en (c¢) en donde los médulos tienen color verde y azul respectivamente.
Ademsds el médulo en verde ha recibido la confirmacién de que puede enviar
su modulo comprimido al norte. Una iteracién mas tarde el médulo en estado
CmDW1 envia su médulo comprimido y pasa a estado CmDW2 (imagen
(d)). Para acabar, el médulo pasa a estado SDISAW y luego se conecta a
la rama de su vecino del oeste y pasa a estado de lider (imédgenes (e) y (f)
respectivamente).

Capitulo 4

Implementacion del
algoritmo multilider

4.1. Arbol Inicial [S]

Este apartado describe el proceso mediante el cual se genera el arbol
generador de la configuracién inicial.

4.1.1. Inicio del algoritmo

Al principio todos los médulos de la configuracién inicial deben encon-
trarse en estado Start. Una vez iniciado el algoritmo todo médulo que no
se encuentre conectado a otro médulo ya sea en direccién este y/o sur se
considera a si mismo como candidato a raiz del arbol y emite un mensaje,
a través del canal 01, a los vecinos a los que esta conectado. Este mensaje
indica la posicion relativa del mdédulo vecino respecto al candidato a raiz.
Es decir, considerando siempre el candidato a raiz como el centro de una
cuadricula de 100[times100, donde la raiz ocupa la posicién (50,50), esta
envia a su vecino del este la posicién (51,50) y la posicién (50,51) a su ve-
cino sur. Esta posicion relativa se guarda en la variable C'00 concatenando
el valor de la coordenada z con el valor de la coordenada y. Es decir, si un
modulo tiene una posicién relativa (51,50), el valor de su registro C00 es
de 5150. Una vez enviado el mensaje, el candidato a raiz entra en estado
CanbS.

4.1.2. Cadena de mensajes candidatos

Al recibir los mensajes de los candidatos a raiz con su posicion relativa,
un médulo trata los mensajes de la manera siguiente manera:

1. Si es el primer mensaje que recibe, guarda, en el registro C01, la di-
reccién de la que ha recibido el mensaje como la direccién hacia la que

45

46 Implementacién del algoritmo multilider

se encuentra la raiz, y envia a los vecinos a los que esté conectado, ex-
ceptuando el vecino del que ha recibido el mensaje, su correspondiente
posicién relativa.

2. Si ha recibido algin otro mensaje anteriormente y el nuevo mensaje
contiene un valor diferente de la posicién relativa que el moédulo ha
almacenado, compara ambos valores, escoge el mejor de los dos (el
que indique que la raiz estd lo mas al oeste posible y, en caso de
empate, mas al norte) y, en caso de escoger el nuevo mensaje, cambia
su posicion relativa, guarda la nueva direccién de la raiz y envia la
nueva posicién relativa a sus vecinos.

3. Por ultimo, si ha recibido otro mensaje anteriormente y el nuevo men-
saje contiene el mismo valor que el que el médulo tiene almacenado,
evento que indica la existencia de un ciclo en el grafo de conexiones
entre modulos, el médulo se desconecta de todos los vecinos que le han
enviado el mismo mensaje menos uno. Este médulo al que permanece
conectado se elije segin prioridad de la direccion: norte >oeste >este
>sur.

Una vez tratado el mensaje, el médulo entra en estado WaitS. Ademas,
si un candidato a raiz recibe un mensaje de otro candidato a raiz, trata
el mensaje como en el caso 2) pues esta situacién solo se da si existe un
candidato a raiz mejor que él.

4.1.3. Mensaje recibido en las hojas

Una vez que un mensaje con una posiciéon relativa llega a un médulo que
no tiene a quién reenviarlo, ha llegado a una hoja del arbol, y esta empieza
una nueva serie de mensajes en direccion a la raiz del arbol, o a lo que la hoja
cree que es la raiz. Esta serie de mensajes consta de un mensaje de texto y
otro numeérico que son enviados al mismo tiempo: uno de ellos indica que se
ha alcanzado una hoja (MWBack._) y el otro, enviado por el canal 01, indica
el niumero total de hijos del médulo que envia el mensaje (en caso de una
hoja este valor es 0). Una vez que un médulo ha enviado estos dos mensajes
en direccién a la raiz este entra en estado BacksS.

4.1.4. Cadena de mensajes de las hojas

Cuando un médulo recibe un mensaje Back_ quiere decir que el camino
de la raiz a una de sus hojas se ha completado correctamente solucionando
los ciclos que haya encontrado en su camino. Al recibir el mensaje, el médu-
lo en cuestion guarda en C02 la direccion del emisor. Es decir, al recibir el
mensaje el médulo suma a su registro C02 el valor 1000, 100, 10 o 1 de-
pendiendo de si ha recibido el mensaje de su vecino del norte, oeste, este

Arbol Inicial [S] 47

o sur respectivamente. Una vez ha recibido el mensaje Back_ de todos los
modulos a los que estéd conectado exceptuando a su padre, del cual no puede
llegar a recibirlo nunca, el registro C02 contiene las direcciones de los hijos
del médulo. En este momento, el médulo envia el mensaje Back_ a su padre
y sigue la cadena.

Ademsds, como con cada mensaje Back_ recibido el médulo también recibe
una sefial numérica indicando su nimero de descendientes en la direccion
del emisor, el médulo guarda el valor de la senal numérica en su registro
C10, C11, C12 o C18 dependiendo de si ha recibido el mensaje de su vecino
del norte, oeste, este o sur respectivamente. A cada actualizacién de dichos
registros, reescribe el valor del registro C'14 con la suma de sus descendientes
en todas sus direcciones.

4.1.5. Creacién de la raiz

Cuando un médulo candidato a raiz recibe el mensaje Back. de todos
sus hijos entonces el candidato pasa a ser la raiz. En este momento el arbol
generador inicial estd completo, y cada mdédulo conoce el nimero de sus
descendientes en cada una de las cuatro direcciones y todas las cadenas
de mensajes Back_ han llegado a la raiz. Una vez alcanzado este punto la
raiz entra en estado RootS y envia un mensaje a sus hijos para iniciar la
reconfiguracion.

4.1.6. Conocer la configuracién objetivo

Para simular la transmisién a los médulos de los datos necesarios sobre
la configuracién final que deben alcanzar, situamos una copia de dicha con-
figuracién objetivo en el mismo universo del simulador. Todos sus médulos
se caracterizan por encontrarse en estado Final, y su mdédulo mas oriental
se encuentra a la misma altura (coordenada y) que el de la configuracién
inicial, y a su izquierda.

En el momento en que cambia a estado RootS, la raiz de la configuracién
inicial inicializa el valor de su registro C23 a 0. Este registro se incrementa
a cada iteracién y contiene el valor de la distancia a la que se encuentra la
raiz del arbol generador inicial de la raiz del arbol generador de la copia de
la configuracién final. Una vez que el registro C23 alcanza el valor real de
la distancia entre ambas raices, este para de incrementarse y la raiz pasa a
estado RootL para indicar que es raiz y lider al mismo tiempo. Este registro
es la manera que tiene el algoritmo de simular que la raiz conoce todos los
datos necesarios para completar la reconfiguracion.

Asimismo, con el mismo objetivo, el conjunto de reglas descritas en los
apartados a se aplica también a la copia de la configuracién
final, que se usa para simular la transmision a la raiz de los datos de la
configuracién objetivo. En esta caso, sin embargo, la raiz pasa a estado

48 Implementacién del algoritmo multilider
RootF y deja de actuar.

4.1.7. Cadena de mensajes Slave

En el instante en que se encuentra la raiz del arbol, esta envia a sus
hijos el mensaje Slave, que indica a todo el que lo recibe que debe entrar en
estado Cmprs. Esta cadena continia pasando de padres a hijos hasta que
alcanza las hojas del arbol generador inicial que, al no tener hijos, no pueden
continuar la cadena.

4.2. Reglas de compresion [C]

Este apartado explica el funcionamiento de las reglas de compresion del
algoritmo multilider.

4.2.1. Compresion

Una vez la senal Slave ha llegado a una hoja, y esta pasa a estado Cmprs
y, por tanto, entra en fase de compresion, se realiza la primera compresién
fisica de un médulo. La compresién consta de tres pasos:

1. El médulo hoja envia a su padre un mensaje ASK_Z.

2. El padre, si no contiene ningiin médulo comprimido ni ha recibido una
senal DISAL, que se describe més adelante, contesta a su hijo con la

senal CAN_Z.

3. Cuando la hoja recibe el mensaje CAN_Z, pasa a comprimirse dentro
del padre en la iteracién siguiente. Si no recibe el mensaje CAN_Z en
dos iteraciones, vuelve al primer paso.

Ademas, cada vez que un médulo implicado en la compresion envia un
mensaje CAN_Z o ASK_Z, para evitar interferencias al recibir otros mensajes
y proteger la compresién, entra en un ciclo de estados en donde cada estado
dura una iteracién: Cmprs — ASKC1 — ASKC2 — Cmprs.

Una vez se ha comprimido la hoja, esta lo indica dando el valor 1 a sus
registros C24 y C25. El médulo padre, para indicar que contiene un médulo
comprimido en su interior, da valor 1 a sus registros C25 y C15.

Cuando un médulo recibe varias senales ASK_Z, de varios hijos diferen-
tes, el modulo atiende las peticiones segin la prioridad de compresion. Esta
prioridad es, de mayor a menor: norte, oeste, este y sur.

Por supuesto, al comprimir un médulo y, por tanto, perder un descen-
diente, el padre de la hoja descuenta un descendiente de sus registros C1/
y C10, C11, C12 o C13 dependiendo de si la compresién se realiza por el
norte, oeste, este o sur respectivamente.

4.3. REGLAS DE EXPANSION [E] 49

4.2.2. Paso de médulos comprimidos en fase de compresion

Una vez comprimidos, los médulos viajan en direccién a la raiz del arbol.
Para ello utilizan la operacién de cambio de médulo comprimido, SWZIP.

Esta operacion realiza los mismos pasos que la operacién de compresion,
pero ahora, utiliza el mensaje ASKSZ en lugar de ASK_Z y la senal de
CANSZ en lugar de CAN_Z:

1. El médulo que desea pasar el médulo comprimido envia a su padre un
mensaje ASKSZ.

2. El padre, si no contiene ningiin médulo comprimido ni ha recibido una
senal DISAL, contesta a su hijo con la senal CANSZ.

3. Cuando el hijo recibe el mensaje CANSZ, pasa a enviar el moédulo
comprimido a su padre en la iteracion siguiente. Si no recibe el mensaje
CANSZ en dos iteraciones, vuelve al primer paso.

Como en la operaciéon de compresién, al enviar cualesquiera de los dos
mensajes, los moédulos implicados en la operacién entran en el mismo ciclo
de proteccion de la compresién: Cmprs — ASKC1 — ASKC2 — Cmprs.

Aunque el médulo padre recibe el médulo comprimido mientras esta en
estado ASKC2, no permitimos que ni el padre ni el hijo que envia el médu-
lo comprimido ejecute ninguna otra regla hasta no estar ambos en estado
Cmprs, aumentando el nimero de iteraciones entre movimientos de un mis-
mo médulo comprimido a cuatro. Estas cuatro iteraciones en lugar de las
tres que dura el paso de médulos comprimidos en una rama en fase de expan-
sién son necesarias para poder reaccionar correctamente a las operaciones
de cambio de rama sin perder la cuenta de los descendientes y ascendientes
de cada modulo.

Esta operacién de paso de médulo comprimido tiene menos prioridad que
la operacién de compresion. Es decir, si un médulo recibe al mismo tiempo
la sefial ASK_Z y la senal ASKSZ, el médulo atiende entes la senial ASK_Z
sin importar la direccién de la que proceda.

Al pasar un médulo y, por tanto, perder su médulo comprimido, el emisor
del médulo pone a 0 el valor de sus registros C15 y C25.

4.3. Reglas de expansiéon [E]

Este apartado describe el funcionamiento de las reglas de expansién del
algoritmo multilider.

Cabe destacar que la fase de expansion y la fase de compresién coinciden
en el tiempo durante parte de la ejecucién, por lo que es necesario tener en
cuenta la interferencia de reglas de ambas fases. Es por esta razén por lo
que se ha decidido dar a las reglas de la fase de expansién prioridad sobre
las reglas de la fase de compresion, simplemente para evitar interferencias.

50 Implementacién del algoritmo multilider

4.3.1. Expansién del lider

Una vez la raiz ha recibido los datos del drbol generador final, es decir,
cuando ha entrado en estado RootL, y un médulo comprimido ha llegado a
la raiz, empieza la fase de expansion.

El primer paso que realiza la raiz es el de propagar la fase de expansién
por las ramas indicadas por la informacién del arbol generador final. Esta
informacién puede provocar dos situaciones distintas: o la raiz no tiene des-
cendientes en la direccién indicada (la rama no existe), en cuyo caso hay
que usar el médulo comprimido contenido en la raiz para expandir la rama,
o la raiz ya tiene descendientes y puede simplemente propagar la senal de
lider en esa direccion.

Al ser este un algoritmo que acepta més de un médulo en estado lider al
mismo tiempo, si la raiz del arbol generador final tiene descendientes tanto
al sur como el este, la raiz del arbol generador actual expande ambas ramas
al mismo tiempo generando situaciones en las que ambas ramas ya existan
0 que una rama exista y la otra no. Jamas se da una situacién en la que
ambas ramas no existan ya que, por fuerza, el médulo raiz estaba conectado,
al menos, a la rama por la que ha recibido el médulo comprimido.

En el caso en que no existan descendientes en la direccién en la que
deberia expandirse una rama, la raiz del arbol generador actual expande
el médulo comprimido que contiene en su interior en la direccién que co-
rresponda (realizando un movimiento UNZIP) y le otorga el estado de lider
informéandole a la vez de que ya no esta comprimido mediante un mensaje
numérico por el canal 02. Si por el contrario ya existen descendientes de
la raiz en la direccién en la que debe expandirse el arbol, simplemente se
le otorga el estado de lider al hijo de la raiz en esa direccién. Al enviar el
mensaje LIDER a sus hijos para que pasen a estado LIDER, el médulo raiz
da el valor 1 a su registro C20 para proteger el paso del estado de lider
evitando la ejecucién de otras reglas.

Independientemente del caso, los valores del médulo que ha pasado a
estado LIDER se actualizan con la informacién del drbol generador final:

= C02 pasa a tener valor 0 ya que el médulo lider actual no tiene ningtin
hijo en estado de expansién.

= (04 indica el nimero de hijos del lider actual que atin necesitan expan-
dirse y la direccion de estos. El valor del registro se consigue sumando
al registro 1000, 100, 10 y 1 si tiene hijos al norte, oeste, este o sur
respectivamente.

s C05 recibe el valor de la direccién a la que el médulo debe enviar los
modulos comprimidos que reciba. La direccién se indica de la misma
manera que en el caso del registro C04.

Reglas de expansion [E] 51

= (16, C17, C18 y C19 indican el namero de descendientes o ascen-
dientes necesarios en direccion norte, oeste, este y sur, respectivamen-
te para completar la expansién de una o méas ramas. El valor es 0
si no se necesitan mas maddulos, negativo si sobran mddulos en una
determinada direccion y positivo si se necesitan mas maddulos.

Una vez se han creado los primeros modulos lider, estos a su vez siguen
transmitiendo el estado de lider segin los pardmetros del arbol generador
final.

4.3.2. Expansién a una posiciéon ocupada conexa

Andlogamente al caso de la raiz, los médulos, en estado LIDER o Ezpnd,
que quieren expandir este estado a un vecino al que estan conectados, solo
tienen que realizar los mismos pasos que en el caso de la expansién de la
raiz por descendientes ya existentes. Una vez se emite el mensaje LIDER, se
actualiza el valor del registro 02 del emisor, para que registre la direccién en
la que ha expandido un hijo, y el valor de su registro 0/, también del emisor,
para que elimine la direcciéon por la que ha expandido un hijo. Ademas, al
actualizar dichos registros, si el médulo se encontraba en estado LIDER,
pasa a tener el estado Fxpnd.

Cada vez que un médulo expande uno de sus hijos, este suma 1 al valor
de su registro C08, que es un contador que indica el nimero de hijos que ha
expandido un médulo y que permite saber.

4.3.3. Expansién a una posicion vacia

Como en el caso de la expansién de la raiz, es comin encontrar que un
modulo, en estado LIDER o Fxpnd, considera que debe expandirse a una
posicién vacia de la cuadricula. En estos casos, se realizan los mismos pasos
descritos para el caso de la expansion de la raiz a una posicién vacia. Ademds,
una vez se emite el mensaje LIDER, se actualiza el valor del registro 02 del
emisor, para que registre la direccién en la que ha expandido un hijo, y el
valor del registro 04, también del emisor, para que elimine la direccién por
la que ha expandido un hijo. Al actualizar dichos registros el médulo pasa a
tener el estado PEzpn durante una iteracién para, a la iteracion siguiente,
pasar a estado Frpnd.

Cada vez que un médulo expande uno de sus hijos, este suma 1 al valor
de su registro C0S.

4.3.4. Expansion a una posiciéon ocupada no conexa

En ocasiones, un médulo, en estado LIDER o Ezpnd, debe expandir una
rama en una posicion en la que se encuentra un moédulo en fase de compresion

52 Implementacién del algoritmo multilider

al que no esta conectado. En estos casos se realiza una operacién de cambio
de rama. La operacién del cambio de rama consta de los pasos siguientes:

1. El médulo que desea expandir una de sus ramas envia el mensaje
DISAL a su vecino y, si no se encontraba ya en ese estado, pasa a
estado Fxpnd.

2. El vecino recibe el mensaje y, como le es posible, realiza la operacién
de cambio de rama, recibiendo el estado LIDER y actualizando sus
datos.

3. El vecino, ahora lider de la rama, envia al emisor de la senal DISAL
un mensaje FEXPDL para confirmar que se ha realizado la operacién
con éxito.

4. El lider de la rama emite una sefial de recuento, actualizando los conta-
dores de descendientes/ascendientes de todos los médulos de las rama
que ha abandonado y a la que se ha unido.

Por supuesto, este es solo el caso en que la operacion se ejecuta con éxito.
Si el vecino que recibe la sefial DISAL es una hoja, dependiendo de su estado
es posible que la operacién acabe de una forma distinta:

1. El moédulo que desea expandir una de sus ramas envia el mensaje
DISAL a su vecino y, si no se encontraba ya en ese estado, pasa a
estado Ezpnd.

2. El vecino recibe el mensaje y considera que no le es posible realizar el
cambio de rama.

3. El vecino envia al emisor de la sefial DISAL el mensaje NDISA, indi-
cando que no se ha realizado la operaciéon de cambio de rama.

4. El emisor de la senial DISAL recupera su estado de lider y actualiza
sus registros.

La razén por la que la operacién puede no realizarse es la siguiente: si
el médulo que recibe el mensaje de cambio de rama es una hoja esperando
la respuesta de su padre para comprimirse, en estado ASKC! o ASKC?2,
no le es posible confirmar la operacién de cambio de rama hasta saber si
la respuesta de su padre llegara en las iteraciones previstas o no. En estos
casos, para indicar que se ha recibido una senal DISAL, el ciclo de estados del
médulo hoja pasa a ser CmD*1 si se encontraba en estado ASKC1 o CmD*2
si se encontraba en estado ASKC2 (el asterisco cambia segun la direccién
por la que se recibe la senal DISAL). Si durante las iteraciones en las que
el médulo hoja se encuentra en estado CmD*1 o CmD*2 recibe el mensaje

Reglas de expansion [E] 53

CAN_Z de su padre, el médulo hoja entra en estado ZIPNW, para indicar
que debe comprimirse en la siguiente iteracién, y envia el mensaje NDISAL
al emisor de la senal DISAL. Si no recibe el mensaje CAN_Z durante ese
tiempo, la hoja realiza el cambio de rama.

En el caso en que el médulo que debe realizar el cambio de rama no es
una hoja, la operacién no puede generar un mensaje NDISA. Aun asi, en
este caso el ciclo de estados del médulo que debe realizar el cambio de rama
se ve alterado de una forma parecida. Como en el caso anterior, el ciclo de
estados del médulo pasa a ser CmD*1 si se encontraba en estado ASKCI o
CmD?*2 si se encontraba en estado ASKC2. Tanto si se recibe un mensaje
CANSZ de su padre mientras se encuentra en estos dos estados como si no, el
modulo pasa del estado CmD*2 (o de CmD*1 si recibe un mensaje CANSZ)
a estado DISAN. La finalidad de este ciclo es la de evitar una repeticién de
estados infinita, en la que nunca se ejecute el cambio de rama y en su lugar
se ejecuten siempre operaciones de paso de médulos comprimidos.

Cada vez que un moédulo expande uno de sus hijos, suma 1 al valor de
su registro C08.

4.3.5. Actualizacion de los registros contadores de médulos

Como consecuencia de una operacién de cambio de rama, todos los médu-
los que pertenecen a las dos ramas implicadas en la operacion actualizan una
serie de registros con valores incorrectos. Estos registros son los que llevan
la cuenta del nimero de descendientes de cada médulo y del ntimero de
modulos necesarios en cada direccién para completar la reconfiguracién. Pa-
ra volver a actualizar estos valores, el médulo que realiza la operacién de
cambio de rama emite cuatro cadenas de senales, todas ellas en direccién a
la raiz del arbol generador actual.

Por la rama que ha dejado envia, a través del canal 08, un mensaje
numérico con valor 9999 y, por el canal 07, el nimero de médulos que ha
perdido la rama. El valor 9999 indica a los demas médulos que reciben
el mensaje que, por la direccién por la que se ha recibido el mensaje, han
perdido el nimero de médulos que se indica por el canal 7. Una vez recibidos
ambos mensajes, el valor indicado por el canal 07 se guarda en el registro
C06 para poder, una vez actualizados todos los registros, mandar el mismo
valor al antecesor, siguiendo la cadena, hasta llegar a la raiz.

A través de la rama a la que se ha conectado, el médulo que ha realizado
el cambio de rama envia, a través del canal 08, un mensaje numérico con
valor 9998 y, por el canal 07, el nimero de médulos que ha ganado la rama.
De esta forma, siguiendo la cadena del mismo modo descrito en el parrafo
anterior, se actualizan todos los médulos de la rama hasta llegar a la raiz. La
unica diferencia es que el mensaje con valor 9998 indica que se han anadido
modulos a la rama en lugar de haberlos perdido.

Si dos mensajes de este tipo, tanto de perdida de mddulos como de

54 Implementacién del algoritmo multilider

adicion, coinciden a la vez en un mismo médulo, este calcula la diferencia, o
la suma, y emite los mensajes correspondientes hacia la raiz. Si el valor de
la diferencia es 0, no emite ningin mensaje hacia la raiz. Si la diferencia o
la suma, dependiendo de si se han recibido dos mensajes de adicién, dos de
pérdida o uno de cada tipo, es negativa, el médulo envia el valor entero del
resultado junto con la senal de pérdida, 9999, hacia la raiz. Si el resultado es
positivo, envia hacia la raiz la senal de adicién, 9998, junto con el resultado
hacia.

4.3.6. Paso de moédulos comprimidos en fase de expansién

Como en el caso de los mdédulos comprimidos en fase de compresién, los
moédulos comprimidos en fase de expansion también se mueven por las ramas
del arbol generador actual. Aunque los dos casos son parecidos, existen varias
diferencias.

Antes de continuar es necesaria una aclaracién: distinguimos un mdédulo
comprimido en fase de compresiéon de un médulo comprimido en fase de
expansion simplemente por el estado en la que se encuentren los médulos que
los contienen. Una vez dejado esto claro, podemos describir el procedimiento
de paso de médulos comprimidos en fase de expansién.

1. El médulo que desea pasar el médulo comprimido envia a su padre un
mensaje FXPND.

2. El padre, si no contiene ningiin médulo comprimido, contesta a su hijo
con la senal CANEX.

3. Cuando el hijo recibe el mensaje CANEX, envia el médulo comprimido
a su padre en la iteracién siguiente. Si no recibe el mensaje CANEX
en dos iteraciones, vuelve al primer paso.

Si un médulo recibe més de un mensaje FXPND a la vez, decide que
mensaje tratar segin el orden de prioridad visto anteriormente. De mayor a
menor prioridad: norte, oeste, este y sur.

Al enviar una senal EXPND, los mdédulos entran en un ciclo de esta-
dos que protege el paso de médulos comprimidos de interferencias de otras
senales: Frpnd — ASKE1 — ASKE2 — FEzxpnd. Si un médulo recibe la
senial EXPND, entra en un ciclo de estados distinto: Expnd — ASKFE2 —
Expnd. A diferencia del caso en fase de compresion, el ntimero de iteraciones
entre movimientos de un mismo mdédulo comprimido es de tres iteraciones
en lugar de cuatro. En la fase de expansion, al no existir la amenaza de las
operaciones de cambio de rama, ya que esta operacién siempre la realiza un
modulo en fase de compresidn, el algoritmo puede permitirse mover médulos
comprimidos por las ramas del arbol generador actual de forma mas rapida.

Reglas de expansion [E] 55

Por eso el médulo que recibe la senal EXPND entra en estado ASKFE2 en
lugar de pasar por ASKE1.

En el caso en que se trata de pasar un modulo en fase de compresiéon a
otro en fase de expansién, el médulo en fase de compresién realiza las mismas
acciones que su equivalente en la seccién mientras que el médulo en fase
de expansion entra, al recibir la senal ASKSZ, en el ciclo de estados Expnd
— ASKE1 — ASKE2 — Fxpnd, haciendo que el paso de este médulo tarde
en ejecutarse cuatro iteraciones en lugar de tres.

Como se ha mencionado anteriormente, al obtener un médulo comprimi-
do, el médulo que lo recibe da valor 1 a sus registros C15 y C25 mientras
que el médulo que envia el médulo comprimido da, a los mismos registros,
el valor 0.

4.3.7. Direcciéon de viaje de un médulo comprimido

A diferencia de la fase de compresion, en la fase de expansion los médulos
comprimidos viajan por las ramas no en direcciéon a la raiz o a un lider
concreto, sino que viajan hacia donde se les necesita. Para saber dénde
hacen falta estos médulos comprimidos, se utilizan los registros C16, C17,
C18 y C19. Esencialmente, estos registros guardan la diferencia entre el
nimero de descendientes o ascendientes de un médulo en fase de expansion
respecto a los que deberia tener segiin los datos del arbol generador final.

La direccion a la que se envian los médulos comprimidos que recibe un
modulo en fase de expansién esta indicada por el registro C05. Este registro
senala la direccién del registro con mayor valor de los cuatro mencionados
anteriormente. La direccion se indica con los valores vistos anteriormente
para estos casos: 1000, 100, 10 y 1 para el norte, oeste, este y sur respecti-
vamente.

En caso de empate en el valor de los registros, se sigue la prioridad de
expansion. De mayor a menor prioridad: norte, oeste, este y sur.

Por supuesto, tanto el paso de médulos comprimidos como los cambios
de rama alteran el valor de estos registros.

4.3.8. Retorno del lider

Una vez alcanzada la hoja de una rama del arbol generador final, la sefial
de lider vuelve a la raiz. Sin embargo, una vez pasada de hijo a padre, el
modulo padre jamés enviara la senal hacia la raiz hasta no estar seguro de
haber recibido las sefiales lider de todos sus hijos. Esto se controla gracias
a que por cada mdédulo expandido hemos sumado 1 al valor del registro C'08
del padre del moédulo expandido. De esta forma, por cada senal de lider que
vuelva de un hijo, se resta 1 del registro C'08 del padre. Una vez que este
registro alcanza el valor 0, el médulo envia la senal de lider a su padre, en
direccién a la raiz.

56 Implementacién del algoritmo multilider

El retorno de una senal de lider se indica mediante una senal con valor
1 enviada por el canal CO1.

4.4. Fin de la reconfiguracién [End]

Una vez un médulo ha enviado de vuelta a la raiz la senal de lider
y ya no debe enviar mas médulos comprimidos, es decir, el valor de sus
registros C15, C16, C17, C18, C19, C08 es 0, el médulo pasa a estado
DONEW. En este estado, como el médulo ya sabe que no debe realizar
ningin otro trabajo, busca entre sus vecinos inmediatos, aquellos que estan
a una posicién de distancia en cualquiera de sus cuatro direcciones, aquellos
en estado DONEW vy, si no esta conectado a ellos, se conecta.

De esta forma, la reconfiguracién acaba con una estructura con la misma
forma que el darbol generador final pero con todos los médulos conectados
entre si.

4.4.1. Reglas de reparacion

En este algoritmo, las tinicas reglas consideradas como reglas de repa-
raciéon son las que deciden el valor del registro C05 (Apartado ya
que dependen del valor de otros registros y no de una fase concreta de la
reconfiguracion.

Capitulo 5

Complejidad de los
algoritmos y analisis
experimental

1 objetivo principal de este proyecto es el de hacer mas eficiente el algo-
ritmo de reconfiguracion de robots cristalinos, y para ello se han presentado
diferentes modificaciones y versiones del algoritmo de reconfiguracién origi-
nal. Para ser capaces de estimar si una modificacion ha mejorado o no el
algoritmo original se ha realizado un estudio teérico de las modificaciones y
otro experimental.

A continuacién presentamos ambos estudios seguidos de las conclusiones
a las que estos nos han permitido llegar.

5.1. Complejidad de los algoritmos

El estudio tedrico del algoritmo se ha realizado comparando el coste o la
mejora que supone una modificacion respecto al algoritmo original. Gracias a
este estudio hemos podido estimar el coste adicional en niimero de mensajes
enviados que genera cada modificacién asi como el nimero de movimientos
innecesarios ahorrados.

5.1.1. Algoritmo con senal de parada hasta interseccién

Esta modificacién extiende una senal de pausa desde una hoja de una
rama que ha alcanzado su forma final hasta el primer médulo interseccién
que aun necesite expandirse. De esta manera busca detener cuanto antes
los médulos comprimidos que viajan en direccién a la hoja y que ya no son
necesarios para expandir la rama por la que viajan. Esta senial de pausa es
mucho més rapida que el paso del estado lider, el encargado de actualizar
los datos de cada médulo para decidir hacia dénde debe expandirse el arbol

o7

58 Complejidad de los algoritmos y analisis experimental

generador actual, y por tanto se espera que sea capaz de evitar que estos
modulos innecesarios se muevan hasta que el médulo que los contiene reciba
el estado de lider y pueda decidir la nueva direccién hacia la que viajar.

Proposicién 5.1 El algoritmo con senial de parada hasta la interseccion
aplicado a un drbol generador inicial de N mddulos y a un drbol generador
final de H hojas envia N — H — 1 mensajes de pausa: O(1) mensajes de
pausa por médulo y O(N) mensajes de pausa en total.

Demostracion:

El coste adicional que causa la modificacién en una misma reconfigura-
cién depende del nimero de mensajes de pausa enviados. Cada médulo, en
una misma reconfiguracion, extendera una sola vez la senal de pausa, justo
durante el momento en que la rama de la que forma parte ha alcanzado su
forma final. En concreto, como no es el médulo hoja el que emite la senal
de pausa sino su padre y teniendo en cuenta que el médulo raiz tampoco
emite la senal, el nimero total de senales de pausa emitidas en una sola
reconfiguracion es:

Totalpgusa = N — H — 1

Por tanto, el coste adicional por cada mdédulo que no sea la raiz del arbol
generador actual ni sea una de las hojas del arbol generador actual una vez
acabada la reconfiguracién es de O(1) mensajes y el coste total es de O(N)

mensajes de pausa.
O

El niimero de movimientos ahorrados por médulo comprimido que viaje
por una rama que acaba de alcanzar su forma final es algo més complicado
de deducir. Para llegar a cuantificar el ahorro, primero hay que entender lo
que tarda el algoritmo original a reaccionar ante una rama que ha llegado a
su forma final.

Proposiciéon 5.2 En el algoritmo original, si tenemos una rama de un
modulo interseccion de tamano N, y un mddulo comprimido parte de la
interseccion en direccion a la hoja de la rama en el mismo instante en que
dicha hoja emite una senal de lider, ambos elementos, mdédulo y senal, se
encontraran cuando el médulo comprimido haya recorrido aprorimadamente
el 40% de N,.

Demostracion: Imaginemos el caso en que un médulo comprimido esta conte-
nido en un mddulo interseccién que aun necesita expandir una de sus ramas
mientras que otra de sus ramas acaba de alcanzar su forma final. Como la
interseccion ain no sabe que ya no hay que enviar médulos comprimidos por
la rama que acaba de completarse, envia el médulo comprimido en direccién
a la hoja de la rama a una velocidad de un mddulo cada tres iteraciones. En

Complejidad de los algoritmos 59

ese mismo instante la hoja envia la senial de lider hacia la intersecciéon a una
velocidad de un médulo cada dos iteraciones. Si la distancia entre la inter-
seccién y la hoja es de N, moédulos podemos ver la distancia que recorren
el médulo (Dysduio) v la senal (Dyzqer) antes de encontrarse y el nimero de
iteraciones (T') que tardaran en hacerlo:

Tiempo = Distancia/Velocidad =

1 1 5
Ny = Dpsduio + Ditder = T§ + T§ = T6
9
T= N =12N,
1 2 1 3
Dinsduto = gT = gNr;Dlider = iT = gNr

Asi podemos ver facilmente que cuando la senal de lider y el médulo
comprimido se cruzan, momento en el cual el médulo comprimido descubre
que debe dar media vuelta, la senial ha recorrido el 60 % de mddulos de
la rama mientras que el médulo comprimido ha recorrido el 40 % restante.
Dependiendo del tamano de la rama el niimero de movimientos del médulo
comprimido o el nimero de moédulos que avanza la sefial puede variar en un
movimiento més o menos, ya que un médulo comprimido solo puede realizar
un ndmero entero de movimientos. O

Proposicion 5.3 En el algoritmo con senal de parada hasta interseccion,
st tenemos una rama de un modulo interseccion de tamano N, y un modulo
comprimido parte de la interseccion en direccion a la hoja de la rama en
el mismo instante en que dicha hoja emite una senal de pausa, ambos ele-
mentos, modulo y senal, se encontrardn cuando el mddulo comprimido haya
recorrido aproximadamente el 25 % de N;.

Demostracion: Si aplicamos el mismo razonamiento que en la demostracién
anterior fijindonos en la senal de pausa en lugar de en la senal de lider
podremos calcular la mejora de nuestra modificaciéon. En este caso la senal
avanza a una velocidad de un mdédulo por iteraciéon:

1 4 3
N, =T(=+1)=T=;T = -N,
T (3 +) 3 9 4 T
1 1 3
Dsduto = gT = ZNT'; Dpauszz =T = ZNT‘
Podemos ver que esta vez el médulo comprimido solo recorre el 25 % de
la rama. 0

Asi, pues, el ahorro de movimientos entre el algoritmo original y el que
tiene senal de parada hasta interseccién puede ser de hasta 15 puntos por-
centuales por rama.

60 Complejidad de los algoritmos y analisis experimental

Puesto que el niimero de movimientos ahorrados depende de la distancia
entre el médulo comprimido y la senal de pausa, podemos deducir el niimero
maximo de movimientos ahorrados por un moédulo comprimido dentro de
una rama.

Proposicion 5.4 Mediante el algoritmo con senal de parada hasta inter-
seccion, el numero mdzrimo de movimientos Maxaporro que puede ahorrar
un mddulo durante una reconfiguracion es 2 x 0,15 % (N — 1) movimientos.

Demostracion: El maximo ahorro (M axgperro) al viajar por una rama se da
cuando un médulo comprimido se encuentra en el médulo interseccién, o en
la raiz si no existe ninguno, y la sefial de pausa ain se encuentra en la hoja,
es decir, en el momento de mayor distancia entre el médulo comprimido y
la senal de pausa, justo en el momento en que el médulo intenta entrar en
la rama. Teniendo en cuenta que la rama mas grande posible es de tamafio
N —1, el nimero de médulos del arbol generador inicial menos la raiz, y que
los movimientos que no realiza adentrandose en la rama son movimientos
que tampoco tiene que realizar para volver a la interseccién, entonces:

Mazaporro = 2% 0,15 % (N — 1)

Con cada rama del arbol generador inicial que se expande el tamano
potencial que pueden alcanzar las siguientes ramas es menor. Por tanto, el
ahorro méaximo por médulo es O(N):

Z (2 * Distancitinterseccion—hoja * 0,15) < 2% 0,15 % (N — 1)

hojas
O

Como hemos podido ver en la demostracion, el niimero méaximo de mo-
vimientos ahorrados por médulo comprimido puede llegar a ser O(N), sin
embargo atn no hemos dicho nada sobre el niimero de movimientos ahorrado
de toda la reconfiguracion.

Proposicién 5.5 FEl total de movimientos ahorrados en una ejecucion del
algoritmo con senal de parada hasta interseccion es O(N?).

Demostracion: Teniendo en cuenta que existen arboles generadores finales
que al ejecutar esta modificacién consiguen que un nimero O(N) de médulos
se vean afectados por la senal de pausa y que el ahorro de un mismo médulo
aunque se vea afectado varias veces por la senal de pausa nunca supera
Mazgporro, €S posible expresar el ahorro total como:

Max g horro ¥ N

Es decir, el ahorro de movimientos es acotado superiormente por O(N?).
Cabe destacar que no hemos podido demostrar la exactitud de esta cota. [

Complejidad de los algoritmos 61

5.1.2. Algoritmo con senal de parada hasta raiz

Al introducir una nueva senal, la sefial de reanudado, y al aumentar la
distancia de expansion de la senal de pausa es de esperar que el coste de
comunicacién del algoritmo aumente aunque, como veremos, el namero de
movimientos ahorrados también aumenta en consecuencia.

Proposicién 5.6 El algoritmo de serial de parada hasta la raiz aplicado a
un drbol generador inicial de N maodulos y a un drbol generador final de H
hojas envia un total de O(N?) mensajes de pausa y reanudado.

Demostracion: Esta modificacién, aunque parecida a la modificacién de senal
de parada hasta la interseccion, se diferencia de ésta en que la senal de pausa
viaja siempre desde la hoja de una rama que ha llegado a su forma final hasta
la raiz del arbol. Eso quiere decir que en vez de emitir la senal de pausa una
sola vez por médulo ahora existe un conjunto de médulos entre la raiz y el
modulo interseccién de la rama que acaba de completarse que emiten la senial
de pausa una vez por cada rama del moédulo interseccién que se complete.
Este coste se suma al calculado en la modificacién anterior, ya que el resto de
modulos siguen emitiendo la senal de pausa una sola vez por ejecucion. Por
supuesto la distancia entre el médulo interseccién y la raiz varia por cada
modulo interseccién por lo que este incremento en el coste debe expresarse
como la suma para todos los médulos interseccién, llamemos k al nimero de
ellos, de la distancia de la raiz a cada interseccién (Dist;) multiplicado por
el nimero de ramas de la interseccién (R;). Si no existe ninguna interseccién
en el arbol, ningiin médulo con mas de un hijo, el valor de esta suma es 0.

Para facilitar el cdlculo del nimero de mensajes de pausa enviados, tra-
tamos cada modulo interseccion como si fuera la inica interseccién del arbol,
es decir, solo tenemos en cuenta el médulo interseccién més la suma de los
modulos de sus ramas (1V;), la distancia de la raiz del drbol a la interseccién
(Dist;) y el nimero de ramas de la interseccién (R;). Los médulos que unen
varios médulos interseccién no se consideran parte de una interseccion ni ra-
ma de ninguna interseccién y solo se tienen en cuenta para calcular (Dist;).
En definitiva:

k
Mensajespausa = Z(N’ — R; — 1+ Dist; x R;)
=1

Ademas de los mensajes de la senal de pausa, esta modificacion del al-
goritmo introduce la senal de reanudado que permite reanudar los médulos
pausados, los mismos que emiten la senal de pausa desde la interseccion
hasta la raiz, sin necesidad de que intervenga la senal de lider. La senal de
reanudado se emite antes de expandir una rama, siempre y cuando se haya
emitido una senal de pausa antes en la reconfiguracién. Ademads esta senal
nunca se emite durante la expansion de la primera rama de cada uno de

62 Complejidad de los algoritmos y analisis experimental

los 2 subérboles posibles que nacen directamente de la raiz, o lo que es lo
mismo, de los 2 posibles hijos de la raiz (Hijos_ :). El coste total del envio
de las dos senales, pausa y reanudado, es pues:

raiz

k k
Mensajestotal = Z:(NZ — Ry —1)+2x Z(Dz’sti x R;) — HijoSyai.

i=1 i=1

Sabiendo que la senal de pausa se emite una vez por cada una de las
ramas del arbol generador final, y que la senal de reanudado se emite una
vez por rama menos Hij08,4:., podemos concluir que el coste por médulo
de el envio de ambas seniales es O(R) en ambos casos, donde R es el nimero
de hojas del arbol final.

Dado que el ntimero total de senales enviadas depende del nimero de
hojas del arbol final, podemos concluir que cuando el arbol final tenga el
maximo numero de ramas posibles, que es O(N), las senales enviadas seran

O(N?). O

El ahorro de movimientos innecesarios tanto por médulo como en total
es igual que el de la modificacién anterior del algoritmo, O(N) y O(N?) res-
pectivamente, ya que para ahorrar movimientos se usa la misma estrategia,
la senal de pausa, y los médulos comprimidos siguen viajando a la misma
velocidad que en la modificacién anterior, la sefial de reanudado no afecta al
ahorro sino a la expansion y el maximo ahorro se da cuando todas las ramas
tienen el tamano maximo posible. Sin embargo los resultados practicos de
esta modificacion seran aun mejores que los de la anterior debido a que aho-
ra restringimos el acceso a todo un subdarbol de la raiz del arbol generador
actual en lugar de solo a una rama.

5.1.3. Algoritmo con senal de parada para toda la configu-
racion
El andlisis tedrico de esta modificacién del algoritmo es bastante maés
sencillo que en las modificaciones anteriores.

Proposicion 5.7 El algoritmo con senal de parada parae toda la configu-
racion aplicado a un drbol generador inicial de N modulos y a un drbol
generador final de H hojas envia O(N?) mensajes de pausa y reanudado.

Demostracion: Esta version del algoritmo se diferencia de la versién con
sefial de parada hasta la raiz en que sus senales de pausa y reanudado se
expanden por todo el arbol, incluyendo los médulos en fase de compresion
y las ramas del arbol generador actual que ya se hayan expandido por lo
que, esencialmente, cada médulo emite una senal de pausa y una senal de
reanudado por cada hoja del arbol generador final. Aunque estas senales
no siempre se extienden por todos los mdédulos del arbol generador actual

Complejidad de los algoritmos 63

debido a que algunos de los médulos del &drbol estdn comprimidos en otros
modulos, podemos considerar que cada médulo envia O(H) senales con estos
mensajes. Por tanto, el numero total de mensajes es N x H + N x H, esto
es O(H * N) que en el peor de los casos es O(N?). Incluso evitando que las
senales se extiendan al subarbol sur de la raiz cuando se expande el subarbol
este del drbol, el coste total se mantiene en O(N?) ya que si no existe ningin
modulo conectado a la raiz en direccién este en el arbol generador final esta
manera de ahorrar en envio de senales tiene lugar en la reconfiguraciéon. [

Como en las anteriores modificaciones versiones del algoritmo el ahorro
de movimientos innecesarios por médulo y total se mantiene en O(N) y
O(N?) debido a que nuestra estimacién considera el caso en que todas las
ramas son de tamano O(N) y a que la velocidad de las senales y de los
modulos comprimidos no ha cambiado respecto de los algoritmos anteriores.

5.1.4. Algoritmo multilider

Este nuevo algoritmo es radicalmente diferente al resto de modificaciones
del algoritmo original analizadas en este apartado, sin embargo, como vere-
mos a continuacién, podemos utilizar algunas ideas de los estudios tedricos
anteriores para analizar los costes de este algoritmo.

Para poder determinar el niimero de senales adicionales que envia este
algoritmo primero debemos realizar un anélisis por separado del envio de
las diferentes senales que introduce este algoritmo y que no existen en la
versién original. Para empezar analizamos la sefial numérica que acompana
a la senal de Back..

Proposicion 5.8 El algoritmo multilider aplicado a un drbol generador ini-
cial de N mddulos y a un drbol generador final de H hojas envia O(N?)
mensajes de de texto Back_.

Demostracion: La senal de Back- es la senal que envian las hojas del arbol
generador inicial una vez han recibido la senal de un candidato a raiz del
arbol. Esta senal viaja de hijos a padres hasta llegar a la raiz del arbol a
no ser que encuentre otra senal de un candidato a raiz mejor que el médulo
que envio la senal que recibieron las hojas, en cuyo caso se envia esta nueva
senal hasta las hojas del arbol y estas vuelven a emitir la senial de Back_. A
esta senal de Back._ se le anade una senial numérica que se envia junto a ella
y que indica el niimero de médulos que cuelgan del médulo que la recibe en
la direccién por la que ha recibido el mensaje. Por tanto esta senal se emite
tantas veces como la sefial de Back_. En un caso ideal con un solo candidato
a raiz del arbol esta senal se envia O(NN) veces, una vez por cada médulo del
arbol. Sin embargo, es posible existencia de més de un candidato. En el caso
de un arbol con el mayor niimero posible de candidatos a raiz, como por
ejemplo un drbol en forma de escalera que asciende de oeste a este con N/2

64 Complejidad de los algoritmos y analisis experimental

moédulos como candidatos, el nimero de mensajes numéricos por médulo
es O(N), de manera que el total de mensajes enviados por el algoritmo es
O(N?). O

La senal siguiente a tener en cuenta es la de operacién de cambio de rama
denegada. Esta senal depende exclusivamente del niimero de operaciones de
cambio de rama que se envien a hojas del arbol generador actual que ya
hayan pedido permiso para comprimirse y recibido la confirmacién de dicha
accién.

Proposicién 5.9 FEl mdzimo ndmero de mensajes de operacion de cambio
de rama denegada que pueden ser emitidos durante una ejecucion del algo-
ritmo multilider es O(N).

Demostracion: Como podemos deducir de las condiciones bajo las que se
envia esta senal, predecir el nimero exacto de veces que esta se envia es im-
posible, ya que depende de cada configuracién. Sin embargo, como sabemos
que que esta senal solo puede ser emitida por una hoja en fase de compresion,
podemos garantizar que, como maximo, esta senal se envia O(N) veces, ya
que a lo largo de la reconfiguracién solo puede llegar a existir un total de N
hojas en estado de compresién. O

Las senales siguientes a analizar son las dos que actualizan los registros
que indican el nimero de hijos de cada médulo y el nimero de médulos que
hace falta enviar en cada direccién. Estas senales se envian cuando se ha
ejecutado una operacién de cambio de rama para desconectar un médulo de
una rama en estado de compresion y conectarla a una rama en estado de
expansién. Una de las dos senales informa a la rama en estado de expansion
de que se han anadido nuevos médulos a la rama y la otra informa a la
rama en estado de compresién de que ha perdido moédulos como resultado
del cambio de rama.

Proposicién 5.10 En el algoritmo multilider la emision de una pareja de
senales de adicion y sustraccion produce como mdzimo O(N) mensajes.

Demostracion: Normalmente estas sefiales se expanden hasta la raiz infor-
mando a todos los médulos que encuentran a su paso. Sin embargo, existe
una excepcion: si dos o mas senales de este tipo, ya sea de adicién o de
sustraccion, se encuentran en un mismo médulo interseccién este emite una
Unica senal de adicién o sustraccién segtn el niimero de moédulos sumados o
sustraidos a sus ramas. Estas senales se comportan como la senial de pausa
del algoritmo con senal de parada hasta la raiz, solo que en vez de emitir
una sola sefial en este caso se emiten dos al mismo tiempo, una por cada ra-
ma implicada en la operacién. Para calcular el coste de emitir estas senales
enumeramos las operaciones de cambio de rama de 1 a k y sumamos las

Complejidad de los algoritmos 65

distancias de la raiz al médulo que ha realiza la operacién de cambio de
rama pasando por la rama en estado de expansién (DistE;) y por la rama
en estado de compresion (DistC;).

k
Mensajesadicio’n,substraccién = Z(DZSth + D’LStCZ)
i=1

Teniendo en cuenta que para que exista la operacién del cambio de rama
se necesitan dos ramas, y que la suma de la longitud de las dos ramas no
puede ser superior a N — 1, la emisién de estas dos senales juntas produce
a lo sumo O(N) mensajes. O

El total de mensajes en una reconfiguracién debido a la emisién de estas
senales es dificil de calcular. Para conseguirlo hemos analizado diversas si-
tuaciones tedricas que nos permiten poner a prueba el niimero potencial de
veces que pueden ser emitidas estas senales.

Proposicion 5.11 El numero de veces que se ejecuta satisfactoriamente
una operacion de cambio de rama durante una ejecucion del algoritmo mul-
tilider puede llegar a ser N/3 y genera O(N?) mensajes de adicion y sus-
traccion en total.

Demostracion: Consideremos una rama en estado de compresion que no esta
congestionada, esto es, cuyos modulos comprimidos atin tienen espacio para
viajar por ella, y cuya hoja esta constantemente perseguida por un médulo
lider que le envia mensajes de cambio de rama. Una hoja en estado de
compresién que tenga espacio para comprimirse siempre genera la senal de
negacién de cambio de rama, por lo que es imposible en este caso que las
senales de adicién/sustraccién se emitan N veces.

Consideremos una rama en estado de compresion y congestionada, es-
to es, cuyos médulos comprimidos se bloquean unos a otros e impiden que
se muevan. Supongamos que estd formada por N/2 mddulos que contienen
N/2 médulos comprimidos. Consideremos una rama en expansiéon que envie
seniales de cambio de rama a las hojas de la rama en compresién que se
vayan generando. Llega un momento en que los médulos pueden moverse,
generando una situacién como la descrita en el parrafo anterior. Por consi-
guiente, las senales de adicién y substraccién no pueden ser emitidas N/2
veces.

Finalmente, al imaginar una rama en estado de compresién en linea recta
y una rama en estado de expansion que intenta atravesarla varias veces como
una costura vemos que es posible emitir las senales de adicién y substraccion
N/3 veces. Por tanto podemos decir que el coste total del envio de estas dos
sefiales en una sola ejecucién del algoritmo es N * (N/3) o O(N?) mensajes,
O(N) mensajes por médulo. No hemos podido demostrar que N/3 sea una

66 Complejidad de los algoritmos y analisis experimental

cota superior, pero no hemos podido llegar a plantear ningtin otro ejemplo
superior a N/3.

En todo caso, cada mdédulo solo puede cambiar de rama una vez, de
modo que la cota O(N?) es inmediata. O

Por dltimo solo nos queda analizar el mensaje que indica el nimero de
moédulos encontrados, un mensaje numérico que acompana a las senales de
adicién y sustraccién y que indica cuantos médulos se han anadido o perdido
en la rama. Estas senales se envian a la vez que las senales de adicién y
sustraccion por lo que su coste es el mismo. Cabe destacar que el coste de
las senales de adicién y substraccion sumado al coste de enviar este tipo de
mensajes sigue siendo O(N?).

Proposiciéon 5.12 FEl algoritmo multilider aplicado a un drbol generador
inicial de N mddulos y a un drbol generador final de H hojas envia O(N?)
mensajes mas que el algoritmo original.

Demostracion: Utilizando los calculos de las sefiales previamente descritas
vemos que en total el nimero de mensajes adicionales enviados por médulo
es de O(N) mensajes y el total de mensajes adicionales enviados por el
algoritmo, es O(N?).

Costemeduio = N/2+1+2% N/3 = O(N)

Costegorqy = N* N/2+ N + N 2% N/3 = O(N?)
]

Una vez calculado el niimero de mensajes adicionales que este algorit-
mo produce, nos queda calcular el nimero de movimientos innecesarios que
evita. Este algoritmo, como los demas, se centra en evitar los movimientos
innecesarios de los médulos que viajan dentro de una rama en estado de ex-
pansién y en ese sentido se puede decir que este algoritmo es practicamente
perfecto. En ocasiones el algoritmo multilider genera movimientos innecesa-
rios al efectuar una operacion de cambio de rama y, por tanto, para calcular
el nimero de movimiento innecesarios que evita conviene estudiar primero el
nimero total de movimientos innecesarios que efectiia el algoritmo original,
y a ese numero debemos restarle el niimero de movimientos innecesarios que
genera nuestro algoritmo.

Proposicién 5.13 El niumero de movimientos innecesarios en ramas en
fase de expansion durante una ejecucion del algoritmo original puede llegar
a ser O(N?).

Demostracion: Pongamos como ejemplo un arbol generador final cuyos médu-
los cuelgan todos del hijo sur de la raiz menos uno que debe convertirse en

Complejidad de los algoritmos 67

el hijo de la raiz en direccion este. Teniendo en cuenta el algoritmo original
y su prioridad de expansion, este mdédulo serd el tltimo en ser expandido
al reconfigurar el arbol generador inicial. Ademas, en este caso, todos los
modulos del arbol generador inicial cuelgan del subarbol este de la raiz, de
forma que todos los médulos, al ejecutar el algoritmo, pasan por la raiz del
arbol. En el peor de los casos el arbol generador final tiene una rama en el
subarbol sur de la raiz de tal forma que cuando su hoja llega a su forma
final el médulo destinado a convertirse en hijo en direccién este de la raiz se
encuentra contenido en el modulo padre de la hoja de esta rama. Este es el
peor de los casos porque ahora debe volver a la raiz para acabar ocupando su
lugar después de recorrer practicamente los N modulos del arbol dos veces.
En concreto este mdédulo, teniendo en cuenta que acabara siendo la tnica
hoja del sub-arbol este de la raiz, ha realizado 2% (N — R—raiz) movimientos
innecesarios, que son O(N?) movimientos. Haciendo una aproximacién, asu-
miendo que todos los médulos que realizan movimientos innecesarios pueden
llegar a recorrer casi N médulos dos veces, y sabiendo que solo N/2 médulos
pueden realizar movimientos innecesarios, el niimero total de movimientos
innecesarios en una ejecucién del algoritmo original es de O(N?) movimien-
tos.
MovimientoSinnecesarios = 2 * (N — R —raiz) * N/2

g

Para calcular el niimero de movimientos innecesarios que pueden generar
las operaciones de cambio de rama y las senales de adicién y substraccion
que esta genera hemos analizado en mas profundidad el efecto de dichas
sefiales.

Proposicion 5.14 El nimero de movimientos innecesarios producidos en
ramas en fase de expansion durante una ejecucion del algoritmo multilider
es de O(N?) movimientos.

Demostracion: Supongamos un arbol generador actual y final de misma for-
ma que los de la Figura pero con diferente nimero de médulos en sus
ramas. En este ejemplo, en el momento en que la rama sur del arbol en-
cuentra la rama en estado de compresién y realiza la operacion de cambio
de rama, contamos con N/6 médulos en estado de expansién ya expandidos,
es decir, que no se encuentran comprimidos, con N/2 médulos comprimidos
viajando, a través de los moédulos en fase de expansion, hacia el lider de
la rama sur y con N/3 que se han afadido a la rama sur con la operacién
de cambio de rama. En el caso que estamos presentando, los N/3 médulos
anadidos a la rama sur son suficientes para completar la expansién de la
rama y por tanto, a medida que reciben la senal que actualiza el niimero
de médulos de la rama, los médulos comprimidos que viajan hacia el lider
de la rama sur cambian su direccién para dirigirse al lider de la rama este.

68 Complejidad de los algoritmos y analisis experimental

Teniendo en cuanta que hay 2 médulos vacios entre cada médulos comprimi-
dos y considerando el nimero de médulos comprimidos como C' y el niimero
de médulos en fase de expansion ya expandidos como FE, podemos calcu-
lar el niimero de movimientos innecesarios que han realizado los mdédulos
comprimidos de la siguiente manera:

N/6

MovimientoSipnecesarios = 1 + (1 +3) + (1 4+3%2) + ... = Z(l +13)
i=1

N/6 N\N
N . N (1+g)g
_6+3;Z_6+32

= O(N?)

| e
N

Figura 5.1: Arbol generador actual a la izquierda y arbol generador final
a la derecha. El arbol generador actual, mas concretamente su lider sur,
acaba de realizar una operacién de cambio de rama. A consecuencia de esta
operacion, un modulo que viaja hacia el lider de la rama sur debe volver al
lider de la rama este.

Tanto el nimero de movimientos innecesarios eliminados como el ntimero
de movimientos innecesarios anadidos son cuadraticos. Nos ha sido imposible
comparar dichos nimeros en un contexto tedérico general, ya que ambos
dependen fuertemente de las configuraciones que se analicen. De hecho, el
caso peor para la Proposicién [5.13| no es el mismo que para la Proposiciéon

B.I14l

5.2. Analisis experimental de las modificaciones

5.2.1. Introduccion a los resultados

A continuacién presentamos un estudio experimental de los algoritmos
presentados en este proyecto. Esta serie de experimentos no solo nos permi-

Analisis experimental de las modificaciones 69

ten probar los algoritmos, ademads podemos analizar las instrucciones ejecu-
tadas y los mensajes enviados para comprobar la certeza de nuestro andlisis
tedrico y obtener datos reales sobre la media de mensajes y movimientos por
ejecucion.

Para minimizar el tamano de las diferentes graficas de esta seccién hemos
abreviado el nombre de los algoritmos con estas siglas:

= Algoritmo original = AO

= Algoritmo con senal de parada hasta la interseccion = PI

Algoritmo con senial de parada hasta la raiz = PR

Algoritmo con senal de parada para toda la configuracién = PT

Algoritmo multilider = ML

5.2.2. Herramientas utilizadas

Para realizar al analisis practico se han utilizado dos herramientas dis-
tintas: el simulador de robots cristalinos y un parser de acciones exportadas
del simulador.

El simulador es el mismo utilizado por otros proyectos de final de carrera
como el de Joan Soler [3], autor del algoritmo original, puede encontrarse
més informacién respecto a esta herramienta en su pagina web [6].

El parser de acciones es un programa creado especificamente para este
proyecto. Més informacién sobre el parser se presenta en el anexo [0}

5.2.3. Juegos de prueba

Los juegos de prueba creados para analizar el comportamiento de los
algoritmos de este proyecto estdn clasificados en las siguientes categorias:

Minihole-Spiralhole-Square: Ejemplos méas complejos que los presenta-
dos en la categoria Densidad que buscan ver como aumentan la emision de
senales y el nimero de movimientos en funcién del nimero de médulos que
componen la figura. Estos ejemplos estan formados por figuras de forma Mi-
nihole que pasan a forma Spiralhole y Square, figuras Spiralhole que pasan
a forma Minihole y Square y, por iltimo, figuras Square que pasan a forma
Minihole y Spiralhole. Ademas, todos estos casos se repiten multiples veces
cambiando el nimero de médulos que los componen: 10, 20, 50, 100, 200,
500 y 1000.

Peines & Rectdngulos: Ejemplos disenados para estudiar el impacto de
la orientacién de las ramas y el orden de compresién y expansiéon de los
arboles generadores inicial y final en la configuracién en figuras poco densas
de tipo histograma (Peines) o muy densas (Rectangulos), que se ilustran en
la Figura .

70 Complejidad de los algoritmos y analisis experimental

Estos juegos de prueba no solo buscan analizar el comportamiento de
los algoritmos segtin el niimero de moédulos, sino comprobar si la compo-
sicién, orientacién o densidad de una figura influye de alguna forma en la
reconfiguracion. Este andlisis nos puede ser 1til si en un futuro se deja a los
robots, o en nuestro caso al simulador, la tarea de decidir la mejor manera
de abordar una reconfiguraciéon. Por ejemplo, si se envia a los robots una
forma final, estos podrian cambiar la prioridad de compresién y/o expansién
de las diferentes direcciones de un mdédulo, simulando un cambio de orien-
tacion en la figura aunque esta no cambie, si los robots consideran que una
reconfiguracién con las prioridades originales no es éptima. Hasta entonces,
esta experimentacién también nos sirve para crear cambios de forma que
faciliten la reconfiguracion.

Todos estos juegos de prueba asi como el andlisis de sus resultados me-
diante el parser de acciones pueden encontrarse en la pagina web de este
proyecto.

5.2.4. Movimientos segin el nimero de mdédulos

Antes de empezar con esta fase de la experimentacién debemos puntua-
lizar que entendemos como movimiento toda compresién, expansién o paso
de médulo comprimido. No entendemos como movimientos los cambios de
conexion de un maédulo.

Para empezar veamos, con los resultados obtenidos de los casos de prue-
ba Minihole-Spiralhole-Square, como evolucionan el nimero de movimientos
y de mensajes al incrementar el nimero de mdédulos de nuestras configura-
ciones.

Como puede verse en la Figura todos nuestros algoritmos mejoran
el original. Aunque cada mejora del algoritmo realiza menos movimientos
totales que la anterior, la mejora de una modificacién respecto a la anterior
es mintuscula salvo para el algoritmo multilider. Si comparamos el algoritmo
con senal de parada hasta interseccion, con senal de parada hasta raiz y
con senal de parada para toda la configuracion con el algoritmo original
para configuraciones de menos de 20 mddulos, la diferencia en el nimero de
movimientos dificilmente llega a los 10 movimientos. Incluso hay ocasiones,
como durante la ejecucion de los juegos de prueba de 20 moédulos, en que
el algoritmo con sefial de parada para toda la configuracién obtiene peores
resultados que los algoritmos con senal de parada hasta intersecciéon y con
senal de parada hasta raiz. Solo el algoritmo multilider consigue diferenciarse
substancialmente del resto, ya que es capaz de llevar a cabo las mismas
reconfiguraciones con poco méas de la mitad de movimientos que el resto de
los algoritmos.

La escasa diferencia de movimientos entre el algoritmo original y los algo-
ritmos con senal de para se debe a que, al fin y al cabo, su funcionamiento es
extremadamente parecido y a que la senal de parada solo evita un pequeno

Analisis experimental de las modificaciones 71

Total de movimientos

1-10° | |—e— AO

—u— PJ
80000 | |—e— PR 1
2 —— PT
£ 60000 | |+ ML 1
E
£ 40000 | 1
=
20000 | 1
O - -

| | | | |
0 200 400 600 800 1000
Modulos

Figura 5.2: Grafica que muestra, para los algoritmos presentados en este
proyecto y el algoritmo original, la media del niimero total de movimientos
realizados en los juegos de prueba Minihole-Spiralhole-Square.

nimero de movimientos innecesarios. Por otro lado, el algoritmo multilider
solo realiza movimientos innecesarios al realizar una operaciéon de cambio de
rama, y, aun asi, el nimero de moédulos afectados por esta operacion es mu-
cho menor que el nimero de médulos que realizan movimientos innecesarios
en los otros algoritmos.

La misma diferencia en el nimero de movimientos innecesarios se da
tanto en la fase de expansion, Figura [5.4] como en la fase de compresién,
Figura [5.3

Nuestro célculo tedrico sobre la complejidad de los algoritmos estudiados
en este proyecto, marca una cota superior de O(N?) para todos los algorit-
mos. Atn asi, como podemos apreciar en la Figura durante la ejecucién
de los juegos de prueba ninguno de los algoritmos supero la complejidad indi-
cada en el Apartado y, concretamente en el caso del algoritmo multilider,
los resultados reales son mucho méas bajos que la cota calculada.

5.2.5. Mensajes segin el nimero de médulos

Junto con la comparacién de movimientos, comparar el nimero de men-
sajes que emite cada modificacion del algoritmo es otro de los elementos mas
interesantes de esta experimentacién. Entendemos como mensaje, no solo los
mensajes numeéricos y de texto emitidos por los médulos, sino también todas
las lecturas de estados o registros de los médulos vecinos ya que, en la vida
real, estos datos se comunican mediante mensajes.

72 Complejidad de los algoritmos y analisis experimental

Media de movimientos en la fase de compresién

25000 [— : -]

—o— AO
-—u— PJ
20000 | { o pp .
2 —— PT
515000 |+ ML :
E
S 10000 |- 8
o
=
5000 |- B
0l |

0 200 400 600 800 1000
Modulos

Figura 5.3: Gréfica que muestra, para los algoritmos presentados en este
proyecto y el algoritmo original, la media del nimero de movimientos reali-
zados en los juegos de prueba Minihole-Spiralhole-Square durante la fase de
compresion.

Al incrementar el nimero de médulos no solo aumenta el nimero de
movimientos, el nimero de mensajes también se ve afectado por este in-
cremento. A continuacién presentamos la media de los resultados obtenidos
por cada algoritmo segun el nimero de mdédulos de los casos de prueba
Minihole-Spiralhole-Square.

Como puede verse en la Figura todos los algoritmos con senal de
parada emiten, durante su fase inicial, el mismo nimero de mensajes que el
algoritmo original. Este hecho era de esperar ya que la fase de bisqueda rea-
liza las mismas acciones en el algoritmo original que en los algoritmos con
senial de parada. El algoritmo multilider, sin embargo, emite N mensajes
mas que los demas algoritmos, siendo N el niimero de médulos de la con-
figuracion. Estos mensajes adicionales son los los mensajes numéricos que
acompainan a la senal de Back_ y que informan a los médulos del nimero
de descendientes en cada una de sus direcciones. Ain asi, como veremos,
estos mensajes adicionales no suponen una gran carga en el nimero total de
mensajes emitidos por el algoritmo multilider.

Es en las Figuras y donde vemos el efecto especifico sobre los
mensajes de los algoritmos con senales de parada y del algoritmo multilider.
Tanto el algoritmo con senal de parada como el algoritmo multilider emiten
menos mensajes que el algoritmo original. Aunque originalmente esperdba-
mos reducir el nimero de movimientos a costa de un aumento en el nimero

Analisis experimental de las modificaciones 73

Media de movimientos en la fase de expansién

- T]
80000 [~ 10
-m— PJ
60000 | |—*— PR .
8 —— PT
=] —— ML
= 40000 |- :
£
>
o
= 20000 | .
0 | |
| | | |

| |
0 200 400 600 800 1000
Modulos

Figura 5.4: Grafica que muestra, para los algoritmos presentados en este
proyecto y el algoritmo original, la media del ntimero de movimientos reali-
zados en los juegos de prueba Minihole-Spiralhole-Square durante la fase de
expansion.

de senales emitidas, podemos ver que no ha sido el caso.

La mayor fuente de mensajes emitidos, tanto del algoritmo original como
de los algoritmos con senal de parada, es el envio continuo, a cada iteracion,
de mensajes para iniciar una operacién de paso de moédulo comprimido.
Siempre que un moédulo contiene un moédulo comprimido intenta, a cada
iteracién, iniciar una operaciéon de paso de mdédulo comprimido y no cesa
de intentarlo hasta conseguir una respuesta de su padre. Los algoritmos
con senal de parada, al pausar los mdédulos, evitando asi que los mdédulos
pausados puedan realizar acciéon alguna, consiguen evitar también el envio
de los mensajes de inicio de operacién de paso de médulo comprimido, y
mientas mas moédulos pause cada algoritmo, menos mensajes envia. Por eso
los algoritmos con senal de parada que emiten menos mensajes son, en orden
de mayor a menor nimero de mensajes emitidos, el algoritmo con senal de
parada hasta interseccién, el algoritmo con senal de parada hasta la raiz y
el algoritmo de senal de parada para toda la configuracion.

El algoritmo multilider, por otro lado, no genera apenas colapsos de
modulos comprimidos durante su fase de expansion, envia los mensajes de
inicio de operacion de paso de mdédulo comprimido una vez cada tres ite-
raciones en lugar de una vez por iteracion, y, al haber menos colapsos en
las ramas en fase de expansion, reduce también el tiempo de colapsos de
modulos comprimidos en la fase de compresion. Todo ello reduce en gran

74 Complejidad de los algoritmos y analisis experimental

Media de mensajes emitidos en la fase inicial

\ \ T
—eo— AO
6000 H - “pr |
- PR
2 —— PT
g 4000 || —— ML B
g
>
o
= 2000 n
0 i
!

| | | | |
0 200 400 600 800 1000
Modulos

Figura 5.5: Gréfica que muestra, para los algoritmos presentados en este
proyecto y el algoritmo original, la media del nimero de mensajes emiti-
dos en los juegos de prueba Minihole-Spiralhole-Square durante la fase de
busqueda de la raiz.

medida el nimero de mensajes emitidos por este algoritmo.

Otra de las razones por la que los algoritmos presentados en este proyecto
emiten menos mensajes que el algoritmo original es que estos mensajes se
emiten para iniciar el movimiento de un moédulo. Por tanto, cuantos menos
movimientos realiza el algoritmo, menos mensajes totales necesita enviar.

En definitiva, de entre todos los algoritmos estudiados y propuestos en
este proyecto, el algoritmo multilider es el que menos senales emite con
diferencia.

Si comparamos los resultas obtenidos en la experimentacién con los pre-
vistos en el calculo de la complejidad de los algoritmos (Apartado po-
demos ver que no nos equivocamos en el calculo de su cota superior. Es mas,
los resultados reales son menores que la cota calculada dado que el niimero
de mensajes esta directamente relacionado con el nimero de movimientos,
por lo que menos movimientos implica menos mensajes emitidos.

Podemos ver en la Figura que, tal como se indica en la Proposicién
y en su demostracién, el nimero de mensajes emitidos por el algoritmo
multilider durante su fase inicial supera siempre en poco més de NV, siendo NV
el nimero de médulos de la configuracién, al nimero de mensajes emitidos
en la misma fase por el resto de los algoritmos y, en todo caso, es lineal.

Otro dato que podemos comprobar es, tal como muestra la Figura [5.9
que el numero de operaciones de cambio de rama que se realizan, y por

Analisis experimental de las modificaciones 75

Media de mensajes emitidos en la fase de compresiéon

1,5-10° H o~ A0 .
-u— PJ
- PR
g 1.100 | PT :
g —— ML
E
g
= 5-10°| y
0, .
| | | | |

|
0 200 400 600 800 1000
Modulos

Figura 5.6: Grafica que muestra, para los algoritmos presentados en este
proyecto y el algoritmo original, la media del nimero de mensajes emiti-
dos en los juegos de prueba Minihole-Spiralhole-Square durante la fase de
compresion.

tanto el niimero de mensajes de cambio de rama que se emiten, nunca supera
1/3%N (Proposicién[5.11)). Curiosamente, la Figura[5.9 también nos muestra
que mientras mas médulos hay en una configuracién mas numerosas son las
operaciones de cambio de rama.

5.2.6. Orden de compresion en los algoritmos

Uno de los elementos que mas llaman la atencién durante la ejecucién del
algoritmo multilider es que, comparado con el algoritmo original, su orden
de compresion resulta aparentemente cadtico y aleatorio para el usuario.
Este desorden en la compresién no es el comportamiento que esperabamos
en el algoritmo multilider, por lo que, durante la la experimentacién con
el algoritmo multilider, hemos buscado la causa de la falta de orden en la
compresién de ramas del arbol generador actual.

En el algoritmo original existe un orden de expansién definido: recibir un
modulo del oeste tiene mas prioridad que recibir un médulo del norte, que
a su vez tiene més prioridad que recibir un médulo del este que, finalmente,
tiene mds prioridad que recibir un médulo del sur. Esta prioridad consigue
mantenerse gracias a una serie de mensajes, que se repiten a cada iteracion,
en que un médulo que contiene un médulo comprimido le pide a un vecino,
al que esta conectado, que acepte el paso de dicho médulo. Este mensaje se
envia siempre, incluso durante la iteracién en la que sabemos con seguridad

76 Complejidad de los algoritmos y analisis experimental

Media de mensajes emitidos en la fase de expansion

. 6 1 T —
6-10 e A0
-—u— PJ
- PR
L 4.-100 | PT 2
*g —— ML
E
>
= 2-10° .
0, |
| | | | | |

0 200 400 600 800 1000
Modulos

Figura 5.7: Gréfica que muestra, para los algoritmos presentados en este
proyecto y el algoritmo original, la media del nimero de mensajes emiti-
dos en los juegos de prueba Minihole-Spiralhole-Square durante la fase de
expansion.

que el mdédulo comprimido va a enviarse pues ya se ha confirmado la ope-
racién. Ademas la velocidad a la que viajan los médulos comprimidos, un
modulo cada tres iteraciones, permite que un moédulo que ha empezado a re-
cibir médulos comprimidos envie, casi a cada iteracién, una senal de paso de
moédulo comprimido. Toda esta cantidad de mensajes, aunque innecesaria,
asegura que si un modulo interseccién con dos ramas en fase de compresion,
por ejemplo su rama este y su rama sur, empieza a recibir médulos de su
rama este, entonces la interseccién no puede recibir médulos de su rama sur
hasta que la rama este no ha sido absorbida en su totalidad. Esto ocurre
debido a que las senales continuadas que envia la rama este siempre dan
prioridad a dicha rama.

Por otra parte, en el algoritmo multilider, aunque comparte la misma
prioridad de compresién que el algoritmo original, no ocurre lo mismo. A di-
ferencia del algoritmo original, el algoritmo multilider no envia estas senales
de paso de médulo comprimido a cada iteracién, sino que las emite cuan-
do el médulo que ha enviado la senial sabe que es imposible que se reciba
una confirmacion, una vez pasada la tercera iteracién desde que se envid
la peticién. Otra diferencia es que los médulos comprimidos en ramas en
fase de compresion del algoritmo multilider viajan a un médulo cada cuatro
iteraciones en lugar de tres, como en el algoritmo original. Todo esto crea
una distancia entre moédulos comprimidos lo suficientemente grande como

Analisis experimental de las modificaciones 7

Mensajes emitidos totales

T T T
—e— AO
6 -—u— PJ
6-10 7+PR |
2 —— PT
E g0 ML :
E
=
o
= 2100 -
O, .
! ! ! ! !

|
0 200 400 600 800 1000
Modulos

Figura 5.8: Grafica que muestra, para los algoritmos presentados en este
proyecto y el algoritmo original, la media del niimero total de mensajes emi-
tidos en los juegos de prueba Minihole-Spiralhole-Square durante las fases
inicial, de expansién y de compresién.

para que algunos moédulos comprimidos de otras ramas con menor prioridad
puedan ser recibidos por el moédulo interseccién. Incluso cuando los médu-
los comprimidos entran en ramas en fase de expansién, en donde viajan a
la misma velocidad que en el algoritmo original, se sigue manteniendo esta
distancia entre médulos.

En ocasiones, en el caso del algoritmo multilider, podemos observar ra-
mas con mayor prioridad que dejan de comprimirse hasta que otra rama,
con menor prioridad, no se ha comprimido por completo. Esto es debido
a que un moédulo, de una rama con menos prioridad, ha aprovechado la
mencionada distancia entre médulos comprimidos para entrar en el médulo
interseccién justo en el momento en que la rama con mayor prioridad envia
su mensaje de paso de mdédulo comprimido. Como en ese momento el médu-
lo interseccién ya contiene un médulo comprimido, no puede confirmar la
operacion. De esta forma, se crea un ciclo en la rama con mayor prioridad
en que, siempre que esta envia el mensaje de paso de médulo comprimido al
médulo interseccidn, la interseccién siempre estd ocupada por otro maédulo.

Como resultado de estas intrusiones en la compresién, las ramas en fase
de compresién se comprimen, en apariencia, de forma cadtica. Si bien este
detalle no afecta negativamente a la reconfiguracién, la velocidad a la que
los médulos en fase de compresién se incorporan a una rama en fase de
expansion se mantiene siempre estable, si que puede hacer que la fase de

78 Complejidad de los algoritmos y analisis experimental

Operaciones de cambio de rama

T T
80 a
8
S 60| a
8]
=
= 40| |
=
20 .
0 [|
| | | | |

|
0 200 400 600 800 1000
Modulos

Figura 5.9: Gréafica que muestra, para el algoritmo multilider, el nimero
total de operaciones de cambio de rama realizadas durante los juegos de
prueba Minihole-Spiralhole-Square.

compresion resulte mas confusa para el usuario del simulador.

Un ejemplo claro de la diferencia en el orden de compresion es el del
juego de prueba de Rectdngulos en el que se mide el impacto de la orien-
tacién de una figura densa. Tal como se puede apreciar en la Figura [5.10]
el orden de compresién del algoritmo multilider es més impredecible que el
del algoritmo original. En la imagen (b) de la figura, se observa un orden de
compresion en el que ninguna ninguna rama puede comprimirse hasta que
otra de mayor prioridad haya acabado de hacerlo. En el caso del algoritmo
multilider, imagen (c), la rama con mayor coordenada X representa la rama
con mayor prioridad. Aqui se observa lo poco predecible que puede llegar a
ser la compresién de sus ramas en fase de compresién. En este caso tanto las
ramas con menor coordenada X, menor prioridad, como la rama con mayor
coordenada X, mayor prioridad, consiguen comprimir médulos hacia la raiz
de forma paralela.

5.2.7. Impacto de la orientacién en figuras densas

Para estudiar el impacto de la orientacién en figuras densas usamos los re-
sultados de experimentar con los juegos de prueba agents_rectangles_5x20x5
y agents_rectangles_20x5x20 de la categoria Rectangulos ejecutando el al-
goritmo multilider. Estos dos juegos de prueba son como los mostrados en
la Figura del apartado un rectangulo en horizontal que pasa a
formal un rectangulo en vertical y viceversa.

Analisis experimental de las modificaciones 79

(b) ()

Figura 5.10: Las imégenes (b) y (c¢) muestran un arbol generador actual
de forma rectangular que pasa de horizontal a vertical, tal como muestra
la imagen (a). La imagen de la izquierda, (b), muestra una reconfiguracién
mediante el algoritmo original. La imagen de la derecha, (c), muestra una
reconfiguracién mediante el algoritmo multilider.

Como podemos ver en la Figura el paso de vertical a horizontal
realiza menos movimientos, y por tanto emite menos mensajes, que el paso
de horizontal a vertical. Esto se debe a dos motivos. El primer motivo es
que el algoritmo multilider, y todos los demés algoritmos estudiados en este
proyecto, tiende a formar largas ramas hacia el sur. El segundo es la altura,
la distancia de la raiz al médulo con menor coordenada Y, de la figura.

El motivo méas obvio es la altura. En el caso de vertical a horizontal
se realizan menos movimientos porque a la hora de expandir mdédulos en
direccién sur encontramos suficientes médulos no comprimidos y, por tan-
to, no necesitamos realizar ningiin movimiento para realizar la expansién.
En el caso de horizontal a vertical la altura es menor, por lo que no exis-
ten suficientes médulos al sur de la raiz para expandir las primeras ramas,
realizando asi mas movimientos que en el caso anterior.

La razoém por la que la direccién de las ramas ayuda a reducir movimientos
es menos evidente. Estas ramas se forman durante la fase inicial al resolver
los ciclos del grafo de adyacencia. Gracias a la prioridad de direccién a la
hora de resolver este problema, siempre que un mddulo puede recibir un

80 Complejidad de los algoritmos y analisis experimental

Movimientos totales

1800 | N

1600 | N

1400

Movimientos

1200 - N

1000 - N

OovaInHV

Figura 5.11: Gréafico de barras que representa el nimero de movi-
mientos realizados por el algoritmo multilider al ejecutar los juegos
de prueba agents_rectangles_5x20x5 (VH, de vertical a horizontal) y
agents_rectangles_20x5x20 (HV, de horizontal a vertical).

mensaje de un mismo candidato a raiz por mas de una direccién, entre
las que se encuentre la direccién norte, el médulo permanece unido a su
vecino del norte una vez acabada la fase inicial. De esta forma, una vez se
inicia la fase de expansién, en el caso de vertical a horizontal, ya existen
suficientes médulos hacia el sur como para expandir las primeras ramas
del arbol generador actual sin tener que realizar movimiento alguno. En
el caso de horizontal a vertical, al tener menos altura, se han comprimido
demasiados modulos y, a la hora de realizar la expansién de las primeras
ramas, se realizan movimientos que el caso anterior evita. Si el algoritmo
no generara las ramas en linea recta y de norte a sur, no podria realizarse
de forma tan rapida esta expansion de las ramas mads cercanas a la raiz,
el arbol generador actual no tendria moédulos al sur de la raiz como para
expandir estas primeras ramas, aumentando asi el nimero de movimientos
del algoritmo. Puede existir el caso en que al pasar de vertical a horizontal
se necesite realizar algin movimiento para expandir las ramas mas cercanas
a la raiz, sin embargo nunca seran tantos como cuando el movimiento de
una figura se realiza de horizontal a vertical.

5.2.8. Impacto de la orientaciéon en figuras poco densas

Para experimentar con la orientacién de las figuras poco densas se han
usado los casos de prueba de la categoria Peines ejecutando el algoritmo

Analisis experimental de las modificaciones 81

multilider. Cada juego de prueba representa un histograma, orientado en
una de las cuatro direcciones de los puntos cardinales, que debe cambiar
su orientacion. Cada barra del histograma, asi como su base, es de un solo
modulo de ancho. Ademaés, estos juegos de prueba también contemplan el
paso de una orientacién a la misma.

Para analizar los resultados de esta experimentacion, hemos agrupado
los resultados segtin su orientacién de origen. Un mismo grupo de resultados
contiene tres cambios de orientacién y una reconfiguraciéon de una orienta-
cién a si misma.

Movimientos totales

500 |- a

400 - a

w
e}
(e}
T
|

Movimientos
[\
S
o
T

100 -

loNowloEERS

Figura 5.12: Grafico de barras que representa el nimero de movimientos
realizados por el algoritmo multilider al ejecutar los juegos de prueba de la
categoria Peines con misma forma inicial y final. Cada sigla de la leyenda
representa la orientacion de su forma inicial.

Empezamos observando los resultados de los movimientos realizados al
cambiar de una forma a si misma. Como es 16gico, en estos casos, se realizan
los mismos movimientos durante la fase de compresién que durante la fase
de expansién (todos los médulos comprimidos deben volver a su posicién
inicial). Sin embargo, podemos apreciar un dato algo extrano: los juegos
de prueba con direccién de origen norte y oeste no realizan los mismos
movimientos que los de direccién de origen este y sur (Figura . Antes
de explicar el porqué de este suceso primero veamos el resultado de los otros
juegos de prueba.

El resto de juegos de prueba muestran resultados igual de extranos (Fi-
gura . Si nos fijamos bien en los juegos de prueba inversos vemos que
nos encontramos en la misma situacién que la descrita en el parrafo anterior.

82 Complejidad de los algoritmos y analisis experimental

Movimientos totales

1500 |-

1000 |- N
500 |- I I I a
0 - Ll [— |

IoNwloNEIDONSIREWNIRWE I WSIDENIDEW D ESEnSNInsw InSE

Movimientos

Figura 5.13: Grafico de barras que representa el nimero de movimientos
realizados por el algoritmo multilider al ejecutar los juegos de prueba de
la categoria Peines con forma inicial y final diferentes. La primera sigla
de la leyenda representa la orientacién de su forma inicial y la segunda la
orientacion de su forma final.

Entendemos como juegos de prueba inversos dos juegos de prueba diferentes
cuya forma inicial en uno es la forma final del otro y donde la forma final del
primero es igual a la forma inicial del segundo. Los resultados de los juegos
de prueba de norte a oeste y de oeste a norte son idénticos, como lo son
los de los juegos de prueba de este a sur y de sur a este. Sin embargo, los
resultados de los juegos de prueba del resto de casos inversos no coinciden.
Es mas, los resultados de algunos juegos de prueba que, a simple vista, no
tienen nada que ver coinciden, como los juegos de prueba de norte a este y
de oeste a sur.

Tras analizar los datos obtenidos de las graficas de las Figuras y
podemos llegar a una conclusiéon. La orientaciéon de una figura poco
densa solo importa porque puede llegar a determinar si la raiz del arbol
generador, tanto inicial como final, tiene un hijo o dos. Todos los juegos de
prueba invertidos que coinciden, solo coinciden porque ambos pasan de un
arbol generador inicial a un drbol generador final con el mismo nimero de
hijos, no por ser uno el caso inverso del otro. Es mas, los juegos de prueba
no invertidos cuyos resultados coinciden, son los que pasan de un &rbol
generador inicial a un arbol generador final cuyas raices tienen un nimero
diferente de hijos y cuya carga de moédulos se se distribuyen de la misma
manera durante la reconfiguracion.

Analisis experimental de las modificaciones 83

En definitiva, la orientacién en una figura poco densa solo influye en la
reconfiguracion si esta determina el nimero de hijos de la raiz.

5.2.9. Reconfiguracion de figuras sin ciclos

Todos los juegos de prueba presentados hasta ahora estan formados, an-
tes de iniciar la ejecucion de un algoritmo, por médulos conectados a todos
sus vecinos. Sin embargo, puede interesarnos abordar casos en que el grafo
de adyacencias inicial esta formado por médulos que no estéan conectados a
todos sus vecinos, tal como en los ejemplos de la Figura Por supues-

Figura 5.14: Figura que muestra un juego de pruebas con tres rectangulos
sin ciclos que deben tomar la misma forma de la que parten.

to todos de los algoritmos, tanto el original como los presentados en este
proyecto, son capaces de llevar a cabo la reconfiguracién de una figura sin
ciclos, ya que, durante la fase de inicial de la reconfiguracién, el grafo de
adyacencias se rompe en forma de drbol generador inicial, que es un grafo
de adyacencia sin ciclos.

84

Complejidad de los algoritmos y analisis experimental

Capitulo 6

Analizador sintactico de
acclones

El analizador sintactico de acciones, o parser de acciones, es una herra-
mienta disenada para analizar las diferentes acciones realizadas durante la
ejecucién de un conjunto de reglas por el simulador de robots cristalinos.

6.1. ;Para qué necesitamos un parser de acciones?

Si queremos analizar en profundidad el impacto de un conjunto de reglas
para el simulador de robots cristalino sobre un grupo de robots necesitamos
saber exactamente el niimero de mensajes o movimientos realizados durante
la ejecucién del conjunto de reglas.

Aunque el simulador de robots cristalino dispone de una serie de he-
rramientas que registran y permiten visualizar qué reglas se han aplicado
en cada iteracién nos es imposible saber el niimero de movimientos o de
mensajes que han producido o emitido dichas reglas a no ser que el usuario
busque y anote, iteracién tras iteracién, los cambios en el sistema de robots.
Realizar estas anotaciones a mano puede ser factible, aunque tedioso, en
sistemas con un nimero de médulos reducido, sin embargo, para sistemas
con decenas o cientos de mdédulos esta tarea consumiria demasiado tiempo y
esfuerzo. Es por esta razén por la que decidimos crear el parser de acciones
de robots cristalinos.

6.2. Menu principal

Al ejecutar el simulador se abre la ventana del menu principal con cuatro
opciones:

85

86 Analizador sintdctico de acciones

6.2.1. Repair Rules File

Esta opcion prepara el conjunto de reglas para poder ser analizado co-
rrectamente por el parser.

Una vez pulsado este botén, se abre una ventana en donde podemos
elegir un fichero de reglas del simulador. Escogido el conjunto de reglas a
reparar, el parser genera un nuevo fichero de reglas con dos correcciones:

= Se eliminan los espacios a principio de linea.

» Se asigna una fase inventada, [WWJ, a las reglas que no tienen indicada
una fase a principio de su nombre.

Como estas reparaciones puede que no hagan falta si las reglas se han
redactado correctamente, esta accion es opcional.

6.2.2. Numerate and Parse Rules

Al seleccionar esta opcién se abre una ventana que permite elegir un
fichero de reglas a analizar.

Si las reglas no tienen ninguno de los fallos mencionados en el Apartado
esta opcién genera dos nuevos ficheros.

Uno de ellos, terminado en _numbered, contiene el conjunto de reglas
numeradas a partir de 0. Para que el parser sea capaz de interpretar las
acciones que ha realizado cada regla en una reconfiguracién es importante
que en el simulador se haya abierto este conjunto de reglas numeradas en
lugar del conjunto de reglas original. Esta opcién no numera ninguna regla
que se aplique al arbol generador final ya que este drbol no es mas que un
artificio de la simulacién, en el caso de aplicar las reglas a un robot real, este
arbol no existiria.

El segundo fichero, terminado en _actions, contiene una lista que consta
de cada nimero que identifica una regla seguido del nimero de acciones de
cada tipo que realiza dicha regla. El orden en que se representan las acciones
es:

1. Cambios de estado.

2. Mensajes numéricos emitidos.

3. Mensajes de texto emitidos.

4. Movimientos por la superficie.

5. Valores de registros alterados.

6. Acoplamientos o desacoplamientos.

7. Paso de modulo comprimido.

6.3. VENTANA DE ANALISIS ESTADISTICO 87

8. Compresion de maédulo.

9. Descompresién de médulo (expansién de un médulo comprimido en
un espacio vacio).

10. Mensajes de accion de compresion.

11. Mensajes de confirmacién de accién de compresién.

12. Mensajes de negacién de accién de compresién.

13. Mensajes de accion de paso de médulo comprimido.

14. Mensajes de confirmacién de paso de médulo comprimido.
15. Mensajes de operacién de cambio de rama.

16. Mensajes de confirmacién de operaciéon de cambio de rama.
17. Mensajes de negacién de operacién de cambio de rama.
18. Mensajes de paso del estado lider.

19. Mensajes de pausa.

20. Mensajes de reanudacion.

21. Mensajes de recuento de médulos.

Si el parser encuentra una accién que no comprende en una regla, escribe
Error en lugar del nimero de veces que la regla realiza cada accién.

6.2.3. Parse log File

Esta opcidén es la responsable de analizar las acciones realizadas durante
una o mas ejecuciones de un conjunto de reglas. Al seleccionarla abre la
ventana de andélisis estadistico.

6.2.4. Exit

Esta opcién cierra el parser de acciones.

6.3. Ventana de analisis estadistico
Esta ventana consta de varios botones:

= Kl primer boton, en el que puede leerse Open, permite elegir el fiche-
ro _actions del conjunto de reglas que se ha usado para ejecutar la
reconfiguracion a analizar.

88 Analizador sintdctico de acciones

= El botén de Add Log anade a la lista de logs de acciones a analizar el
fichero que seleccionemos. Es importante que estas acciones correspon-
dan a las realizadas por un conjunto de reglas numeradas, el mismo
conjunto que genera la opcién del Apartado anterior [6.2.2] a partir del
conjunto de reglas original.

= El botén Remove Log elimina el log de la lista de logs a analizar que
esté seleccionado.

» El botén Remowve All elimina todos los logs de la lista de logs a analizar.

s El botén Parse analiza los logs de los ficheros de acciones importados
del simulador y genera un tnico fichero comin con el andlisis de las
diferentes acciones generadas por fase de ejecucién. Al final del fichero
podemos encontrar una media y un total del niimero de mensajes y
movimientos totales del conjunto de logs analizados.

s Kl botén Cancel cierra esta ventana y vuelve a la ventana del menu
principal del parser.

6.4. ;Cémo funciona?

Para poder analizar las acciones realizadas durante una reconfiguracion
primero necesitamos ejecutar todas las opciones del simulador. Antes de
empezar hay que tener en cuenta que todos los archivos generados por el
parser seran creados en el mismo directorio en que se encuentra el parser.

Primero, al ejecutar el parser, si el fichero de reglas contiene alguno de los
dos errores mencionados en el Aparatado debemos ejecutar la primera
opcién, Repair Rules File, y una vez generado el nuevo conjunto de reglas
substituimos la fase [WW/] por la fase pertinente.

Como segundo paso debemos ejecutar la opcién de Numerate and Par-
se Rules. Esta opcién genera los dos ficheros clave para el analisis de las
acciones, Nombre_numbered y Nombre_actions.

El tercer paso es el de ejecutar tantas reconfiguraciones como se desee
usando como conjunto de reglas el fichero Nombre_numbered generado en el
paso anterior. No hay que olvidar que después de cada ejecucién hay que
guardar en un fichero las acciones que el simulador muestra en la pestana
actions.log usando la opcion save de dicha pestana.

Por ultimo abrimos la ventana de andlisis estadistico y cargamos, me-
diante el botén Open, el fichero Nombre_actions generado en el segundo paso.
Luego anadimos a la lista de logs a analizar los ficheros de actions.log que
hemos guardado después de cada iteracién. Una vez hemos anadido todos
los logs que queremos analizar podemos pulsar Parse para generar el fichero
con los resultados del anélisis.

6.5. REQUISITOS 89

6.5. Requisitos
Nuestro parser solo necesita los siguientes elementos:

= Una versién de Java compatible con el simulador de robots cristalinos
(superior a la versién 6.0).

s F] Simulador de robots cristalinos.

= Un sistema operativo de Microsoft Windows superior a Windows 95.

90

Analizador sintdctico de acciones

Capitulo 7

Gestion del proyecto

7.1. Planificacion

Para realizar la planificacién inicial, el proyecto se dividié en 4 bloques:

1. Programaciéon: Esta fase incluye el estudio del simulador, disefio e
implementacién de los algoritmos de mejora e implementacion y eje-
cucion de los juegos de prueba.

a)

b)

Estudio del simulador: Estudio del funcionamiento del simu-
lador y del lenguaje de sus reglas de actuacion.

Primera version del algoritmo: Disefio e implementacién de
un algoritmo simple con senal de parada hasta interseccién. In-
cluye la creacién y ejecucion de los juegos de prueba correspon-
dientes.

Segunda version del algoritmo: Diseno e implementacién de
un algoritmo con senal de parada hasta la raiz del arbol e im-
plementacion de una segunda cadena de senales de reanudado.
Incluye la ejecucién de los juegos de prueba correspondientes.

Tercera version del algoritmo: Diseno e implementacién de
un algoritmo con senal de parada para toda la configuracién.
Incluye la ejecucion de los juegos de prueba correspondientes.

Version final del algoritmo: Diseno e implementacion del al-
goritmo multilider. Incluye la ejecucién de los juegos de prueba
correspondientes.

2. Experimentacién: Esta fase esta formada por el estudio de la com-
plejidad de los algoritmos y la experimentacién de juegos de prueba
mas avanzados para obtener resultados reales sobre el rendimiento de

los algoritmos.

91

92 CAPITULO 7. GESTION DEL PROYECTO

a) Estudio de complejidad: Estudio de la complejidad de los 5
algoritmos del proyecto.

b) Experimentaciéon: Ejecucién de una serie de jugos de prueba
especificos para medir el rendimiento de los algoritmos estudiados
en el proyecto asi como el anédlisis de dichos resultados.

3. Pagina web: En esta fase se planificé la creacion o modificacién de
la pagina web del proyecto sobre algoritmos distribuidos de robots
cristalinos.

4. Memoria: Esta fase abarca la redaccién de la memoria del proyecto.

5. Presentacion: Por iltimo, en esta fase se produce la preparacion de
la defensa del proyecto.

El céalculo de horas inicial fue complejo debido a que, al tratarse de un
proyecto de investigacion, es dificil llegar a hacerse una idea de todos los
posibles problemas que pueden surgir.

La metodologia seguida en cada fase es la siguiente:

= Se planifica la fase y se anotan los posibles imprevistos y dudas que
hayan surgido durante la planificacién.

= Se presenta la planificacion a la directora del proyecto, se discute dicha
planificacion y se decide la mejor manera de continuar el proyecto.

= Implementacion de la fase y obtencién de resultados.
= Se presentan los resultados de la fase a la directora para su validacion.

= Redaccién en la memoria del tema relacionado con la fase que se ha
implementado.

Podemos ver el diagrama de gantt inicial en la Figura Durante el
proyecto se ha modificado el calendario a medida que nos hemos encontrado
con diferentes problemas e incidentes. La figura muestra el diagrama de
gantt final.

Como se puede apreciar en el diagrama final, las fechas de la implemen-
tacién del algoritmo multilider, experimentacién y redaccion de la memoria
se han alejado bastante de las fechas originales debido a los problemas en-
contrados durante la implementacién del algoritmo y la experimentacién. En
estas fases han intervenido factores no previstos como la excesiva aparicién
de errores durante la implementacién del algoritmo, el fallo del algoritmo
de Joan Soler durante la experimentacion y el tiempo de ejecucién de los
juegos de prueba del simulador. Estos problemas o no se previeron durante

7.2. PRESUPUESTO 93

la planificacién o bien, en el caso de la implementacion del algoritmo mul-
tilider o el tiempo de ejecucion de los juegos de prueba, han necesitado una
mayor inversién de tiempo de la prevista.

Ademsds, en el diagrama final se ha anadido una nueva sub-fase a la
experimentacién dedicada a la modificacién del algoritmo de Joan Soler.

7.2. Presupuesto

En la valoracién econémica de este proyecto no se ha tenido en cuenta el
coste del simulador ya que forma parte de otros proyectos anteriores a este.

Todos los recursos utilizados son humanos. El material usado es digital
y libre, por lo que su coste no tiene relevancia en el presupuesto.

En el proyecto han intervenido dos personas: la directora del proyecto y
el analista y programador. La Figura [7.]] muestra el precio por hora de cada
una de las personas implicadas en el proyecto.

Trabajo Precio/hora

|

Analista 40,00 €

Figura 7.1: Tabla de precio por hora seguin rol.

En la Figura[7.2] se muestran los recursos utilizados, las horas invertidas
y los costes de cada fase.

Trabajo Horas Recursos Precio

— Esudodelsimdor %0 Al L120000€

Primera version del algoritmo 37 Programador 925,00 €

Tercera version del algoritmo 39 Programador 975,00 €

Madificacion del algoritmo original 20 Programador 500,00 €
Experimentacion 160 Analista 6.400,00 €
Redactar la memoria 270 Analista 10.800,00 €
Reuniones de seguimiento 40 Director y Analista 3.800,00 €
TOTAL 806 31.200,00 €

Figura 7.2: Desglose econémico del proyecto.

CAPITULO 7. GESTION DEL PROYECTO

Task Name

1| Plani [Planificacid

2| Programacidn P . - .

3 Estudio del simulador [: : : . | Estudis del simulador
4 Piimers versidn del algaritme [: : : L Flimera versidh del algoritino
5 Segunda versién del algoritmo

B Tercera versidn del algaritmo

7 (lima varsidn del slgoritmn

L) Experimentacién

£l Estudio de |5 complejidad
10 Experimentacién
17 Pigina web
12 Memeria
1z Redaccién primer algoritmo I Fedaccicn primer
14 Redaccién sequndo algeritmo
15 tercer algoritmo
18 Redaccién iltimo algoritmo
17 Redaccién complejidad
18 Redaccién exparimantacién
19 Presentacién
23 Inscripcidn del proyecto
21 Waticula del proyecto
2 Entraga infarme pravio
23 Entrega memoria
24 n del proyecto

Task Name !
Jun

| P

N -

3 Estudio del simulador

4 Frimera versidn del algeritmo

5 Segunda versidn del algeritmo Segunda version del algori

[Tercera versién del algeritme

7 (itima versién del alg

2 Experimentacisn

] Estudio de 1a complejidad

10 Experimentacian

1 Pagina web

12 Memaria

13 Redaccidn primer algeritmo

14 Redaccién sequndo algeritmo R Retaccisn sequnds algaritms
18 Redaccién tercer algoritme

16 Redaccién iltimo algeritmo

7 i ji

18 i i i

15 Presentacién

20 Inscripcidn del proyecto

21 Matricula del proyecte

22 Entrega informe previo

23 Entrega memori

24 Presentacién del proyects

Task Name

|

. i

3 Estudio del simulader

4 Primera varsién dal slgaritme

5 Segunds versidn dal slgaritmo

B Tercera versidn del algaritmo

7 Oitima versién del algoritmo

- .

s Estudio ds 1a complajidad

10 Experimentacidn

1 Pagina web

1z Memaria

13 primer algoritmo

14 segunde algeritmo

1% cién tercer algoritmo F 3lgoritrs

16 Redaccién b

17 i6 ji

18 Redaccidn experimentacién

19| Presentacién

20| Inscripcién del proyecta

2| Matricula del proyects

22| Entrega inferme previe

27| Entrega memoria

24 Presentacién del proyecte

3 Estudio dal simutador

4 Primera versidn de! sigotitma

5 Segunda versin get aigortmo

6 Tetcars versidn dal aigortmo

7 it versigin del sgoritme

B cién

s Estudio de 1s campiejdad Estudio ds)2 compigjided

10 6

11| piginawen

2| memoria Memoria
I Redaccién primer algoritmo

1 Redaccién segundo stgortme

15 Redaccién tercer algotitma

s Redaccién iitimo algoritmo A ed,ccién ifino alo

” Redaccidn complejidad

i Redaceidn 16 lasgacaién
15| Presentacidn Prasentacidn
20| Inscripcién del proyects

2| Matiicula del proyecte

2| Entrega informe previo

2| Entrega memoria W Ertga mamo
2| Presentacidn del proyecto W Presentacidn dal proysto

Figura 7.3: Diagrama de gantt inicial.

7.2

PRESUPUESTO

| Planificacién L, Pianificacis
B d L ’ = T yus

3 Estudio del simutsdor [I Ectudio dal sirulador

4 Primers versién del slgeritme | | Primera versién del algoritmo

5 Segunda versién del algoritmo |

51 Tenwaversin e aigitmo

Gitma versidn del aigortmo

5| moitcacian sigortmo argins!

N .

0 Estudio de a compleiidad

“ Eperimentacicn

2| Pigina web

| uemoria

] Redaccién primer atgoritma S . 12:<ién pin s 3107t
15 Redaccién sequndo stgoritmo ——
1©

"

12 Redaccién complejidad

19

2

| Presentacién

2| inscripcién del proyecto W nscipcian del proyects

25| uaticula del proyecto

2| Entrega informe previo

| Entrega memoria

2| Presentacién del proyecte

Jun 1 Jun 8 Aug3 Aug10
5 Segunda versién del algoritmo T Sequnda versidn del algeritma
6 Tercera versidn del algoritmo | | Tercera versidn del algoritmo
23 Matricula del proyecto M Maticula del prayecto

[

Oct12

0ct 19

Ectudio dal simulador

Primera versidn da) algortmo

Sequnda wersiin dal slgortmo

Tercera versidn del algoitma

Giton s wersidn del algoritmo

1 Gt} 3 ersidn del aigoritmo

Modificacién algoritmo oriainl

=

Ectudio de 13 complsjidad

Pigina web

udio de 13 dornplajdad

Memon

Redaccién primer algoritmo

Radaceidn tarcer algoritme

Redaccidn dMtimo algoritmo

Redaccidn litimo algottho

edsccidn cdmplei

Inscripcidn del proyecto

Maticula del proyects

Entreqa informa previo

W Entreqa informe previo

Entrega memoria

Presentacidn del proyecto

Apr

12

Anr1g

Estudio dal simuladar

Primers varsidn del 31gartmo.

Sequnda versién del algaitmo

Tercars versidn del algoritmo

ttima wersién del algoritme.

Modificacién algoritmo original

moltiicacién slgoritmo i

Experimentacién

Estudio d 1a complsiidad

Experimentacién

Pigina web

T Pigink et

Temoria

Mematia

Redaccidn primer algoritmo

Redaccidn segundo algoritmo

Radaceidn tercar algoritme

Redaccidn dttimo algoritmo

Redaccidn

edaccién

Redaccién

Redaccidn resto

Redackidn festo

Presentacidn

Inscripcién del proyecto

Presentacidn

Matiicula del proyecto

Entrega informe pravio

Entrega memoria

W Entiegs mamoria

Presentacién del proyecto

W Presentacidn del provects

Figura 7.4: Diagrama de gantt final.

96

CAPITULO 7. GESTION DEL PROYECTO

Capitulo 8

Conclusiones

8.1. Resultados obtenidos

El objetivo principal del trabajo era conseguir mejorar el algoritmo dis-
tribuido original para conseguir una reduccién en el nimero de movimientos.
No solo hemos conseguido reducir el nimero de movimientos de forma es-
pectacular, sino que, ademds, hemos conseguido reducir la comunicacion
entre médulos a una pequena fraccion de lo que se generaba en el algoritmo
original.

En un primer momento se considerd el estudio de un algoritmo distri-
buido 3D pero al final, al ver que el algoritmo era idéntico al algoritmo 2D
pero anadiendo reglas para las 2 nuevas direcciones posibles (encima y de-
bajo), vimos que el estudio carecia de interés y optamos por abandonar este
objetivo.

Ademsds, hemos analizado la complejidad de todos los algoritmos de me-
jora presentados y hemos experimentado con ellos para comprobar, no solo
su eficiencia real, sino también que la complejidad real se ajusta a la teori-
zada.

También hemos creado un analizador de acciones que nos permite ex-
traer, a partir de un log del simulador, todos los movimientos y mensajes
realizados por la simulacién asi como su tipo.

Por ultimo hemos conseguido encontrar patrones que en un futuro ayu-
dardn a mejorar la eficiencia del algoritmo como la importancia de la den-
sidad de moédulos en una figura y la de su orientacién respecto el universo
del simulador.

8.2. Dificultades encontradas

La primera dificultad que hemos encontrado ha sido el lenguaje del simu-
lador. Comprender en profundidad el lenguaje del simulador ha sido dificil
ya que nos hemos encontrado con algunas situaciones como el caso en que el

97

98 CAPITULO 8. CONCLUSIONES

simulador acepta un asterisco a la hora de indicar que puedes recibir un men-
saje de cualquier direccién, por ejemplo M*Ezxpnd, pero no lo acepta cuando
quieres comprobar la negacién de la expresién, por ejemplo !M*Expnd, obli-
gando a alargar las precondiciones de las reglas.

La manera en que el simulador interpreta las reglas también ha sido un
problema. El simulador comprueba, para cada moédulo, qué reglas pueden
ejecutarse y, después de validar todas las reglas posibles, las ejecuta sin
comprobar nada mas. De esta forma, si una de las reglas que el simulador da
como valida altera el estado de un moédulo, haciendo asi que deje de cumplir
la precondicion del resto de reglas validas, el simulador sigue ejecutando
el resto de reglas aunque no se cumpla su precondiciéon. Para solucionarlo
hemos tenido que utilizar toda una serie de estados y contadores que, en
muchas ocasiones, evitan que se ejecute m&s de una regla por iteracion,
entorpeciendo la reconfiguracién y haciendo que dure més ejecuciones de las
que deberia, y obligando a crear muchas reglas adicionales.

La gran cantidad de reglas existentes también han sido una gran fuente de
problemas. Asegurar que més de 700 reglas no van a interferir unas con otras
es practicamente imposible. Cada vez que encontrabamos un problema y
creabamos un nuevo conjunto de reglas para solucionarlo, surgian problemas
nuevos causados por la interferencia de las reglas nuevas con las antiguas en
situaciones extremadamente variadas.

Cuando no habia problema con las reglas nuevas, aparecian circunstan-
cias imprevistas. En ejemplos pequenos, de menos de 100 médulos, ninguno
de los algoritmos estudiados en el proyecto daba problemas, sin embargo, al
incrementar el nimero de médulos, empezaban a surgir casos extremos en
donde incluso el conjunto de reglas del algoritmo de Joan Soler [3] dejaba de
funcionar correctamente e interferia con otras reglas. En concreto, en el ca-
so de las reglas de Joan Soler, se han llegado a encontrar problemas incluso
durante las iltimas semanas del proyecto.

Por 1ltimo cabe resaltar la estabilidad del simulador. Ya sea por el cam-
bio a las nuevas versiones de java, por el hecho de estar programado en java
o por el gran nimero de médulos de algunos ejemplos, el simulador en oca-
siones deja de funcionar al llegar a la iltima ejecucion de la reconfiguracion.
Esto era un problema a la hora de realizar la experimentacién porque dejaba
de funcionar antes de ejecutar la opcion, introducida por consola, que obliga
al simulador a guardar el log de acciones una vez acabada la configuracion e
imposibilita que pueda volver a ejecutar otro caso de prueba. Para solucio-
narlo, aprovechando que el simulador guarda las acciones realizadas en un
archivo temporal, creamos un script para powershell de windows que abria
el simulador, ejecutaba el caso de prueba, al cabo de un tiempo guardaba el
log de acciones y luego mataba el proceso del simulador en el sistema para
volverlo a abrir con un nuevo juego de prueba.

8.3. FUTURO DEL PROYECTO 99

8.3.

Futuro del proyecto

Algunas de las tareas que podrian llevarse a cabo en un futuro podrian

ser:

8.4.

Ampliar el algoritmo multilider: Aunque el algoritmo multilider evi-
ta la gran mayoria de los movimientos innecesarios durante la fase
de expansién, podriamos intentar reducirlo ain maés desde la fase de
compresion o incluso desde el momento en que se busca la raiz. Si se
conseguimos que un médulo sepa si ya ocupa una posicion que existe
en la forma final y que existe un camino de moédulos ya en posicién
desde el moédulo a la raiz, entonces podriamos dejar ramas enteras del
arbol generador inicial en fase de expansién incluso antes de iniciar la
fase de compresion.

Integracion del analizador de acciones: En un futuro podriamos inte-
grar el analizador de acciones en el simulador siempre y cuando este
permita al usuario anadir nuevos patrones a reconocer como si de un
conjunto de reglas se tratara.

Implementar un sistema threads: En ocasiones, sobretodo para casos
de prueba con muchos médulos, el simulador tarda demasiado en eje-
cutar la reconfiguracién y no llega a aprovechar toda la potencia del
ordenador que lo ejecuta. Para evitarlo podriamos estudiar si creando
una serie de threads durante la ejecucion se puede llegar a reducir el
tiempo que lleva el terminar una reconfiguracién.

Modo consola: Aunque la gran mayoria de las veces nos interesa ver
paso a paso la ejecucién de una reconfiguracién, en ocasiones no es
necesario. Para intentar ahorrar tiempo en la ejecucién de la reconfi-
guraciéon y facilitar la experimentaciéon podria ser interesante crear un
modo de ejecucion solo por consola, que no mostrara ningun tipo de
ventana ni imagen.

Valoracion personal

La verdad es que durante la planificacién e implementacién de los dife-
rentes algoritmos he disfrutado muchisimo. Horas y horas implementando
nuevas versiones, solucionando errores, mirando paso por paso la ejecucion,
preguntandome qué pieza del rompecabezas se me escapaba para, finalmen-
te, verlo funcionar a la perfeccién. Es por estos momentos por lo que mas
he disfrutado este trabajo. Me hubiera gustado ampliar ain maés el ultimo
algoritmo, llevarlo al extremo de generar reconfiguraciones perfectas sin mo-
vimientos innecesarios, pero mi tiempo con este proyecto ha llegado a su

fin.

100 CAPITULO 8. CONCLUSIONES

Una vez acabado, incluso con los resultados de la experimentacién en la
mano y viendo lo que ha mejorado el algoritmo con su versién multilider, soy
consciente que solo he realizado una pequeiia parte de un proyecto mucho
mas grande, con mucho historia y con mucho futuro y potencial.

Ademas, durante el tiempo en que he estado trabajando en este proyecto
he aprendido mucho mds sobre Java[7][§], html5[9] [10], powershell [IT] [12][13] [14] [15] [16] [17]
v 1T 18] 191 [20] [211 221 [23) 1241 25 [26) [27) 28] [29] 30,

Por tltimo me gustaria dar las gracias a Vera Sacristan y a su dedicacién
en este proyecto. Con su ayuda, y sobretodo su paciencia, me ha ayudado
en mis momentos mas bajos y de menor motivacién y me ha animado a
continuar con el proyecto cuando ya me flaqueaban las fuerzas. Ayuda mucho
saber que hay alguien interesado en tu trabajo y que te ayuda y plantea
nuevas ideas que en su momento no habias sido capaz de ver.

Gracias.

Bibliografia

[1] Daniela Rus, Marsette Vona. A Physical Implementation of the Self-
reconfiguring Cyristalline Robot. Proceedings of the IEEE Intl. Confe-
rence on Robotics and Automation pp. 1726-1733, 2000.

[2] G. Aloupis, S. Collette, M. Damian, E. D. Demaine, R. Flatland, S.
Langerman, J. O’'Rourke, V. Pinciu, S. Ramaswami, V. Sacristdn, S
Waubhrer. Efficient Constant-Velocity Reconfiguration of Crystalline Ro-
bots. Robotica, Vol. 29, N. 1, pp. 59-71, 2011.

[3] J. Soler. Reconfiguracié de robots cristal-lins (in Catalan). Degree the-
sis under the supervision of V. Sacristan, Facultat de Matematiques i
Estadistica, Universitat Politecnica de Catalunya, 2013.

[4] J. W. Suh, S. B. Homans and M. Yim, “Telecubes: Mechanical Design of
a Module for Self-Reconfigurable Robotics,” Proceedings of the IEEE

International Conference on Robotics and Automation, Washington,
DC (May 11-15, 2002) pp. 4095-4101.

[5] R. Wallner. A System of Autonomously Self-Reconfigurable Agents.
Diploma Thesis, Institute for Software Technology, Graz University of
Technology, 2009.

[6] http://www-ma2.upc.edu/vera/CrystalSimulation/.

[7] http://stackoverflow.com/questions/7442310/adding-elements-to-jlist-
In-swing-java.

[8] http://stackoverflow.com/questions/4005378 /console-writeline-and-
system-out-println.

[9] http://www.w3schools.com/html/html5_video.asp.
[10] |https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Using HTML5_audio_and_video.
[11] |https://technet.microsoft.com/en-us/magazine/2008.12.heyscriptingguy.aspx.

[12] https://www.youtube.com/watch?v=21C-YbzUZAc.

101

http://www-ma2.upc.edu/vera/CrystalSimulation/
http://stackoverflow.com/questions/7442310/adding-elements-to-jlist-in-swing-java
http://stackoverflow.com/questions/7442310/adding-elements-to-jlist-in-swing-java
http://stackoverflow.com/questions/4005378/console-writeline-and-system-out-println
http://stackoverflow.com/questions/4005378/console-writeline-and-system-out-println
http://www.w3schools.com/html/html5_video.asp
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Using_HTML5_audio_and_video
https://technet.microsoft.com/en-us/magazine/2008.12.heyscriptingguy.aspx
https://www.youtube.com/watch?v=2IC-YbzUZAc

BIBLIOGRAFIA
http:/ /stackoverflow.com/questions /17849522 /how-to-perform-
keystroke-inside-powershell.
https://technet.microsoft.com/en-us/library/eel56818.aspx.

http://stackoverflow.com/questions/19824799 /how-to-send-ctrl-or-alt-
any-other-key.

http:/ /stackoverflow.com/questions /9788492 /powershell-extract-file-
name-and-extension.

http:/ /stackoverflow.com/questions/18847145 /loop-through-files-in-a-
directory-using-powershell.

http://elclubdelautodidacta.es/wp /2013 /03 /latex-sumatorio-y-
productorio/.

http://tex.stackexchange.com/questions/69373 /how-to-write-
properly-math-accent-for-letter-i.

http://en.wikibooks.org/wiki/LaTeX /List_Structures.
https://es.sharelatex.com/learn/Sections_and_chapters.
http://en.wikibooks.org/wiki/LaTeX /Mathematics.
http://en.wikibooks.org/wiki/LaTeX /List_Structures#Itemize.
http://www.latex-community.org/forum /viewtopic.php?f=46&t=21257.
http://texblog.net /help /latex /markboth.html.
http://pgiplots.sourceforge.net /.
https://es.sharelatex.com/learn/Pgfplots_package.
http://tex.stackexchange.com/questions/45529 /pgfplot-axis-mark.
https:/ /www.sharelatex.com /learn/Pgfplots_package.

http://tex.stackexchange.com/questions/31276 /number-format-in-
pgfplots-axis.

http://stackoverflow.com/questions/17849522/how-to-perform-keystroke-inside-powershell
http://stackoverflow.com/questions/17849522/how-to-perform-keystroke-inside-powershell
https://technet.microsoft.com/en-us/library/ee156818.aspx
http://stackoverflow.com/questions/19824799/how-to-send-ctrl-or-alt-any-other-key
http://stackoverflow.com/questions/19824799/how-to-send-ctrl-or-alt-any-other-key
http://stackoverflow.com/questions/9788492/powershell-extract-file-name-and-extension
http://stackoverflow.com/questions/9788492/powershell-extract-file-name-and-extension
http://stackoverflow.com/questions/18847145/loop-through-files-in-a-directory-using-powershell
http://stackoverflow.com/questions/18847145/loop-through-files-in-a-directory-using-powershell
http://elclubdelautodidacta.es/wp/2013/03/latex-sumatorio-y-productorio/
http://elclubdelautodidacta.es/wp/2013/03/latex-sumatorio-y-productorio/
http://tex.stackexchange.com/questions/69373/how-to-write-properly-math-accent-for-letter-i
http://tex.stackexchange.com/questions/69373/how-to-write-properly-math-accent-for-letter-i
http://en.wikibooks.org/wiki/LaTeX/List_Structures
https://es.sharelatex.com/learn/Sections_and_chapters
http://en.wikibooks.org/wiki/LaTeX/Mathematics
http://en.wikibooks.org/wiki/LaTeX/List_Structures#Itemize
http://www.latex-community.org/forum/viewtopic.php?f=46&t=21257
http://texblog.net/help/latex/markboth.html
http://pgfplots.sourceforge.net/
https://es.sharelatex.com/learn/Pgfplots_package
http://tex.stackexchange.com/questions/45529/pgfplot-axis-mark
https://www.sharelatex.com/learn/Pgfplots_package
http://tex.stackexchange.com/questions/31276/number-format-in-pgfplots-axis
http://tex.stackexchange.com/questions/31276/number-format-in-pgfplots-axis

Anexo: Definiciones

En este anexo describimos no solo la estructura de nuestros conjuntos de
reglas y la funcién de todos y cada uno de los estados, contadores y mensajes
que utilizan.

Cada apartado describe los estados, contadores y mensajes que usa cada
conjunto de reglas y que difieren de los descritos en los apartados anteriores
de este mismo anexo.

Clasificacién en las tres fases principales de los al-
goritmos algoritmo

Todas las reglas tanto del algoritmo original como de las modificaciones
estan clasificadas en tres fases segiin cuando y para qué se utilizan. Esto se
expresa el principio de cada regla con una sigla entre corchetes que, aunque
no tiene efecto en el algoritmo, ayuda al usuario a comprender mejor las
reglas. A continuacion describimos dichas fases:

[S] Fase inicial: Esta fase consta de las reglas que buscan la raiz del
arbol generador inicial y que dan a cada moédulo el valor inicial de sus regis-
tros y su estado inicial. Cada médulo que no esta conectado a ningin otro
modulo ni por el norte ni por el oeste se considera a si mismo como candidato
a raiz y envia un mensaje a sus vecinos con sus coordenadas relativas. Estos
vecinos a su vez envian el mismo mensaje a sus vecinos con las coordenadas
actualizadas. Si un médulo recibe dos mensajes de diferente origen (coorde-
nadas) elije el mensaje del médulo que esta més al noroeste y lo transmite.
Para evitar ciclos, un moédulo que recibe el mismo mensaje de mas de una
direccién reconoce que hay un ciclo en el grafo de conexiones y rompe una de
estas. Cuando un mensaje llega a un médulo hoja, este vuelve a ser enviado
en direcciéon a su padre. Finalmente, si un moédulo candidato a raiz recibe
su propio mensaje, se reconoce raiz y empieza la fase de compresion.

[C] Fase de compresion: La fase de compresién consta de reglas que
se aplican una vez se ha encontrado una raiz en el arbol generador inicial.
Esta raiz envia una senial que viaja por todo el arbol y una vez ha llegado a
las hojas provoca que estas se compriman en sus padres y viajen a través de
las ramas del arbol hacia la raiz. Este proceso de compresién y movimiento

103

104 Definiciones

se repite siempre que sea posible. Esta fase se ejecuta al mismo tiempo que
la fase de expansién.

[E] Fase de expansién: Consta de las reglas que se aplican al llegar
a la raiz el primer médulo comprimido, siempre que la raiz tenga toda la
informacién disponible para empezar la reconfiguracién (una vez la raiz del
arbol generador ha encontrado la raiz del arbol final). Esta fase expande una
sefial de lider que viaja desde la raiz del arbol siguiendo el camino indicado
por la informacién del arbol generador final para acabar formando, rama a
rama, la figura deseada. Para conseguirlo, se transmite la senal de un médulo
en fase de expansiéon a otro o, en caso de encontrar una posicién vacia,
expandiendo médulos comprimidos para llenar esos huecos. La direccién en
que se expande la senal tiene un sistema de prioridades: primero se intenta
expandir hacia el sur, luego hacia el este, hacia el oeste y por ultimo hacia el
norte. Para facilitar la expansion, los médulos comprimidos siguen al lider
a través de las ramas. Esta fase se ejecuta al mismo tiempo que la fase de
compresion.

Fases o grupos secundarios

[F] Fase inicial de la copia de la forma final: La representacién de
la forma final y todas las reglas que se aplican sobre ella es la manera que
tenemos en nuestro simulador de simular que la raiz tiene la informacion de
la forma a la que ha de llegar. Por eso cuando analizamos y estudiamos las
reglas aplicadas a los diferentes juegos de prueba nunca tenemos en cuenta
las reglas que se le han aplicado. Las reglas de este grupo son las mismas
que se aplican a la configuracién inicial.

[R] Reglas de reparacién: Reglas auxiliares que se aplican en todos los
modulos independientemente de la fase en la que se encuentren, no pertene-
cen a una fase especifica. Normalmente son reglas que mantienen contadores
o que expanden senales que han de viajar por todo el arbol independiente-
mente de en qué fase se encuentre cada médulo.

[End] Fin de la reconfiguracién: En la dltima modificacién del algo-
ritmo existe esta ltima fase o grupo de reglas compuesto por exactamente
cuatro reglas. Su tnica funcién es la de conectar entre si moédulos vecinos que
ya hayan acabado su trabajo en el arbol actual y que ya no deban realizar
ninguna otra accién para alcanzar la forma final.

Algoritmo original

Descripcion de estados

Start: Estado inicial de todos los médulos de la configuracion inicial.
Es necesario asignar a los médulos este estado antes de empezar a aplicar el

Algoritmo original 105

algoritmo.

Final: Estado inicial de todos los médulos de la configuracién final. Es
necesario asignar a los médulos este estado antes de empezar a aplicar el
algoritmo.

CanbS: Estado que adquieren los médulos de la configuracion inicial que
no tienen ningun vecino ni al norte ni al oeste al iniciar la reconfiguracion.
Estos médulos son candidatos a ser raiz del arbol generador.

CanbF': Estado que adquieren los médulos de la representacién de la
forma final que no tienen ningin vecino ni al norte ni al oeste al iniciar la
reconfiguracion. Estos médulos son candidatos a ser raiz del drbol generador.

WaitS: Estado que adquieren los médulos de la configuracion inicial que
han recibido el mensaje enviado por un moédulo candidato a raiz del arbol.
Incluso si el médulo que recibe el mensaje es un candidato a raiz del arbol
este también cambia a este estado ya que recibirlo indica la existencia de un
candidato mejor.

WaitF: Estado que adquieren los mdédulos de la representacién de la
forma final que han recibido el mensaje enviado por un mdédulo candidato
a raiz del arbol. Incluso si el médulo que recibe el mensaje es un candidato
a raiz del arbol este también cambia a este estado ya que recibirlo indica la
existencia de un candidato mejor.

ForwS: Cuando un médulo en estado WaitS difunde el mensaje que ha
recibido de un candidato a raiz del arbol generador inicial, pasa a estado
ForwS. Permanece en este estado hasta recibir un mensaje que proviene de
una hoja del arbol o hasta recibir otro mensaje de un candidato a raiz mejor
que el recibido anteriormente.

ForwC: Cuando un médulo en estado WaitC' difunde el mensaje que
ha recibido de un candidato a raiz del arbol generador final, pasa a estado
ForwC. Permanece en este estado hasta recibir un mensaje que proviene de
una hoja del arbol o hasta recibir otro mensaje de un candidato a raiz mejor
que el recibido anteriormente.

BackS: Una vez el mensaje enviado por un candidato a raiz ha llegado
hasta una hoja del arbol generador inicial esta entra en estado BackS y
envia un mensaje hacia la raiz. Todos los médulos que reciben este mensaje
adquieren este estado. Si por el camino un mdédulo en este estado recibe el
mensaje de un candidato a raiz mejor que el actual vuelve a estado WaitS.

BackF: Una vez el mensaje enviado por un candidato a raiz ha llega-
do hasta una hoja del arbol generador final esta entra en estado BackF y
envia un mensaje hacia la raiz. Todos los médulos que reciben este mensaje
adquieren este estado. Si por el camino un mdédulo en este estado recibe el
mensaje de un candidato a raiz mejor que el actual vuelve a estado WaitF.

RootS: Estado al que pasa un médulo candidato a raiz del arbol gene-
rador inicial cuando recibe su propio mensaje de vuelta de todos sus hijos.
Una vez alcanzado este estado el médulo envia a sus hijos un mensaje para
comenzar la fase de compresién.

106 Definiciones

RootF: Estado al que pasa un médulo candidato a raiz del arbol gene-
rador final cuando recibe su propio mensaje de vuelta de todos sus hijos.

RootL: Cuando el estado de lider pretende pasar de una rama del arbol
generador actual a la otra (del hijo sur de la raiz del arbol al hijo del este)
este tiene que pasar por la raiz del arbol. Para indicar que la raiz es el lider
actual del arbol esta pasa al estado RootL.

RootP: Cuando una raiz del arbol generador actual en estado RootL
expande un modulo comprimido a una posicién vacia, pasa a estado RootP.
Este estado se mantiene por una iteracién. Pasado este tiempo el médulo
vuelve a estado RootL.

LIDER: Este estado otorga al médulo que lo obtiene la potestad de de-
cidir la direccion por la que debe expandirse el arbol. Segiin pasa de médulo
a moédulo esta senal deja una marca que indica a los médulos comprimidos
que llegan la direccién a seguir. Este estado surge de la raiz del drbol gene-
rador actual. La reconfiguracion acaba cuando el estado vuelve a la raiz una
vez alcanzada la forma final.

PLIDR: Estado que tiene un moédulo que ha sido expandido a una
posicién vacia. Este estado se conserva durante una iteracién, la misma en
la que el médulo ha sido descomprimido. Pasado este tiempo el médulo
obtiene el estado LIDER.

PExpn: Estado utilizado para proteger a un médulo que acaba de en-
tregar su estado de lider de cualquier otra regla que se encuentre entre la
que le ha obligado a entregar su estado y la regla que le hace pasar del
estado PEzpn a Fzpnd. Este estado solo se mantiene durante una fraccion
de iteracion ya que se obtiene y se pierde durante la misma iteracién.

Expnd: Cuando un médulo entrega su estado de lider, pasa a estado
Ezpnd (después de pasar por el estado PEzpn por una fraccién de itera-
cién). Este estado indica que un mdédulo ya ha llegado a la posicién que le
corresponde en la configuracion final.

Cmprs: Estado de los médulos que reciben el mensaje de la raiz del arbol
generador inicial una vez esta ha sido escogida. Este estado indica a las hojas
del arbol que deben comprimirse en direccién a la raiz y a los médulos ya
comprimidos que deben moverse por las ramas del arbol en direccién a la
raiz. Un modulo pierde este estado al entrar en estado de lider.

Slave: Estado de los médulos que reciben el mensaje de la raiz del arbol
generador final una vez esta ha sido escogida.

Descripciéon de registros

CO00: Este registro guarda la posicion relativa del de cada médulo tanto
del arbol generador inicial como del arbol generador final respecto de la
raiz de cada arbol. Ambas raices dan a este registro el valor de 5050 (50 de
coordenada = y 50 de coordenada y).

C01: Cada médulo guarda en este registro la direccién que hay que seguir

Algoritmo original 107

desde su posicién para llegar viajando a través de las ramas del arbol a su
raiz, ya sea del arbol final o inicial. Esta direccién se expresa mediante un
nimero de cuatro cifras. El valor 1000 indica la direccién norte, 100 indica
el oeste, 10 el este y 1 el sur.

C02: El valor de este registro es la suma de los valores 1000, 100, 10 y 1
dependiendo de si en ese momento el médulo tiene algiin hijo en la direccion
norte, oeste, este o sur respectivamente.

CO04: Direccién en la que el médulo debe tener hijos y todavia no lo
tiene. Por ejemplo, considerando las cuatro direcciones como 1000, 100, 10
y 1 (norte, oeste, este y sur respectivamente) si un médulo lee del arbol
generador final que deberia tener un hijo al oeste, otro al este y otro al sur
pero actualmente solo tiene un hijo al este el valor de C04 serfa de 0101 para
registrar la falta de hijos al oeste y al sur.

C05: Cuando un modulo entrega su estado de lider, guarda en este
registro la direccién por la que se puede encontrar el nuevo lider. De esta
forma los médulos comprimidos pueden encontrar siempre el camino a seguir
hacia el lider.

C16: Registro que indica que un médulo hoja que ha pedido confirma-
cién para comprimirse adema&s ha recibido una senal de cambio de rama. El
valor de este registro es la direccién por la que ha recibido la senial de cambio
de rama, es decir 1000, 100, 10 o 1 (norte, oeste, este o sur respectivamente).
Si el valor de este registro es diferente de 0 y el médulo recibe una senal de
confirmacion de compresion, utiliza la informacién del registro para enviar
un mensaje negando la operacién de cambio de rama y luego da al registro
el valor de 3000. El valor 3000 en este registro indica que el moédulo esta
listo para comprimirse.

C17: Senal que cuenta el nimero de iteraciones que ha pasado desde
que un médulo hoja en compresion pidié permiso para comprimirse. Si el
modulo no recibe ninguna confirmaciéon para comprimirse en 2 iteraciones
pero si que ha recibido una senal de cambio de rama, ejecuta el cambio de
rama en vez de volver a pedir permiso para comprimirse.

C18: Booleano que indica que un moédulo hoja ha enviado un mensaje
pidiendo permiso para comprimirse. Su valor es 1 cuando ha pedido permiso
y 0 si ain no lo ha pedido, si han pasado 2 iteraciones desde que lo pidi6 y
si esta ejecutando la acciéon de cambio de rama.

C20: Este registro tiene dos funciones. La primera es la de contador
para retrasar la ejecucién de otras reglas sobre el moédulo raiz del arbol
generador inicial cuando este ha empieza a expandir su hijo del sur o del
oeste. La segunda es la de senalar en la direccién en la que se ha enviado un
mensaje que pueda cambiar la fase de un moédulo de compresién a expansion
(es decir, un mensaje de cambio de rama o de paso de lider a un médulo
en fase de compresién). Aunque a primera vista pueda parecer que tiene la
misma funcién que el registro C005 en realidad son muy diferentes, mientras
que CO005 solo toma valor una vez confirmado el paso del estado lider y

108 Definiciones

permanece con ese valor hasta la vuelta de dicho estado, C020 solo tiene
valor diferente de 0 desde el momento en que se envia el mensaje de cambio
de lider (las senales descritas antes en este mismo parrafo) hasta que se
confirma el cambio.

C22: Booleano que evita que se cree mas de un lider cuando el médulo
raiz adquiere dicho estado. Solo tiene valor 1 en el médulo raiz.

C23: Es la distancia a la que un moédulo del arbol generador inicial sabe
que encontraréd el médulo del arbol final que tiene los datos que necesita para
completar la configuracién. Es la manera que tenemos de simular que la raiz
del arbol generador inicial conoce los datos necesarios para completar la
configuracién. El valor de este registro lo calcula la raiz del arbol generador
inicial y lo transmite al pasar el estado de lider.

C24: Al comprimir un médulo, el médulo que acoge al comprimido ac-
tualiza el valor de este registro para marcar que ahora es un médulo com-
primido. Su valor es siempre 1 si el médulo esta comprimido y 0 si no lo
esta.

C25: Al comprimir un médulo, el médulo que se comprime actualiza
el valor de este registro para marcar que ahora contiene un médulo com-
primido. Durante algunas operaciones de compresion o de envio de médulo
comprimido también hace a la vez de contador, por lo que a veces su valor
es 2.

Algoritmo con senal de parada hasta interseccion

Descripcion de estados

Pause: Este es el estado al que pasan los mdédulos que reciben una senal
numérica de pausa. Esto mantiene a los médulos pausados y sin realizar
accién alguna hasta recibir la senial de lider, momento en el cual vuelven a
estado LIDER.

También existen en este algoritmo todos los estados descritos para el
algoritmo original en el Apartado [8.4]

Descripciéon de registros

CO08: Registro que marca los médulos que han sido pausados alguna vez.
Se usa para evitar enviar mas de un mensaje de pausa por rama. Aunque
hubiera sido mas complicado, esta modificacién del algoritmo original se
podria haber levado a cabo sin este registro (aunque con muchas més reglas).
Sin embargo, como veremos en el Apartado este registro nos permite
evitar la repeticién de envio de otro tipo de senal.

Esta modificacién conserva ademas la funcién de todos los registros des-
critos para el algoritmo original en el Apartado

Algoritmo con senal de parada hasta raiz 109

Algoritmo con senal de parada hasta raiz

Descripcion de estados

Los estados que usa esta modificacién son los descritos en el Apartado

B.4l

Descripcion de registros

C08: Ademsds de la funcién especificada en el Apartado ahora es-
te registro también evita que se envie mas de una senial de reanudacién al
expandir una nueva rama. Como todos los médulos que no han sido pau-
sados (esto incluye los médulos recién expandidos) tienen el valor de este
registro a 0, el algoritmo solo envia la senal de reanudacién si un médulo
lider intenta expandirse mientras el valor de su registro C008 es 1, es decir,
no envia nunca el mensaje de reanudacién al expandir ni la primera rama
de la reconfiguracion ni, una vez enviado el mensaje de reanudaciéon y con
el estado lider perteneciendo a un médulo recién expandido, al continuar
expandiendo ninguna otra rama.

Esta modificacién conserva ademas la funcién de todos los registros des-
critos en el Apartado

Algoritmo con senal de parada para toda la confi-
guracion

Descripcion de estados

Los estados que usa esta modificacién son los descritos en el Apartado

B4

Descripcion de registros

Las funciones de todos los registros en esta modificacién son los descritos
en el Apartado

Version multilider del algoritmo

Descripcion de estados

ASKL1: Estado al que pasa un médulo lider cuando un vecino al que
estd conectado le pide permiso para enviarle un mdédulo comprimido. El
primero de un grupo de dos estados que controlan y protegen el proceso de
paso de médulo comprimido en mddulos lider.

ASKL2: Estado que sigue a ASKL1 para proteger de interferencias de
otras reglas al médulo lider mientras recibe un moédulo comprimido. En

110 Definiciones

caso de no recibir en dos iteraciones el médulo comprimido se restauran los
registros del médulo que esperaba recibirlo y se cambia su estado a LIDER
de nuevo.

ASKE1: Estado al que pasa un mddulo en fase de expansién cuando
un vecino al que estd conectado le pide permiso para enviarle un médulo
comprimido o cuando un mdédulo en fase de expansién pide permiso para
enviar un moédulo comprimido. El primero de un grupo de dos estados que
controlan y protegen el proceso de paso de médulo comprimido en médulos
en fase de expansion.

ASKE2: Estado que sigue a ASKE1 para proteger de interferencias
de otras reglas a un modulo en fase de expansién mientras recibe o envia
un médulo comprimido. En caso de no recibir en dos iteraciones el médulo
comprimido o el permiso de envio del médulo comprimido, se restauran los
registros del médulo que esperaba recibirlo y se cambia su estado a Ezpnd.

ASKCI1: Estado al que pasa un médulo en fase de compresién cuando
un vecino al que estd conectado le pide permiso para enviarle un médulo
comprimido o bien cuando un mdédulo en fase de compresién pide permiso
para enviar un moédulo comprimido. El primero de un grupo de dos esta-
dos que controlan y protegen el proceso de paso de médulo comprimido en
modulos en fase de compresion.

ASKC2: Estado que sigue a ASKC1 para proteger de interferencias
de otras reglas al mdédulo en fase de compresion mientras recibe o envia
un médulo comprimido. En caso de no recibir en dos iteraciones el médulo
comprimido o el permiso de envio de médulo comprimido, se restauran los
registros del médulo que esperaba recibirlo y se cambia su estado a Cmprs.

CmD*1: Para evitar la ejecucion ciclica de los estados ASKC1, ASKC2,
y Cmprs se cred este estado que asume un mddulo que se encontraba en
estado ASKC1 cuando ha recibido una senal de cambio de rama. El asterisco
indica la direccién por la que ha recibido la senial de cambio de rama (N para
norte, W para oeste, E para este y S para sur).

CmD*2: Estado que sigue a CmD*1. Si en la iteracién siguiente a obte-
ner este estado no se ha recibido el médulo comprimido o no se ha recibido
confirmaciéon para comprimirse, en vez de volver al estado Cmprs se pasa
al estado DISA* el cual obliga a realizar un cambio de rama. El asterisco
indica la direccién por la que ha recibido la senal de cambio de rama (N
para norte, W para oeste, E para este y S para sur).

DISA*: Estado que fuerza al médulo a realizar una operacién de cambio
de rama para conectarse a la rama indicada por el asterisco (N para la rama
al norte, W para la rama al oeste, E para la rama al este y S para la rama al
sur). Se obtiene cuando un médulo en compresién ha pasado dos iteraciones
esperando a recibir un médulo o una senal de otro mdédulo vecino sin recibir
nada y, mientras esperaba, otro vecino le ha enviado una senal de cambio
de rama.

ZIPNW: Para solucionar problemas como los descritos en el Apartado

Version multilider del algoritmo 111

B:1.4] se alargé a dos iteraciones el tiempo necesario para realizar la compre-
sién de una hoja tras recibir permiso para comprimirla. Durante la primera
iteracién se adquiere este estado y en la segunda se restaura el estado del
modulo hoja a C'mprs y se comprime en direccién al padre. Si durante este
estado el médulo hoja recibe un mensaje de cambio de rama responde con
un aviso al emisor del mensaje negando que se vaya a realizar el cambio.
El resto de estados que usa esta modificaciéon son los descritos en el

Apartado [84]

Descripcion de registros

CO05: En esta modificacién este registro ha pasado a indicar la direccién
por la cual un moédulo debe enviar o expandir cualquier médulo comprimido
que reciba. Su valor depende del nimero de médulos comprimidos que hagan
falta en cada una de las cuatro direcciones del médulo para llegar a la forma
final. La direccién que necesita mas médulos tiene prioridad sobre las demaés.
En caso de empate se utiliza la prioridad de expansién del algoritmo original
(S, W, E y N). El valor 1000 indica el norte, 100 el oeste, 10 el este y 1 el
sur.

CO06: Registro auxiliar en el que se guarda durante una iteracion el niime-
ro de moédulos que la rama en la que se encuentra el médulo ha ganado o
perdido a causa de una operacién de cambio de rama.

CO07: Booleano que protege a los mdédulos que acaban de expandir un
modulo comprimido en una posicién vacia para evitar que ejecuten otras re-
glas durante esa iteracién. Esta funcion puede llevarse a cabo con un cambio
de estado como los que tiene este algoritmo para otras operaciones como el
paso de mdédulos comprimidos, pero para simplificar el cédigo y no aumentar
aln mas el nimero de reglas, se decidié asignar la funcién a un registro.

CO08: Para conseguir que cuando el estado lider vuelva a la raiz se espera
a recibir tantas senales de asignaciéon de lider como lideres ha expandido
un modulo, se utiliza este registro como contador. Por cada lider expandido
aumenta, y con cada senal de asignacion de lider recibida disminuye. Cuando
el valor del registro es 0, el médulo tiene estado lider y ademés ya no debe
expandirse mas, se envia el estado lider en direccion a la raiz.

C10: Numero de descendientes que cuelgan en cada momento de un
médulo en direccién norte. Si se puede llegar a la raiz del arbol generador
inicial por esta direccion su valor es 0.

C11: Numero de descendientes que cuelgan en cada momento de un
modulo en direccion oeste. Si se puede llegar a la raiz del arbol generador
inicial por esta direccién su valor es 0.

C12: Numero de descendientes que cuelgan en cada momento de un
modulo en direccion este. Si se puede llegar a la raiz del arbol generador
inicial por esta direccion su valor es 0.

C13: Numero de descendientes que cuelgan en cada momento de un

112 Definiciones

modulo en direccién sur. Si se puede llegar a la raiz del arbol generador
inicial por esta direccion su valor es 0.

C14: Total del nimero de descendientes que cuelgan en cada momento
de un médulo en todas sus direcciones.

C15: Booleano que indica si un moédulo contiene otro médulo compri-
mido o no. Su valor es 0 en caso positivo y 1 en caso negativo.

C16: Numero de mddulos que hacen falta en direcciéon norte para al-
canzar el nimero de descendientes en esa direccién que se necesiten en la
forma final. El valor es negativo si deben llegar médulos comprimidos por esa
direccién y positivo si todavia es necesario mandar médulos en esa direccion.

C17: Numero de moédulos que hacen falta en direccién oeste para al-
canzar el numero de descendientes en esa direccién que se necesiten en la
forma final. El valor es negativo si deben llegar médulos comprimidos por esa
direccién y positivo si todavia es necesario mandar médulos en esa direccion.

C18: Numero de médulos que hacen falta en direccién este para alcanzar
el nimero de descendientes en esa direccion que se necesiten en la forma final.
El valor es negativo si deben llegar médulos comprimidos por esa direccion
y positivo si todavia es necesario mandar mdédulos en esa direccién.

C19: Nimero de médulos que hacen falta en direccion sur para alcanzar
el nimero de descendientes en esa direccion que se necesiten en la forma final.
El valor es negativo si deben llegar médulos comprimidos por esa direccion
y positivo si todavia es necesario mandar médulos en esa direccién.

C20: Al tener informacién de sobra sobre el estado del arbol generador
actual en cada momento este registro conserva solo una de sus funciones
originales, la de indicador de que se ha enviado un mensaje de algin tipo.

C21: Booleano que indica si el estado lider de un moédulo es por expan-
sién o porque esta esperando a que lleguen otras senales de asignacién de
lider para volver a la raiz. Su valor es 0 si el estado es de expansion y 1 si
se trata de una espera.

Esta modificacién conserva ademas la funcién de todos los registros des-
critos en el Apartado siempre que no estén descritos aqui.

Descripcion de las senales de los algoritmos

Aqui se enumeran y describen de las senales tanto numéricas como de tex-
to que emiten los algoritmos presentados en el proyecto. Las seniales numéri-
cas se presentan segun el canal por el que se emiten ya que, en nuestros
algoritmos, es el canal el que da sentido al niimero emitido. Los médulos de
nuestro algoritmo disponen de 8 canales distintos de emisién/recepcién de
senales.

Descripcion de las seniales de los algoritmos 113

Senales de texto

Detac: Mensaje enviado durante la fase de busqueda de la raiz. Este
mensaje indica al médulo que la recibe que debe desconectarse del vecino
que le ha enviado la senal.

Back_: Mensaje enviado durante la fase de bisqueda de la raiz. Este
mensaje se envia una vez que la senal de un candidato a raiz ha alcanzado
una hoja del arbol. Este mensaje se emite hacia la raiz para comprobar
que el arbol generador inicial es correcto. Todos los médulos que emiten
esta senal pasan a estado BackS o BackF dependiendo de si se trata de un
modulo del arbol generador inicial o final respectivamente.

Slave: Mensaje enviado durante la fase de busqueda de la raiz. Este
mensaje se envia una vez que se ha encontrado la raiz del arbol e indica que
todos los modulos deben pasar a estado Slave o Cmprs dependiendo de si
forman parte del arbol generador final o inicial respectivamente.

LIDER: Mensaje enviado durante la fase de expansion. Todo mdédulo
que recibe este mensaje pasa a estado LIDER.

EXPND: Mensaje enviado durante la fase de expansion. Este mensaje
indica al médulo que el emisor de la senal pide permiso para enviarle un
moédulo comprimido.

CANEX: Mensaje enviado durante la fase de expansién. Este mensaje
indica al moédulo que el emisor de la senal da permiso para enviarle un
moédulo comprimido.

Disal: Mensaje enviado durante la fase de expansion. Este mensaje in-
dica al médulo que lo recibe que debe, si le es posible, abandonar su rama
para incorporarse a la rama del emisor de la senal.

NDISA: Mensaje enviado durante la fase de expansion. Este mensaje
indica al modulo que lo recibe que la operacién de cambio de rama que se
ha pedido no va a realizarse. Este mensaje solo se envia en respuesta a la
senial Disal.

EXPDL: Mensaje enviado durante la fase de expansién. Este mensaje
indica al médulo que lo recibe que la operacién de cambio de rama se ha
realizado satisfactoriamente. Este mensaje solo se envia en respuesta a la
senial Disal.

ASK_Z: Mensaje enviado durante la fase de compresién. Indica al médu-
lo que lo recibe que el emisor de la senal desea comprimirse en su interior.

CAN_Z: Mensaje enviado durante la fase de compresién. Indica al médu-
lo que lo recibe que el emisor de la senal le da permiso para se comprima en
el emisor. Este mensaje solo se emite en respuesta a la senal ASK_Z.

ASKSZ: Mensaje enviado durante la fase de compresion. Este mensaje
indica al médulo que lo recibe que el emisor de la senal le pide permiso para
enviarle un médulo comprimido.

CANSZ: Mensaje enviado durante la fase de compresién. Este mensaje
indica al médulo que lo recibe que el emisor de la senal le da permiso para

114 Definiciones

enviarle un moédulo comprimido. Este mensaje solo se emite en respuesta a
la senal ASKSZ.

NO_SZ: Mensaje enviado durante la fase de compresion. Este mensaje
indica al médulo que lo recibe que la operacién de paso de médulo compri-
mido ya confirmada, mediante una senial CANSZ, no va a poder realizarse.
Este mensaje solo se emite en respuesta a la senal CANSZ.

Senales numeéricas

01: Este canal se utiliza en dos fases: en la fase de busqueda de la raiz
(solo en el caso del algoritmo multilider) y en la fase de expansién. En la
fase de busqueda de la raiz se utiliza este canal para que un hijo pueda
informar a un padre del niimero de descendientes del padre. En la fase de
expansion este canal se utiliza para notificar que la senal de lider viaja en
direccién a la raiz, una vez completada la expansién de una rama y para
pausar o reanudar la actividad de los médulos (este iltimo caso solo tiene
lugar en los algoritmos con senal de parada). Para notificar el paso de la
senal de lider el valor que viaja por el canal es 1, para pausar o reanudar la
actividad de los médulos el valor es 9999 y 9998 respectivamente.

02: Este canal se utiliza durante la fase de expansién. Su tnica utilidad
es la pasar el valor 1 a un médulo que acaba de ser expandido en una posicién
vacia para indicarle que ya no estd comprimido dentro de ningiin médulo.

07: Este canal se utiliza durante la fase de expansién para informar a
un modulo del niimero de moédulo que se han anadido o retirado de su rama
a consecuencia de una operaciéon de cambio de rama. El valor puede ser
cualquier nimero natural hasta 32767.

08: Este canal se utiliza durante la fase de compresion para informar a
un moédulo que se ha realizado una operaciéon de cambio de médulo en su
rama y que, por tanto, se han perdido o anadido médulos en esta. Su valor
es 9999 en caso de perder médulos y a 9998 en caso de anadir médulos.

	Introducción
	Robots modulares
	Robots cristalinos
	Objetivo del trabajo
	Estructura de la memoria

	El modelo y la simulación
	Movimientos modulares
	Compresión
	Expansión
	Paso de módulos comprimidos
	Otras operaciones

	Algoritmo distribuido
	Las Reglas
	Precondición
	Acciones

	El simulador
	Universe
	Agents and Rules
	Actions
	Position
	Errors
	Agents generator
	Módulos

	Mejoras al algoritmo original
	Algoritmo con señal de parada hasta intersección
	Objetivo
	Estrategia
	Reglas
	Problemas
	Alternativas
	Modelos de prueba

	Algoritmo con señal de parada hasta raíz
	Objetivo
	Estrategia
	Reglas
	Problemas
	Alternativas
	Modelos de prueba

	Algoritmo con señal de parada para toda la configuración
	Objetivo
	Estrategia
	Reglas
	Problemas
	Alternativas
	Modelos de prueba

	Versión multilíder del algoritmo
	Objetivo
	Estrategia
	Reglas
	Problemas
	Alternativas
	Modelos de prueba

	Implementación del algoritmo multilíder
	Árbol Inicial [S]
	Inicio del algoritmo
	Cadena de mensajes candidatos
	Mensaje recibido en las hojas
	Cadena de mensajes de las hojas
	Creación de la raíz
	Conocer la configuración objetivo
	Cadena de mensajes Slave

	Reglas de compresión [C]
	Compresión
	Paso de módulos comprimidos en fase de compresión

	Reglas de expansión [E]
	Expansión del líder
	Expansión a una posición ocupada conexa
	Expansión a una posición vacía
	Expansión a una posición ocupada no conexa
	Actualización de los registros contadores de módulos
	Paso de módulos comprimidos en fase de expansión
	Dirección de viaje de un módulo comprimido
	Retorno del líder

	Fin de la reconfiguración [End]
	Reglas de reparación

	Complejidad de los algoritmos y análisis experimental
	Complejidad de los algoritmos
	Algoritmo con señal de parada hasta intersección
	Algoritmo con señal de parada hasta raíz
	Algoritmo con señal de parada para toda la configuración
	Algoritmo multilíder

	Análisis experimental de las modificaciones
	Introducción a los resultados
	Herramientas utilizadas
	Juegos de prueba
	Movimientos según el número de módulos
	Mensajes según el número de módulos
	Orden de compresión en los algoritmos
	Impacto de la orientación en figuras densas
	Impacto de la orientación en figuras poco densas
	Reconfiguración de figuras sin ciclos

	Analizador sintáctico de acciones
	¿Para qué necesitamos un parser de acciones?
	Menu principal
	Repair Rules File
	Numerate and Parse Rules
	Parse log File
	Exit

	Ventana de análisis estadístico
	¿Cómo funciona?
	Requisitos

	Gestión del proyecto
	Planificación
	Presupuesto

	Conclusiones
	Resultados obtenidos
	Dificultades encontradas
	Futuro del proyecto
	Valoración personal

	Referencias

