
Reconfiguración distribuida de robots cristalinos

Manuel Perera Paquico

Proyecto de Fin de Carrera
Directora: Vera Sacristán Adinolfi

Departamento: Matemática Aplicada II

Ingenieŕıa informática
Facultad de Informática de Barcelona
Universitad Politécnica de Cataluña

23 de marzo de 2015

La libertad no consiste en tener un buen amo,
sino en no tenerlo.

Marco Tulio Cicerón

Índice general

1. Introducción 7

1.1. Robots modulares . 7

1.2. Robots cristalinos . 8

1.3. Objetivo del trabajo . 8

1.4. Estructura de la memoria . 10

2. El modelo y la simulación 13

2.1. Movimientos modulares . 13

2.1.1. Compresión . 13

2.1.2. Expansión . 14

2.1.3. Paso de módulos comprimidos 14

2.1.4. Otras operaciones . 15

2.2. Algoritmo distribuido . 15

2.2.1. Las Reglas . 16

2.2.2. Precondición . 17

2.2.3. Acciones . 19

2.3. El simulador . 21

2.3.1. Universe . 21

2.3.2. Agents and Rules . 22

2.3.3. Actions . 23

2.3.4. Position . 23

2.3.5. Errors . 24

2.3.6. Agents generator . 24

2.3.7. Módulos . 25

3. Mejoras al algoritmo original 27

3.1. Algoritmo con señal de parada hasta intersección 27

3.1.1. Objetivo . 27

3.1.2. Estrategia . 28

3.1.3. Reglas . 28

3.1.4. Problemas . 29

3.1.5. Alternativas . 31

3.1.6. Modelos de prueba . 32

3

4 ÍNDICE GENERAL

3.2. Algoritmo con señal de parada hasta ráız 33
3.2.1. Objetivo . 33
3.2.2. Estrategia . 33
3.2.3. Reglas . 34
3.2.4. Problemas . 34
3.2.5. Alternativas . 35
3.2.6. Modelos de prueba . 35

3.3. Algoritmo con señal de parada para toda la configuración . . 36
3.3.1. Objetivo . 36
3.3.2. Estrategia . 37
3.3.3. Reglas . 37
3.3.4. Problemas . 37
3.3.5. Alternativas . 38
3.3.6. Modelos de prueba . 38

3.4. Versión multiĺıder del algoritmo 39
3.4.1. Objetivo . 39
3.4.2. Estrategia . 40
3.4.3. Reglas . 41
3.4.4. Problemas . 41
3.4.5. Alternativas . 42
3.4.6. Modelos de prueba . 42

4. Implementación del algoritmo multiĺıder 45
4.1. Árbol Inicial [S] . 45

4.1.1. Inicio del algoritmo . 45
4.1.2. Cadena de mensajes candidatos 45
4.1.3. Mensaje recibido en las hojas 46
4.1.4. Cadena de mensajes de las hojas 46
4.1.5. Creación de la ráız . 47
4.1.6. Conocer la configuración objetivo 47
4.1.7. Cadena de mensajes Slave 48

4.2. Reglas de compresión [C] . 48
4.2.1. Compresión . 48
4.2.2. Paso de módulos comprimidos en fase de compresión . 49

4.3. Reglas de expansión [E] . 49
4.3.1. Expansión del ĺıder . 50
4.3.2. Expansión a una posición ocupada conexa 51
4.3.3. Expansión a una posición vaćıa 51
4.3.4. Expansión a una posición ocupada no conexa 51
4.3.5. Actualización de los registros contadores de módulos . 53
4.3.6. Paso de módulos comprimidos en fase de expansión . . 54
4.3.7. Dirección de viaje de un módulo comprimido 55
4.3.8. Retorno del ĺıder . 55

4.4. Fin de la reconfiguración [End] 56

ÍNDICE GENERAL 5

4.4.1. Reglas de reparación 56

5. Complejidad de los algoritmos y análisis experimental 57
5.1. Complejidad de los algoritmos 57

5.1.1. Algoritmo con señal de parada hasta intersección . . . 57
5.1.2. Algoritmo con señal de parada hasta ráız 61
5.1.3. Algoritmo con señal de parada para toda la configu-

ración . 62
5.1.4. Algoritmo multiĺıder 63

5.2. Análisis experimental de las modificaciones 68
5.2.1. Introducción a los resultados 68
5.2.2. Herramientas utilizadas 69
5.2.3. Juegos de prueba . 69
5.2.4. Movimientos según el número de módulos 70
5.2.5. Mensajes según el número de módulos 71
5.2.6. Orden de compresión en los algoritmos 75
5.2.7. Impacto de la orientación en figuras densas 78
5.2.8. Impacto de la orientación en figuras poco densas . . . 80
5.2.9. Reconfiguración de figuras sin ciclos 83

6. Analizador sintáctico de acciones 85
6.1. ¿Para qué necesitamos un parser de acciones? 85
6.2. Menu principal . 85

6.2.1. Repair Rules File . 86
6.2.2. Numerate and Parse Rules 86
6.2.3. Parse log File . 87
6.2.4. Exit . 87

6.3. Ventana de análisis estad́ıstico 87
6.4. ¿Cómo funciona? . 88
6.5. Requisitos . 89

7. Gestión del proyecto 91
7.1. Planificación . 91
7.2. Presupuesto . 93

8. Conclusiones 97
8.1. Resultados obtenidos . 97
8.2. Dificultades encontradas . 97
8.3. Futuro del proyecto . 99
8.4. Valoración personal . 99

Referencias 101

6 ÍNDICE GENERAL

Caṕıtulo 1

Introducción

Este proyecto está dedicado al diseño, la implementación y el análisis de
nuevos algoritmos de reconfiguración de robots cristalinos de forma distri-
buida. Este caṕıtulo empieza describiendo las caracteŕısticas de los robots
modulares, sus diferencias con los robots especializados y las caracteŕısticas
del modelo utilizado en nuestro proyecto. Seguidamente, se describen los
objetivos del proyecto y, finalmente, la organización de esta memoria.

1.1. Robots modulares

Un robot es una entidad virtual o mecánica artificial que, mediante técni-
cas de inteligencia artificial o a través de un programa predefinido, realiza
tareas de forma automática. Aunque normalmente un robot puede desarro-
llar múltiples tareas de manera flexible según su programación, los robots
más comunes hoy en d́ıa son los robots especializados. Pueden verse algunos
ejemplos en la Figura 1.1. Estos robots están diseñados para realizar una
única tarea y están limitados por su forma y construcción. Por ejemplo, un
brazo mecánico de una cadena de montaje, aunque preciso, es incapaz de
cambiar su ubicación a no ser que haya sido dotado de algún sistema de
movimiento. En un intento de solventar estas limitaciones se diseñaron los
robots modulares.

Un robot modular es aquél que esta formado por módulos o unidades
independientes más pequeños, y que es capaz de cambiar su forma para
adaptarse a cualquier situación a la que pueda enfrentarse. La Figura 1.2
muestra algunos ejemplos. Los módulos son idénticos y, por tanto, inter-
cambiables entre śı. De esta forma si una unidad resulta dañada durante
una acción puede ser substituida por otra, reparando aśı el robot modular.
Siguiendo el ejemplo anterior, si creamos un robot modular con forma de
brazo mecánico de una cadena de montaje, una vez que este deje de ser
necesario en su linea de la cadena puede cambiar su base para desplazarse a
otras lineas y reforzarlas o substituir un robot averiado. Todas estas carac-

7

8 CAPÍTULO 1. INTRODUCCIÓN

(a)
(b)

Figura 1.1: Esta figura muestra dos ejemplos de robots especializados. A
la izquierda, imagen a, los robots Ava y RPVITA, especializados en tele-
asistencia y telepresencia. A la derecha, imagen b, el robot Makr Shakr,
especializado en la preparación de cócteles. Los tres robots están diseñados
para realizar funciones muy espećıficas y ninguno puede realizar el trabajo
de los otros.

teŕısticas dan a los robots modulares una gran flexibilidad aśı como un gran
número de usos.

1.2. Robots cristalinos

Los robots con los que trabajamos en este proyecto son robots auto-
reconfigurables reticulares cuadrados o cúbicos. Cada cara de cada unidad
permite tanto acoplarse y desacoplarse a sus vecinos como extenderse en di-
rección a la normal de la cara y contraerse en dirección contraria. La Figura
1.3 muestra diversos prototipos de este tipo de robot. De esta forma pode-
mos formar toda una estructura de unidades conectadas por sus caras en
donde una unidad puede empujar o estirar a su vecino. En nuestros algorit-
mos, cada unidad del robot es independiente y toma sus propias decisiones
sin necesidad de un controlador central. Además, los átomos pueden enviar
información a sus vecinos y almacenarla en registros internos.

1.3. Objetivo del trabajo

Este proyecto consiste en implementar y estudiar una serie de algoritmos
en dos dimensiones que buscan mejorar el algoritmo de Joan Soler Pascual
descrito en su proyecto de final de carrera Reconfiguració de robots cristal·lins
[3] el cual es una versión distribuida de un algoritmo original de Aloupis et
al [2]. Dicho algoritmo consigue que un robot formado por metamódulos de

1.3. OBJETIVO DEL TRABAJO 9

(a) (b)

(c)

Figura 1.2: Esta figura muestra diferentes tipos de robots modulares tanto
reales como ficticios. La imagen a muestra un grupo de imanes electroper-
manentes para materia programable (2010), capaces de reproducir cualquier
forma que sus vecinos hayan rodeado. La imagen b muestra un modelo de un
átomo microbot de la última peĺıcula de Disney Big Hero 6 (2014), capaces
de recrear cualquier forma, realizar tareas de construcción y de transpor-
te. Por último, en la imagen c, podemos ver un robot modular MTRAN3
(2005), que cuenta con la habilidad de cambiar de forma para moverse como
una serpiente, caminar o incluso rodar.

robots más pequeños sea capaz de cambiar su forma inicial a cualquier otra
forma que se le indique, siempre y cuando tenga suficientes módulos para
ello. Para llegar a la forma final el algoritmo interpreta tanto esta como la
forma inicial como dos árboles generadores que comparten la misma ráız y
que tienen módulos de robots por nodos. Primero mueve los módulos hacia
la ráız siguiendo las ramas de la forma inicial para luego expandir dichos
módulos formando, de una en una, las ramas de la forma final.

La acción más costosa posible que puede realizar un robot modular es
moverse, mucho más que enviar un mensaje o almacenar datos en sus regis-
tros, por eso en este proyecto buscamos reducir el número de movimientos
del algoritmo original.

El proyecto ha sido dividido en los siguientes objetivos:

Diseño e implementación de cuatro algoritmos distribuidos en 2D que
buscan mejorar el rendimiento del algoritmo original. Todos estos al-
goritmos se encuentran descritos en el Caṕıtulo 3 de esta memoria.

10 CAPÍTULO 1. INTRODUCCIÓN

Análisis y experimentación de los algoritmos 2D.

1.4. Estructura de la memoria

La memoria se divide en ocho caṕıtulos:

Caṕıtulo 1: Introducción a los robots modulares y breve explicación
del modelo usado en nuestro trabajo.

Caṕıtulo 2: Explicación de los movimientos básicos de los robots cris-
talinos y del funcionamiento del simulador.

Caṕıtulo 3: Descripción sencilla de los algoritmos de mejora presenta-
dos en el proyecto.

Caṕıtulo 4: Implementación del algoritmo multiĺıder, el más complejo
de todos los algoritmos presentados en este proyecto.

Caṕıtulo 5: Estudio de la complejidad y análisis experimental tanto
de los algoritmos presentados en este proyecto como del algoritmo
original.

Caṕıtulo 6: Manual de usuario de un analizador de acciones diseñado
para facilitar la fase experimental del Caṕıtulo 5.

Caṕıtulo 7: Gestión del proyecto.

Caṕıtulo 8: Conclusiones y reflexión sobre el resultado del proyecto.

Al final de esta memoria se puede encontrar una lista de referencias con-
sultadas durante el proyecto y un anexo en donde se detallan las diferentes
fases de una reconfiguración y el significado de los estados, señales y registros
usados por los átomos del robot modular.

1.4. ESTRUCTURA DE LA MEMORIA 11

(a)

(b)

(c)

Figura 1.3: (a) Primer prototipo de robot cristalino [1], el cual solo puede
expandir o contraer sus cuatro caras al mismo tiempo. (c) Segundo proto-
tipo de robot cristalino [1] que consigue expandir y contraer a la vez caras
opuestas, ofreciendo un mayor grado de libertad de movimiento a las uni-
dades del robot. (b) Diseño final de un robot telecube[4] que puede mover
cada una de sus caras de forma independiente y en tres dimensiones.

12 CAPÍTULO 1. INTRODUCCIÓN

Caṕıtulo 2

El modelo y la simulación

En este caṕıtulo se describen las caracteŕısticas del simulador de ro-
bots cristalinos [6] desarrollado por Reinhard Wallner [5] y del robot modu-
lar que simula. Este simulador permite experimentar con robots modulares
cristalinos formados por unidades como las descritas en el Apartado 1.2,
agrupadas en metamódulos de tamaño 2 × 2. Esta agrupación de unidades
en metamódulos, junto con las operaciones básicas descritas anteriormente
(acoplarse, desacoplarse, expandir y contraer), permite realizar operaciones
mucho más complejas que no son posibles a nivel atómico [2].

2.1. Movimientos modulares

A continuación se presenta una descripción de estas operaciones e imáge-
nes de cómo se ven desde el punto de vista del simulador. Todas las ope-
raciones descritas se realizan sobre dos módulos vecinos conectados entre śı
por las caras de dos de sus unidades. Más información sobre la ejecución
de estas operaciones desde un punto de vista atómico puede hallarse en el
Apéndice de [2].

2.1.1. Compresión

Los módulos con los que trabajamos tienen la capacidad de alojarse en el
interior de sus vecinos siempre y cuando ninguno de los dos contenga ya otro
módulo en su interior, tal como se ilustra en la Figura 2.1. Esta operación
es posible gracias a que un módulo al expandir las caras interiores de sus
átomos, las que están conectadas a otro átomo del módulo, crea suficiente
espacio en su interior como para poder alojar otros cuatro átomos. De esta
forma, el módulo que se comprime pasa a ocupar la misma posición que el
módulo que hace de anfitrión. Una vez realizada la operación, el simulador
no permite dar órdenes a un módulo comprimido directamente, por lo que
todas las órdenes de movimiento o descompresión que deban aplicarse al

13

14 CAPÍTULO 2. EL MODELO Y LA SIMULACIÓN

módulo comprimido deben ser ejecutadas por el módulo anfitrión.

(a)

(b)

Figura 2.1: El proceso de compresión. En la imagen superior, a, a la izquierda
vemos tres módulos, uno de los cuales, el derecho, esta a punto de ser alojado
por el módulo central. A la derecha vemos el estado de los tres módulos
una vez ha acabada la operación de compresión. El módulo de la derecha,
representado ahora como un cuadrado negro contenido en el módulo central,
ha pasado a ocupar la misma posición del módulo central. La vista superior
es modular, la inferior, imagen b, es atómica.

2.1.2. Expansión

La expansión, ilustrada en la Figura 2.2, es el movimiento inverso a la
compresión. El módulo anfitrión indica al módulo comprimido la dirección
por la que debe expandirse y este obedece y pasa a ocupar la posición indi-
cada. Para el correcto funcionamiento de esta operación la posición indicada
por el módulo anfitrión debe permanecer vaćıa durante la ejecución de la
operación.

2.1.3. Paso de módulos comprimidos

Esta operación consiste en el paso de un módulo comprimido a uno de los
vecinos de su anfitrión. Se ilustra en la Figura 2.3. En el simulador el anfitrión
ordena al módulo comprimido que cambie a un nuevo anfitrión indicando la

2.2. ALGORITMO DISTRIBUIDO 15

(a)

(b)

Figura 2.2: El proceso de expansión es el inverso del de compresión.

dirección de este. Una vez ha terminado la operación el módulo comprimido
ha pasado a ocupar la misma posición que el nuevo módulo anfitrión. Para
que la operación se realice con éxito el nuevo módulo anfitrión debe estar
vaćıo mientras dura la ejecución de la operación.

2.1.4. Otras operaciones

El simulador no soporta ningún otro tipo de operación entre módulos a
parte del env́ıo de señales, entre las que se incluyen la consulta de estados
y registros de módulos vecinos. Aún aśı, los átomos de este tipo de robot
modular pueden realizar otras operaciones, como cambiar los papeles de
un módulo anfitrión y su módulo comprimido, pasando el anfitrión a estar
comprimido y el comprimido a ser anfitrión, o el env́ıo doble, en donde dos
módulos anfitriones vecinos se intercambian sus módulos comprimidos.

2.2. Algoritmo distribuido

Los robots modulares son un sistema distribuido de unidades idénticas
e intercambiables conectadas entre śı, por tanto, para explotar toda su ca-
pacidad, todas las unidades del robot deben ejecutar un mismo algoritmo
que permita que cada unidad funcione de forma independiente. Esta clase

16 CAPÍTULO 2. EL MODELO Y LA SIMULACIÓN

(a)

(b)

Figura 2.3: El proceso de paso de módulo comprimido. En la imagen supe-
rior, a, a la izquierda vemos tres módulos, uno de los cuales, representado
como un cuadrado negro, se encuentra alojado dentro del módulo de la iz-
quierda. A la derecha vemos el estado de los tres módulos una vez ha acabado
la operación de paso de módulo comprimido. El módulo de la derecha, que
antes se encontraba vaćıo, es ahora anfitrión del módulo que anteriormente
se encontraba alojado en el módulo de su izquierda. La vista superior es
modular, la inferior, imagen b, es atómica.

de algoritmos, pensados para ejecutarse en un sistema distribuido, se llaman
algoritmos distribuidos.

Hasta ahora los algoritmos existentes utilizados para la reconfiguración
de robots cristalinos no eran totalmente distribuidos. Por ejemplo, si bien el
algoritmo de Joan Soler consigue que la fase de compresión sea totalmente
distribuida, todos los módulos se comprimen hacia la ráız siempre que les
es posible, la fase de expansión sigue siendo secuencial y dependiente de un
único módulo que dirige el proceso.

En este proyecto hemos desarrollado un algoritmo totalmente distribuido
que aprovecha todas las caracteŕısticas del sistema distribuido.

2.2.1. Las Reglas

Cada una de las reglas del algoritmo distribuido que ejecuta cada uno
de los módulos del robot cristalino está compuesta por cuatro lineas que son

2.2. ALGORITMO DISTRIBUIDO 17

interpretadas por el simulador:

1. Nombre: La primera linea de una regla es su nombre. Al principio de
esta linea puede verse además la fase a la que pertenece la regla. Esto
último no es obligatorio para el funcionamiento del simulador, pero
permite al usuario del simulador entender mucho mejor el funciona-
miento de las reglas.

2. Prioridad: La prioridad de una regla es un número entero de 1 a 32767
que marca la importancia de la regla respecto a las demás. Una vez se
ha decidido que reglas pueden aplicarse a un módulo concreto, estas se
ordenan de forma decreciente según su prioridad, siendo aśı las reglas
con mayor prioridad las primeras en ejecutarse.

3. Precondición: Lista de condiciones que deben cumplirse para que una
regla pueda aplicarse a un módulo.

4. Acciones: Acciones que lleva a cabo un módulo que cumple las precon-
diciones establecidas por la regla, al ejecutarla.

En la Figura 2.4 podemos ver una de la reglas del algoritmo multiĺıder.

Figura 2.4: Regla del algoritmo multiĺıder. La primera linea muestra su
nombre, la segunda su prioridad, la tercera su precondición y la cuarta su
acción.

2.2.2. Precondición

La precondición puede consistir en una o más de las siguientes partes.

Vecinos N

Indica, para cada dirección del módulo, si el módulo debe tener un vecino
o una posición vaćıa. Las cuatro posiciones que siguen a la N indican las
cuatro caras del módulo: norte, oeste, este y sur. El número 0 indica que
no debe haber vecino, 1 que debe haber vecino y * que no importa. Por
ejemplo, N0010 indica que el módulo debe tener un único vecino al este.

Espacio vaćıo Edx,dy

Esta precondición comprueba si la posición relativa indicada por números
enteros o contadores del módulo está vaćıa.

18 CAPÍTULO 2. EL MODELO Y LA SIMULACIÓN

Espacio ocupado Fdx,dy

Esta precondición es la contraria que la de espacio vaćıo.

Prioridad de los vecinos P

Comprueba si la prioridad de las reglas aplicadas por los los vecinos del
norte, oeste, este o sur es menor o igual a la del módulo. < indica que la
prioridad del vecino en esa dirección debe ser menor que la del módulo, =
indica que debe ser igual y * que no importa.

Prioridad menor remota Ldx,dy

Esta precondición comprueba si la prioridad de los módulos indicados
por la posición relativa dada por números enteros o registros del módulo es
menor que la del módulo.

Prioridad menor o igual remota Qdx,dy

Esta precondición comprueba si la prioridad de los módulos indicados
por la posición relativa dada por números enteros o registros del módulo es
menor o igual que la del módulo.

Conexiones A

Indica si el módulo debe estar conectado o no a otro módulo vecino. Las
cuatro posiciones que siguen a la A indican las cuatro caras del módulo:
norte, oeste, este y sur. El número 0 indica que no debe estar conectado, 1
que debe estar conectado y * que no importa. Por ejemplo, A0010 indica
que el módulo debe estar conectado a otro módulo solo por su cara este.

Estado S

Estado en que debe encontrarse el módulo. Debe contar siempre con 5
caracteres. El asterisco indica que el carácter en esa posición de la cadena
de caracteres no importa. Por ejemplo, SPaus* indica que el estado debe
empezar por Paus.

Estado remoto Tdx,dy,

Comprueba el estado del módulo indicado por la posición relativa dada
por números enteros o por registros del módulo.

2.2. ALGORITMO DISTRIBUIDO 19

Mensaje de texto M

Indica que el módulo debe haber recibido un determinado mensaje de
texto. La primera posición indica la dirección por la que ha recibido el men-
saje (N,W,E,S) mientras que el resto indican el contenido del mensaje. Como
el estado, un mensaje debe constar siempre de 5 caracteres. En la precon-
dición, el carácter * indica que el carácter en esa posición de la cadena
de caracteres no importa o, si está en primera posición, que no importa la
dirección por la que haya recibido el mensaje.

Comparación numérica

Compara los mensajes numéricos recibidos por el módulo en la iteración
actual y el valor de los registros. La primera posición debe estar ocupada
por uno de los tres signos de comparación >,< o =. Las siguientes ocho
posiciones indican los canales numérico, registros o enteros a comparar. Un
canal numérico viene indicado por le śımbolo # seguido de la dirección
(N,W,E,S) y del número del canal (entre 01 y 08). Los registros se indican
con un C0 seguido del número del registro (entre 00 y 25). Cada valor puede
llevar un signo negativo delante (−).

Comparación numérica remota Vdx,dy,C , Wdx,dy,C

Funciona igual que la comparación numérica y el resto de comprobacio-
nes remotas. La V comprueba si el primer valor es estrictamente menor que
el segundo y la W si el primer valor es menor o igual que el segundo.

Negación !

Niega cualquier parte de la precondición.

Agrupación ()

Agrupa condiciones de la precondición. Normalmente se usa junto con
la negación.

2.2.3. Acciones

La última linea de una regla indica las acciones a seguir durante la eje-
cución de la regla. La nomenclatura de las acciones es la misma que la de
las precondiciones de mismo nombre.

Cambio de posición Pdx,dy

Indica la posición relativa a la que debe moverse el módulo. Esta acción
no se utiliza en ninguno de los algoritmos distribuidos existentes.

20 CAPÍTULO 2. EL MODELO Y LA SIMULACIÓN

Conexiones A

Esta acción indica a qué vecinos debe conectarse o de qué vecinos debe
desconectarse el módulo.

Estado S

Esta acción indica el nuevo estado al que debe cambiar el módulo.

Mensaje de texto M

Indica la dirección y el mensaje que debe enviar el módulo.

Cálculos numéricos y env́ıo de señales numéricas C ,
#

Esta acción indica si debe realizarse un cálculo numérico o el env́ıo de
una señal numérica. El cálculo numérico se expresa de forma parecida a la
comparación numérica, solo que en este caso, antes del signo de la operación,
se debe añadir el registro destino del resultado. El env́ıo de señales se expresa
de la misma manera que el calculo numérico solo que en lugar de indicar
el registro de destino, se indica el canal y la dirección por la que enviar el
resultado de la operación. Obligatoriamente, al enviar un mensaje numérico,
debe realizarse un calculo numérico. Las operaciones permitidas son la suma
(+), la resta (−), la multiplicación (∗), la división (/), el módulo (M), el
máximo (A) y el mı́nimo (I).

Intercambio de módulos comprimidos X

Indica la dirección del vecino con el cual debe realizarse una operación
de intercambio de módulos. Actualmente ningún algoritmo distribuido para
el simulador usa esta operación.

Compresión Z

Esta acción indica la dirección a la que el módulo debe comprimirse.

Descomprimir z S

La primera posición indica la dirección hacia la que el módulo anfitrión
debe descomprimir el módulo comprimido que aloja. Las siguientes cinco
posiciones indican el estado al que debe pasar el módulo comprimido una
vez descomprimido.

2.3. EL SIMULADOR 21

Paso de módulo comprimido x

La primera posición indica la dirección hacia la que el módulo anfitrión
debe enviar el módulo comprimido que aloja. La posición indicada por esta
acción debe estar ocupada por un módulo que no contenga ningún otro
módulo comprimido.

2.3. El simulador

En este apartado se explica, en primer lugar, las diferentes pantallas
del simulador y, por último, las caracteŕısticas generales de los módulos de
átomos con los que trabaja. Para una información más detallada sobre el
simulador y su funcionamiento consúltese el manual de usuario en su página
web [6].

2.3.1. Universe

El universo es la representación del mundo 2D sobre el que trabaja el
simulador y sus caracteŕısticas. Ser compone de una serie de botones que
permiten viajar en el tiempo del universo, un contador de tiempo y una
imagen interactiva del estado del universo en cada momento.

Figura 2.5: Pantalla de Universe del simulador.

El tiempo en el simulador se expresa en iteraciones. Una iteración repre-
senta una ejecución de todas las reglas por parte de todos las módulos. Como
el sistema es distribuido, durante una iteración todos los módulos ejecutan
una única vez todo un conjunto de reglas. Aunque este hecho indica que el
simulador y todos sus módulos son śıncronos, esto no es más que una manera
de simular el paso del tiempo. Para llevar a cavo una ejecución aśıncrona,
habŕıa que introducir un sistema de aleatorización de pausas y ajustar el

22 CAPÍTULO 2. EL MODELO Y LA SIMULACIÓN

sistema de handshaking utilizado en las reglas de los algoritmos presentados
en este proyecto.

Una vez pulsado el botón Start, los botones que controlan el paso del
tiempo permiten avanzar o retroceder en el tiempo un número determinado
de iteraciones según el botón o, en el caso de ejecutar el algoritmo indefi-
nidamente, pausar la ejecución. Entre los botones y la representación del
universo 2D podemos encontrar un contador de iteraciones que indica el
momento en el tiempo en que nos encontramos. Toda ejecución comienza en
la iteración 0.

A la derecha del contador de iteraciones podemos ver dos contadores que
indican el número de errores y avisos generados hasta la iteración actual de
la ejecución en curso.

La representación del universo consta de una pantalla cuadriculada con
filas y columnas numeradas en donde cada cuadrado representa una posición
en el universo 2D. En esta vista podemos ver dibujados los módulos del
robot modular, su color (véase la Figura 2.5) y, si pausamos la ejecución
y pulsamos con el botón derecho encima del módulo que nos interese, sus
datos internos (Figura 2.11).

2.3.2. Agents and Rules

Esta pantalla, tal como se ilustra en la Figura 2.6, permite cargar, visua-
lizar y modificar los ficheros de reglas y de módulos que utiliza el simulador
en su ejecución. Una vez ha empezado una ejecución, la modificación de
alguno de estos ficheros o el cambio de uno de ellos por otro distinto obliga
al simulador a reiniciar la reconfiguración.

Figura 2.6: Pantalla de Agents and Rules del simulador.

2.3. EL SIMULADOR 23

2.3.3. Actions

Lista de todas las reglas ejecutadas por cada módulo según la iteración
en que tuvo lugar. Desde esta vista, ilustrada en la Figura 2.7, no solo es
posible la visualización de la lista de acciones realizada sino que, además,
también permite exportar el fichero a nuestro ordenador.

Figura 2.7: Pantalla de Actions.log del simulador.

2.3.4. Position

Lista de la posición y los datos internos de cada módulo en cada iteración
de la ejecución. Esta ventana (véase la Figura 2.8) también permite exportar
el fichero a nuestro ordenador.

Figura 2.8: Pantalla de Position del simulador.

24 CAPÍTULO 2. EL MODELO Y LA SIMULACIÓN

2.3.5. Errors

Lista de los errores y avisos generados por la ejecución del conjunto de
reglas en cada iteración de la ejecución. Esta ventana (Figura 2.9) también
permite exportar el fichero a nuestro ordenador.

Figura 2.9: Pantalla de Errors del simulador.

2.3.6. Agents generator

Editor que permite generar o modificar de forma sencilla un robot mo-
dular sobre el que ejecutar un conjunto de reglas. Se ilustra en la figura
2.10.

Figura 2.10: Pantalla de Agents generator del simulador.

2.3. EL SIMULADOR 25

2.3.7. Módulos

Como hemos mencionado anteriormente en este caṕıtulo, el simulador
muestra módulos de cuatro átomos. Todos los módulos ejecutan el mismo
conjunto de reglas y tienen las mismas limitaciones. Cada módulo tiene
cuatro caras (norte, oeste, este y sur), un color, un número de identificación
único que es utilizado por el simulador pero no puede usarse en las reglas
que siguen los algoritmos, una posición dada por dos coordenadas (x e y)
que las reglas tampoco pueden usar, un registro que almacena los vecinos a
los que esta conectado, un registro que guarda su estado actual, 26 registros
internos de 16-bits en donde almacenar números enteros y un último registro
que indica la prioridad del módulo a la hora de aplicar reglas. Cabe destacar
que la posición de un módulo es única exceptuando el caso de un módulo
anfitrión y un módulo comprimido, que comparten posición. Exceptuando su
número de identificación y su orientación respecto el universo del simulador,
todos los demás campos pueden alterarse durante la ejecución de un conjunto
de reglas.

Cada módulo consta además de 8 canales por los que puede tanto recibir
como enviar mensajes de texto y numéricos. Los mensajes de texto tienen
un ĺımite de 5 caracteres y los mensajes de texto solo pueden transmitir
números enteros de 16-bits. Un módulo solo puede enviar mensajes a sus
vecinos inmediatos de cada una de los cuatro puntos cardinales.

Figura 2.11: Imagen que muestra el simulador cuando se pulsa el botón
derecho del ratón sobre uno de los módulos de la pantalla Universe. En esta
imagen se puede ver toda la información contenida en el módulo: su id, su
posición, los vecinos a los que está conectado, su estado, el contenido de sus
26 registros, su prioridad actual y los mensajes, indicando el canal por el
que los ha recibido y su dirección de origen, que ha recibido en la iteración
actual.

La Figura 2.11 muestra los datos de un módulo que el simulador muestra
el pulsar el botón derecho sobre este.

26 CAPÍTULO 2. EL MODELO Y LA SIMULACIÓN

Caṕıtulo 3

Mejoras al algoritmo original

Aunque el algoritmo original es eficaz y resuelve la reconfiguración de
robots cristalinos, no es todo lo eficiente que podŕıa llegar a ser. Es por eso
que hemos intentado mejorarlo y refinarlo para reducir en todo lo posible los
recursos utilizados, como los movimientos de los módulos o el tiempo total
de la reconfiguración.

Una de las mayores fuentes de movimientos innecesarios es el movimiento
de módulos comprimidos hacia el ĺıder cuando este vuelve de haber comple-
tado una rama del árbol generador de la configuración final. Para intentar
evitar estos movimientos proponemos una serie de mejoras: señal de parada
hasta intersección, señal de parada hasta ráız, señal de parada global y el
uso de múltiples módulos ĺıder de forma simultánea.

Las tres primeras modificaciones son versiones del mismo algoritmo. En
cambio, la versión multiĺıder intenta aprovechar la capacidad de trabajo dis-
tribuido de los robots junto con lo aprendido en las anteriores modificaciones
para sacar aún más partido a la reconfiguración.

A continuación, presentamos dichas modificaciones.

3.1. Algoritmo con señal de parada hasta intersec-
ción

3.1.1. Objetivo

El objetivo es reducir el número de movimientos innecesarios en la fase
de construcción de la configuración final, por la v́ıa de mantener en esta-
do de inactividad todos los módulos entre un módulo hoja y la siguiente
intersección o, de no haberla, hasta la misma ráız del árbol.

Para conseguirlo, se emite una señal de pausa desde el módulo hoja en
dirección a la ráız, hasta los módulos mencionados anteriormente.

Además, un objetivo secundario es llevar esto a cabo sólo con el paso de
señales y cambios de estado, sin contadores ni nuevas consultas a estados

27

28 Mejoras al algoritmo original

vecinos.

3.1.2. Estrategia

Nuestro punto de partida en este caso es la iteración siguiente a aquella
en que el ĺıder alcanza la posición de un módulo hoja del árbol generador
de la configuración final.

Con esto entendemos que el módulo hoja, que estaba expandiéndose, es el
último módulo de su rama en la configuración final y que ya ha comprobado
que no debe expandirse en ninguna dirección.

En este punto, como en el algoritmo original, el módulo hoja devuelve el
estado de ĺıder a su padre. Es en este mismo momento, al cambiar el padre
su estado a ĺıder, cuando el nuevo ĺıder env́ıa la señal de parada a su padre.

A partir de entonces, cuando un módulo recibe la señal de parada, entra
en estado pausa y propaga el mismo mensaje que ha recibido en dirección a
su padre.

En el momento que la señal llega a un módulo que aún debe expandirse
en alguna dirección, o al módulo ráız del árbol, este ignora la señal de pausa,
evitando aśı que se extienda más allá.

Con esto, se crea un camino sin bifurcaciones desde el ĺıder hasta el ya
mencionado módulo hoja, todo compuesto de módulos en estado de pausa.

Estos módulos en estado pausa, aśı como los módulos que llevan otro
módulo comprimido en su interior, permanecen quietos, sin realizar acción
alguna, hasta que el ĺıder les cede su estado de ĺıder. Sabemos que todo
módulo en pausa acaba recibiendo el estado de ĺıder ya que este se desplaza
en la misma dirección que la señal de pausa, en la dirección al módulo ráız,
tal como dicta el algoritmo original.

De este modo evitamos que un cierto número de módulos transiten hasta
la hoja para luego dar media vuelta y deshacer parte del camino recorrido.

3.1.3. Reglas

Las reglas que se han utilizado o modificado pertenecen todas al grupo
[E], más espećıficamente, dentro de este grupo, a las reglas de retorno del
ĺıder al padre y las de cambio de ĺıder de un módulo en fase de expansión
a otro en fase de compresión (expansión de una rama usando módulos que
estén en el camino del ĺıder).

Las señales de esta categoŕıa (menos [E]Receive Signal Root Lider), se
han modificado para que propaguen la señal numérica de pausa (una señal
numérica con valor 9999) en dirección al padre del módulo que las aplica.
Otra modificación es la condición en las reglas para poder aplicarlas sobre
los módulos en estado pausa.

Además, se han añadido una serie de reglas para extender la señal de
pausa, una vez recibida, en la dirección del padre. Estas reglas, al mismo

Algoritmo con señal de parada hasta intersección 29

tiempo, cambian el estado del módulo que las aplica a pausa. Están prepara-
das para que no se puedan aplicar ni a un módulo que aún deba expandirse
en alguna dirección ni a la ráız.

Por último se ha modificado la función del registro C020 aśı como todas
las reglas de expansión de rama mediante módulos en fase de compresión
(paso del estado ĺıder de un módulo en fase de expansión a otro en fase de
compresión). Todas estas modificaciones se deben a un error del algoritmo
original, el cual perd́ıa el módulo ĺıder al intentar pasar este estado de un
módulo en fase de expansión a una hoja de una rama en fase de compre-
sión que ya se hab́ıa comprometido a comprimirse. Estas modificaciones se
describen con más detalle en el Apartado (3.1.4).

3.1.4. Problemas

Prioridad de las reglas

Aunque puede no llegar a considerarse un problema de prioridades, si
que es cierto que, al menos, deriva de ellas.

Al principio se planteó que la señal de pausa fuera un mensaje de texto,
sin embargo, el hecho de tratar una señal de texto y no una numérica,
alteraba ligeramente el orden en que el simulador evalúa y, por tanto, ejecuta
las reglas.

Hab́ıa ocasiones en que esta prioridad interrumṕıa un paso de módulo
comprimido ya confirmado (con el mensaje CANSZ) entre dos módulos.
Esto aparentemente no supońıa ningún problema, es más, permit́ıa ahorrar
un movimiento extra, sin embargo, este suceso provocaba un error en el
simulador, el cual dejaba de funcionar a las pocas iteraciones.

Al intentar cambiar la prioridad de estas reglas para evitar la colisión con
las de paso de módulo comprimido tanto al aumentar como al disminuir dicho
valor, las reglas dejaban de aplicarse cuando deben. Por tanto, bajar o subir
la prioridad de las operaciones de pausa no era una opción, estas operaciones
deb́ıan ejecutarse con la misma prioridad que el resto de operaciones de la
categoŕıa [E] para funcionar.

Al final, cambiando la señal de un mensaje de texto a uno numérico, la
ejecución de una regla de pausa frente a una de paso de módulo comprimido
quedaba relegada a un segundo puesto. De esta forma, si un módulo debe
entrar en estado pausa pero ya ha confirmado una operación de paso de
módulo comprimido, primero aceptará el nuevo módulo comprimido antes
de entrar en pausa.

Esta modificación no afecta en absoluto al resto de reglas.

Perdida del módulo ĺıder

Un error del algoritmo original permit́ıa la desaparición del estado de
ĺıder y por tanto obligaba a la reconfiguración a terminar antes de tiempo.

30 Mejoras al algoritmo original

El problema se daba cuando un módulo hoja en fase de compresión se
comprimı́a en dirección a su padre y, durante la misma iteración en que
se realizaba la compresión, un módulo ĺıder vecino le intentaba mandar un
mensaje de cambio de rama. Para entender la causa del problema hay que
fijarse en las opciones del simulador bajo las que funciona tanto el algoritmo
original como sus modificaciones. Las opciones especifican que primero se
deben mover los módulos que deban moverse antes de enviar los mensajes.
Esto quiere decir que primero se evalúan las normas a ejecutar en cada
módulo, en este caso la compresión de la hoja y el env́ıo del mensaje de
cambio de rama, luego se mueven los módulos, acción que naturalmente
comprimı́a la hoja, y para terminar se env́ıan los mensajes haciendo que el
ĺıder enviara su mensaje a un espacio vaćıo para luego, sin siquiera esperar
confirmación que indicase si se hab́ıa recibido el mensaje, pasara a estado
de expansión. El algoritmo original no estaba pensado para reaccionar ante
esta situación.

Una primera solución fue la de intentar restaurar los valores de los re-
gistros del módulo ĺıder cuando este detectara que el módulo hoja se hab́ıa
comprimido, pero el módulo ĺıder no dispońıa de la información necesaria ni
para poder restaurar sus registros ni para detectar el fallo. La siguiente solu-
ción que se intentó fue la de alargar en una iteración el proceso de compresión
de todos los módulos hoja que tuvieran un ĺıder por vecino para conseguir
aśı recibir la señal de cambio de rama y, aśı, solucionar el problema.

Esta solución funcionó perfectamente para esta situación pero los cam-
bios que se introdujeron en el algoritmo original para poder solucionar el
problema interfeŕıan con algunas de las medidas que hab́ıa implementado el
autor del algoritmo original para solucionar los problemas de intentar expan-
dir una rama pasando por una posición ocupada por una hoja que pretende
comprimirse. Al no encontrar otra manera posible de solucionar el problema
original se optó por buscar nuevas soluciones a este antiguo problema que
hab́ıamos reencontrado.

Antes de buscar estas nuevas soluciones decidimos que intentaŕıamos
siempre que nos fuera posible mantener la prioridad de una compresión por
encima de un cambio de rama. Si no fuera aśı, como nos hab́ıamos visto
obligados a aumentar la duración de la compresión y, por tanto, el tiempo
que el padre de la hoja manteńıa en sus registros el dato de que ya dispońıa
de un módulo comprimido (el padre da por supuesto que se realizará la
compresión al enviar la confirmación de compresión), podŕıamos provocar
en caso de cancelar la compresión que el padre de la hoja intentara entregar
un módulo comprimido que no tiene, parando aśı la reconfiguración. Una
vez decidido esto nos dispusimos a afrontar el nuevo problema.

Este problema se daba cuando un módulo hoja en fase de compresión
que hab́ıa pedido permiso para comprimirse recib́ıa una señal de cambio
de rama (de una rama en compresión a una en expansión) emitida por el
ĺıder actual. En el momento en que el ĺıder enviaba la señal de cambio de

Algoritmo con señal de parada hasta intersección 31

rama este daba por sentado que el módulo hoja pasaŕıa su estado a ĺıder y
que cambiaŕıa de rama, por eso el ĺıder cambiaba su estado a expansión (o
Expnd). Una iteración más tarde, cuando la hoja hab́ıa pasado a ser ĺıder
de la rama en expansión, recib́ıa además el mensaje de que teńıa permiso
para comprimirse. Esto provocaba que el ĺıder cambiara otra vez a estado
de compresión (o Cmprs) y que se comprimiera en dirección a su antigua
rama.

Para evitarlo se tomaron tres medidas: la primera, para ahorrar compli-
caciones en las reglas, fue incrementar permanentemente las iteraciones que
tarda un módulo en ejecutar la orden de cambio de rama en una iteración,
la segunda fue el uso del registro C16 para almacenar la dirección por la que
se hab́ıa recibido la señal de cambio de rama además de cambiar el registro
20 para almacenar en el ĺıder hacia donde se ha enviado la señal de cambio
de rama en vez de ser simplemente un booleano y la tercera fue la creación
de una nueva señal de aviso.

Ahora, al encontrarnos en la misma situación que ocasionaba este proble-
ma, al recibir la señal de cambio de rama después de haber pedido permiso
para comprimirse, el módulo hoja espera una iteración más para comprobar
si recibe confirmación para la compresión. Si no la recibe se realiza el cam-
bio de rama pero, en caso de recibirla, el módulo hoja env́ıa un mensaje de
advertencia usando la dirección del registro C16 para indicar al antiguo ĺıder
de que no se efectuará el cambio de rama y no ejecuta ninguna otra opera-
ción durante esa iteración. Al esperar una iteración y asegurarnos de que el
mensaje llega al antiguo ĺıder, ahora en estado de expansión, conseguimos
sincronizar dos eventos, el de compresión de la hoja y el de la lectura del
aviso de que no se efectuará el cambio de rama. Ahora el antiguo ĺıder no
solo recupera su estado de ĺıder sino que, además, evita enviar otra señal de
cambio de rama ya que, cuando trata el aviso enviado por la hoja, este sabe
que no debe aplicar ninguna otra regla de expansión de la rama durante esa
iteración.

Esta solución se tuvo que aplicar no solo a esta modificación del algo-
ritmo sino también al algoritmo original, ya que le era imposible ejecutar
satisfactoriamente alguno de los juegos de prueba usados en el estudio de
las modificaciones.

3.1.5. Alternativas

La única alternativa planteada al crear esta mejora del algoritmo fue
la de utilizar un mensaje de texto en vez de uno numérico para propagar
la señal de pausa. Era una opción más clara de cara a un lector o a un
programador humano. Sin embargo al ver los problemas que surgieron al
utilizar texto se optó por otra solución.

Para arreglarlo, podŕıamos haber intentado modificar el simulador en
lugar del tipo de mensaje, pero esta opción, además de lenta, pod́ıa aca-

32 Mejoras al algoritmo original

rrear consecuencias no deseadas en otros algoritmos ya programados sobre
el mismo simulador.

3.1.6. Modelos de prueba

Para comprobar el correcto funcionamiento de estas nuevas reglas se
realizaron todo un conjunto de pruebas. Sin embargo, debido a la cantidad
de casos necesarios para comprobar que el resto de reglas siguen funcionando
correctamente pese a la aplicación de nuestras nuevas reglas, solo mostramos
los modelos de prueba más significativos o que han dado más problemas.

Intersección de la señal de pausa y de paso de módulo comprimido

En el modelo de prueba ilustrado en la Figura 3.1 podemos observar
cómo la señal de pausa llega a un módulo que ya se ha comprometido a
aceptar un módulo comprimido, tal como se explica en el Apartado 3.1.4 de
problemas de esta modificación. En la iteración siguiente, como intercambio
de módulos tiene prioridad sobre el cambio a estado pausa, dicho módulo
acepta primero el módulo comprimido y después cambia su estado.

(a)

(b) (c) (d)

Figura 3.1: Partiendo del árbol actual y generador final mostrados en (a)
en una misma iteración el módulo marcado en (b) recibe la señal de pausa
del este justo cuando comunica a su vecino del oeste, señalado en (c), y
se compromete a aceptar su módulo comprimido. Una iteración más tarde,
tal como se ve en (d), el módulo mencionado en (b) primero ha aceptado
el módulo comprimido del oeste y luego ha entrado en estado de pausa
(indicado por su color verde).

3.2. ALGORITMO CON SEÑAL DE PARADA HASTA RAÍZ 33

3.2. Algoritmo con señal de parada hasta ráız

3.2.1. Objetivo

El objetivo de esta modificación es no solo la de evitar que los módulos
comprimidos entren en una rama ya completada del árbol generador de
la configuración final, sino también evitar que otros módulos pasen de un
subárbol de la ráız al otro a no ser que sean necesarios.

Pretendemos aśı controlar aún más el movimiento de los módulos com-
primidos, extendiendo la señal de pausa más allá de un cruce, llevándola
hasta la misma ráız del árbol.

Como en el caso anterior, el objetivo es llevar esto a cabo sólo con el
paso de señales y cambios de estado, sin contadores ni nuevas consultas a
estados vecinos.

3.2.2. Estrategia

El punto de partida es el mismo que en la modificación anterior: la itera-
ción siguiente a aquella en que el ĺıder alcanza la posición de un módulo hoja
que ha llegado al final de la configuración de una rama del árbol generador
de la configuración final. La estrategia, esta vez, se divide en dos fases:

Transmisión y expansión del mensaje. El procedimiento es el mis-
mo: al retornar la señal de ĺıder en dirección a la ráız, extendemos la señal
de pausa de un módulo a otro, de hijo a padre, en dirección a la ráız. Sin
embargo, esta vez no detenemos la expansión de la señal al llegar a un cruce
que no haya sido completado, sino que seguimos expandiendo la señal hasta
llegar a la ráız, la cual ignora por completo la señal de pausa, evitando aśı
que se extienda aún más.

Reactivar los módulos pausados. Esta fase puede llegar a no darse
en algunas configuraciones, sin embargo, si entre la ráız del árbol y el módu-
lo ĺıder existe algún módulo que necesite expandir una rama, cuando este
módulo obtenga el estado de ĺıder e intente expandir el camino la configura-
ción de los módulos quedará dividida en tres partes: entre la ráız del árbol
y el módulo ĺıder, compuesta por módulos en pausa, el subárbol que consta
del módulo ĺıder y todos sus hijos, y el conjunto de módulos restantes (si los
hay), tanto en fase comprimida como ya ubicados en su posición final.

El subarbol del ĺıder, ya parcialmente reconfigurado, puede que no con-
tenga módulos suficientes en estado de compresión o expansión como para
completar la rama que el módulo ĺıder quiere expandir. Para solucionarlo,
basta con enviar una señal de reanudación en el momento en que el ĺıder
intente expandirse y no tenga un módulo comprimido cerca para hacerlo.
Esta señal se transmite de la misma forma que la señal de pausa, de hijo a
padre, hasta la ráız.

De esta manera, el cuello de botella (módulos en estado de pausa), que
bloquean el paso de módulos de una rama a otra se reactiva hasta que la

34 Mejoras al algoritmo original

rama se completa y vuelve a emitir una señal de pausa.

Al final, cuando la señal de ĺıder llega a la ráız no queda ningún módulo
en pausa en la configuración.

3.2.3. Reglas

Las reglas que se han utilizado o cambiado para esta modificación per-
tenecen todas al grupo [E], más espećıficamente, a las reglas de retorno del
ĺıder al padre y a las de expansión. Las señales de este grupo se han cam-
biado para permitir aplicar el estado de Pausa a módulos intersección y
se han añadido reglas extra para emitir la señal de reanudación (una señal
numérica con valor 9998).

3.2.4. Problemas

Cambio de estado de una intersección

Al modificar las normas de extensión de la señal de parada para permitir
cambiar el estado de los módulo intersección a Pause, inicialmente no se
previó que el paso de ĺıder de un módulo simple a un módulo intersección
tuviera precondiciones diferentes al caso del paso de ĺıder de un módulo
simple a otro. Es por esto que aunque el paso de ĺıder de un módulo simple
a otro también simple en estado Pause funcionaba, al encontrarnos con el
paso de ĺıder a un módulo intersección pausado el simulador se quedaba sin
reglas que aplicar.

Para solucionarlo se modificaron las reglas de paso de estado de ĺıder a
un módulo intersección para que pudieran aplicarse también cuando dicho
módulo estuviera en estado de Pausa.

Falta de módulos

En un principio no se previó la posibilidad de que el módulo ĺıder que
intentaba extender una rama no tuviera suficientes módulos comprimidos
activos para acabarla. Esto ocurŕıa porque la señal de pausa cerraba el paso
a nuevos módulos muy por encima de dicha rama.

La solución fue sencilla, la creación de la señal de reanudación, que per-
mit́ıa activar el paso de módulos.

Sin embargo, esta solución deja otros problemas pendientes. Al no usar
contadores, no disponemos de medios para contar cuántos módulos com-
primidos activos hay en la configuración que puedan llegar a un ĺıder en
expansión y tampoco podemos saber si una rama de la ráız necesita más
módulos para reconfigurarse o si, por el contrario, tiene de sobra. Estos
problemas se solucionaron en modificaciones posteriores del algoritmo.

Algoritmo con señal de parada hasta ráız 35

3.2.5. Alternativas

Se consideraron algunas alternativas como añadir contadores y consultas
de estado, pero se optó por implementarlas en la última modificación.

3.2.6. Modelos de prueba

Para comprobar el correcto funcionamiento de estas nuevas reglas se
realizaron todo un conjunto de pruebas. Sin embargo, debido a la cantidad
de casos necesarios para comprobar que el resto de reglas siguen funcionando
correctamente pese a la aplicación de nuestras nuevas reglas, solo mostramos
los modelos de prueba más significativos o que han dado más problemas.

Cambio de estado de una intersección

En este modelo de pruebas se puede apreciar como un módulo intersec-
ción en estado de pausa recibe la señal de cambio a ĺıder. Como se ve en la
Figura 3.2, el problema de cambio de estado de una intersección descrito en
el Apartado 3.2.4 ya no se produce y el módulo intersección pasa a tener el
estado ĺıder.

(a)

(b) (c) (d)

Figura 3.2: Partiendo del árbol actual y generador final mostrados en (a)
podemos ver un módulo intersección que aún debe expandir una de sus
ramas hacia el este y que además se encuentra en estado pausa (b). Este
módulo recibe de su vecino del sur (marcado en (c)) una señal para cambiar
su estado a ĺıder y, como se puede ver en (d), una iteración más tarde el
módulo mostrado en (b) ha cambiado su estado a ĺıder con total normalidad.

Falta de módulos

En este apartado se muestra la solución aplicada al problema de falta de
módulos descrito en el Apartado 3.2.4. En la Figura 3.3 podemos ver que

36 Mejoras al algoritmo original

el módulo ĺıder no dispone de módulos activos suficientes para completar
una rama del árbol generador final. En este instante el módulo ĺıder emite
una señal de reanudación que se extiende de módulo a módulo permitiendo
la entrada del número de módulos necesarios para alcanzar la configuración
final. Debido a la falta de contadores, señal se emite siempre que un ĺıder
intenta expandir una rama desde un módulo que haya estado pausado, por
los problemas mencionados en el Apartado 3.2.4.

(a)

(b) (c) (d)

Figura 3.3: Partiendo del árbol actual y generador final mostrados en (a)
vemos que el módulo en estado ĺıder marcado en (b) aún debe expandir una
de sus ramas hacia el este. En este caso no puede recibir módulos compri-
midos de su vecino del norte ya que están en estado pausa y, aunque use
todos los módulos comprimidos que le puedan llegar por su vecino del sur, e
incluso teniendo en cuenta los módulos que pueda incorporar al expandirse,
le será imposible completar la expansión de la rama. Para evitar situaciones
como esta el módulo ĺıder expande una señal de reanudación a su vecino del
norte antes de expandirse (imagen (c)) y este vuelve a estado de expansión
(indicado por el cambio de color de verde a azul) a la iteración siguiente
(imagen (d)) volviendo a permitir el paso de módulos comprimidos.

3.3. Algoritmo con señal de parada para toda la
configuración

3.3.1. Objetivo

Como en las dos modificaciones anteriores, el objetivo es el de intentar
evitar al máximo los movimientos innecesarios en la fase de construcción de
la configuración final, usando solo mensajes de pausa y cambios de estado,
solo que esta vez lo que se busca es ver los beneficios y el coste de mantener
en estado de pausa a todos los módulos de la configuración, incluyendo los

Algoritmo con señal de parada para toda la configuración 37

que están en estado de compresión.

3.3.2. Estrategia

La estrategia es análoga a las dos modificaciones anteriores, solo que esta
vez extendemos la señal de pausa y reanudación no solo de hijo a padre, sino
a absolutamente todos los módulos de la configuración.

Esto implica que las condiciones de emisión de las dos señales, pausa
y reanudación, son las mismas que antes, sin embargo, a diferencia del an-
terior caso, no pararán de difundirse hasta que encuentren una hoja de la
configuración.

Naturalmente, esto se hace evitando que la señal rebote indefinidamente
entre padre e hijo. Tampoco existe ningún peligro de que una misma señal se
expanda ćıclicamente entre los módulos: al estar todos conectados en forma
de árbol, no existen ciclos.

3.3.3. Reglas

Como esta modificación solo afecta a la fase de expansión del árbol,
todas las normas afectadas son de la categoŕıa [E]. Se ha creado una gran
cantidad de reglas nuevas para poder pausar y reanudar los módulos tanto
en expansión como en compresión.

Se han añadido varios estados nuevos como PausR o PausC para dis-
tinguir entre módulos pausados que teńıan estado Root o Comp de los que
estaban en expansión.

3.3.4. Problemas

Env́ıo de señales a módulos desconectados

El simulador permite el paso de mensajes a módulos que están desconec-
tados del emisor siempre que sean vecinos inmediatos, es decir, que estén
a una unidad de distancia del emisor. En una primera implementación de
esta modificación, las reglas enviaban las señales de parada y reanudación
a hacia todas direcciones exceptuando la dirección por la que se hab́ıa re-
cibido dicha señal, con la idea de que si en una dirección no hab́ıa ningún
módulo conectado la señal no se propagaŕıa hacia alĺı pero śı hacia las demás
direcciones. Por supuesto, este conjunto de reglas fallaba por lo explicado al
principio de este parágrafo.

Para solucionar este problema se creó una nueva regla por cada combi-
nación posible de entrada/salida de señal (incluyendo dirección de entrada).
Es decir, por cada dirección posible de entrada a un módulo de las señales
de parada o reanudación, existe una norma para cada caso en que dicho
módulo solo esté conectado a 2 módulos (un padre de donde viene la señal y

38 Mejoras al algoritmo original

un hijo por donde enviarla), otra por cada caso en que en que esté conectado
a 3 módulos y otra par cada caso en que esté conectado a 4 módulos.

Esta es una de las causas de que, de todos los conjuntos de reglas vistos
hasta ahora, este es el más largo con diferencia.

Expansión de señal al terminar la reconfiguración

Una vez alcanzada la forma final al acabar la última rama, el padre de
dicha hoja emite una señal de pausa. Esta señal se expande por toda la con-
figuración. Incluso cuando se ha alcanzado la configuración final, si la señal
aún no ha alcanzado todos los módulos seguirá propagándose, retrasando el
final de la reconfiguración.

Sin el uso de contadores, este problema es imposible de solucionar, ya
que no hay manera alguna de que los módulos sepan que han llegado al final
de la reconfiguración y que por tanto ya no es necesario extender esta señal.
Únicamente se pudo mitigar el problema eliminando reglas que permit́ıan el
paso de la señal de parada de la segunda rama de la ráız (la rama del Este)
a la primera (la rama Sur).

3.3.5. Alternativas

Se consideró la posibilidad de implementar un sistema de contadores
en cada módulo que mantuvieran la cuenta de cuántos módulos se necesi-
tan en cada dirección para alcanzar la reconfiguración final. Finalmente se
implementó este sistema en el algoritmo multiĺıder.

3.3.6. Modelos de prueba

Para comprobar el correcto funcionamiento de estas nuevas reglas se
realizaron todo un conjunto de pruebas. Sin embargo, debido a la cantidad
de casos necesarios para comprobar que el resto de reglas siguen funcionando
correctamente pese a la aplicación de nuestras nuevas reglas, solo mostramos
los modelos de prueba más significativos o que han dado más problemas.

Env́ıo de señales de pausa desde un módulo intersección

En este modelo de prueba, mostrado en la Figura 3.4, podemos ver un
ejemplo del funcionamiento del conjunto de reglas en una situación como
la descrita en env́ıo de señales a módulos desconectados (Apartado 3.3.4).
Cuando la señal llega a un módulo intersección vecino a otro módulo al
que no está conectado, el conjunto de reglas distingue la situación según las
conexiones y expande el mensaje de pausa en las direcciones necesarias.

3.4. VERSIÓN MULTILÍDER DEL ALGORITMO 39

(a)

(b) (c) (d)

Figura 3.4: Partiendo del árbol actual y generador final mostrados en (a)
podemos observar un caso como el descrito en el Apartado 3.3.4. En este
ejemplo podemos ver en (b) un módulo en estado de pausa que tiene por
vecinos a un módulo en estado ĺıder y a tres módulos en estado de expansión
(véase (c)). Como dicho módulo solo está conectado a dos de sus tres vecinos
en expansión, solo env́ıa dos mensajes de pausa, tal como se observa en (d).

Expansión de señal al terminar la reconfiguración

En la Figura 3.5 se muestra un caso de expansión de la señal de pausa
una vez llegado al final de la reconfiguración (descrito en el Apartado 3.3.4).
Como se puede apreciar en (a) y en (b), una vez acabada la reconfiguración
se extiende una señal de pausa. Incluso cuando el ĺıder vuelve a la ráız, la
señal sigue expandiéndose como muestra (c), hasta pausar todos los módulos
posibles como se puede ver en (d). Como ningún módulo sabe si la señal es
necesaria o no, es imposible pararla. Sin embargo, como la rama sur de la
ráız siempre acaba su reconfiguración antes que la rama este, la ráız no
propaga la señal de parada por dicha rama, ahorrando aśı pasos de señal
innecesarios.

3.4. Versión multiĺıder del algoritmo

3.4.1. Objetivo

El objetivo de esta modificación es el de reducir el número de movimien-
tos innecesarios, mejorando la distribución de los módulos durante la fase
de construcción de la reconfiguración final.

Para conseguirlo mejoramos el conocimiento de la configuración final
que tiene cada módulo, y aplicamos cambios de estado y paso de señales
parecidos a los usados en las modificaciones anteriores.

40 Mejoras al algoritmo original

(a)

(b) (c) (d)

Figura 3.5: Partiendo del árbol actual y generador final mostrados en (a), el
módulo ĺıder emite una señal de pausado a su vecino del sur tal como muestra
(b). Iteraciones más tarde, incluso cuando la señal de ĺıder ha vuelto a la
ráız, la señal sigue expandiéndose, véase (c), hasta llegar a todos los módulos
posibles. Como se puede observar en (d) los únicos módulos que no quedan
en estado de pausa son, en este caso, los módulos por los que ha vuelto la
señal de ĺıder hasta la ráız, reanudando los módulos a su paso.

3.4.2. Estrategia

En este caso, la estrategia depende de que en todo momento, desde el
instante en que se crean los árboles generadores inicial y final hasta que
finaliza la reconfiguración, cada módulo tanto del árbol generador actual
como del final sepa exactamente cuántos módulos cuelgan de cada una de
sus ramas. El primer recuento de módulos se realiza en la fase de búsqueda
del módulo ráız ya que se aprovecha la señal Back que viaja de de las hojas
a la ráız para contar los módulos de cada rama. Utilizando esta información,
ya que todo ĺıder se encuentra siempre en su posición final de la reconfigura-
ción, cuando un módulo entra en estado ĺıder puede comparar el número de
módulos que cuelgan de sus ramas con su equivalente en el árbol generador
de la configuración final para saber exactamente cuántos módulos le sobran
o le hacen falta en cada dirección.

Esto permite coger módulos de las ramas en donde sobren y expandirlos
en las direcciones que haga falta. Al expandir por primera vez en una nueva
dirección las reglas dan el estado ĺıder al primer módulo de la rama, creando
aśı más de un ĺıder y avanzando por múltiples ramas del árbol a la vez. Al
repartir los módulos entre las direcciones en las que sean necesarias, las reglas

Versión multiĺıder del algoritmo 41

dan prioridad a las direcciones que necesitan mayor cantidad de módulos.

3.4.3. Reglas

En esta modificación se han editado prácticamente todas y cada una de
las reglas de todos los grupos del algoritmo original para que acepten los
nuevos cambios de estado, las nuevas señales de recuento de módulos y los
efectos derivados de la presencia de múltiples módulos en estado LIDER.

Por supuesto, para implementar todos estos mecanismos se han creado
una gran cantidad de nuevas reglas, haciendo de esta la modificación con
mayor número de reglas de todo el proyecto.

3.4.4. Problemas

Intersección de señales

El algoritmo original no estaba pensado para funcionar con más de un
ĺıder activo y era este el que emit́ıa la gran mayoŕıa de las señales, por eso
mismo era más sencillo saber cuándo y cómo cambiar de estado o realizar una
acción. Ahora, con muchos módulos en estado ĺıder expandiéndose a la vez y
la gran cantidad de señales que viajan a través de los árboles generadores, la
manera de interpretar las señales originales crea situaciones absurdas como
la de dar el estado de ĺıder a un módulo que ya se ha comprometido con
otro a comprimirse o pedir a un módulo que expanda el módulo contenido
en su interior cuando en realidad no tiene ninguno.

Estos problemas se deben principalmente a que un módulo no puede com-
probar qué mensajes ha recibido o enviado su vecino y, por tanto, desconoce
sus intenciones.

Para evitar estas situaciones se ha creado todo un conjunto de estados
que expresan la situación de cada módulo y facilitan a los módulos el saber
si pueden pedir algo a su vecino o no. De esta forma si un módulo quiere dar
el estado de ĺıder a otro que está en estado SASKC1 (esperando a recibir
confirmación de que puede comprimirse) el primero sabe que debe esperar a
ver si su vecino vuelve al estado Cmprs (la compresión no ha podido llevarse
a cabo) o si por el contrario se comprime.

Repeticiones ćıclicas de un mismo conjunto de estados

La creación de un conjunto de estados que expresan la situación de ca-
da módulo facilita mucho el control sobre cuándo aplicar un determinado
tipo de normas o no, sin embargo también puede generar una repetición de
cambios de estado que impide el avance de la reconfiguración.

Por ejemplo, un módulo ĺıder puede estar esperando a enviar a su vecino
una señal DISAL mientras este cambia entre los estados SCmprs, SASKC1
y SASKC2 de forma ćıclica (probar a comprimirse, no recibir confirmación

42 Mejoras al algoritmo original

y volver a intentarlo). Como al intento de enviar una señal DISAL le siguen
un par de estados de espera de respuesta, y dicha señal solo puede aplicarse
si el vecino está en estado SCmprs, es posible que siempre se intente enviar
la señal cuando este se encuentra en estado SASKC1 o SASKC2, atascando
la reconfiguración.

Para solucionar este problema se han creado nuevos cambios de estado
que permitan la salida de dichos bucles. En el caso comentado anteriormente,
por ejemplo, al recibir la señal DISAL en el estado SASKC1 o SASKC2, se
pasa a SCmD*1 o SCmD*2 respectivamente (donde * es una de las cuatro
direcciones) haciendo que después de SCmD*2 se ejecute la acción provocada
por la señal DISAL en vez de volver al estado SCmprs.

No perder la cuenta de los módulos robados

Como se ha mencionado en la sección Estrategia de esta modificación
(Apartado 3.4.2) es esencial que cada módulo sepa cuántos módulos cuelgan
de cada una de sus ramas. Esta tarea se ve dificultada por la acción DISAL,
que ocurre cuando un ĺıder decide incorporar un conjunto de módulos que
cuelgan de otra rama diferente del árbol generador.

Eliminar un número determinado de módulos de una rama y añadirlos
a otra afecta, obviamente, a la cantidad de módulos necesarios para llegar a
la configuración final en dichas ramas y, por tanto, a la dirección y cantidad
de módulos que circulan por estas. Para evitar que módulos innecesarios se
muevan por una rama solo para encontrarse con que ya no son necesarios,
se han creado un conjunto de señales como las de pausa o reanudación de
las modificaciones anteriores, que informan a todos los módulos del árbol
ubicados entre el módulo afectado y la ráız del árbol de que ese camino
espećıfico ha perdido/ganado un número determinado de módulos. Al recibir
esta señal, los módulos actualizan los datos sobre los módulos que cuelgan
de sus ramas, pudiendo cambiar aśı la dirección a la que env́ıan o de la que
reciben módulos.

Por supuesto esto no soluciona del todo los movimientos innecesarios ya
que, hasta que no llega la señal de aviso, los módulos de la rama no saben
nada sobre el cambio en el número necesario de módulos.

3.4.5. Alternativas

No se consideraron más alternativas para este algoritmo.

3.4.6. Modelos de prueba

Para comprobar el correcto funcionamiento de estas nuevas reglas se
realizaron todo un conjunto de pruebas. Sin embargo, debido a la cantidad
de casos necesarios para comprobar que el resto de reglas siguen funcionando

Versión multiĺıder del algoritmo 43

correctamente pese a la aplicación de nuestras nuevas reglas, solo mostramos
los modelos de prueba más significativos o que han dado más problemas.

Cambio de estados e intersección de señales

(a)

(b) (c) (d)

Figura 3.6: Partiendo del árbol actual y generador final mostrados en (a) ve-
mos un par de módulos que acaban de empezar la acción de paso de módulo
comprimido. Como podemos ver en (b) uno de los módulos ha enviado a su
vecino del norte una señal para iniciar el paso de módulo comprimido y al
hacerlo ha pasado a estado ASKC1 (de color rosa). Una iteración más tarde,
como muestra (c) el vecino del norte (ahora en estado ASKC1) ha aceptado
la señal enviando un mensaje de confirmación al módulo que inició la comu-
nicación, el cual ha pasado a estado ASKC2 (color morado). Para finalizar
el proceso, el módulo en estado ASKC2 ha enviado el módulo comprimido a
su vecino del norte y luego ha pasado a estado Cmprs. Dicho vecino acepta
el módulo y pasa a estado ASKC2. Este último paso puede verse en (d).

En este modelo de prueba se pueden apreciar situaciones como las des-
critas en los problemas intersección de señales y repeticiones infinitas de un
mismo conjunto de estados (ambos problemas están descritos en el Apartado
3.4.4). En la Figura 3.6 se puede ver como un módulo, al pedir permiso para
pasar un módulo comprimido a un vecino, va cambiando de estado en cada
iteración hasta recibir confirmación de que puede llevar a cabo la operación.

La Figura 3.7 muestra la intersección de una señal DISAL con un estado
ASKC1. En este caso el módulo cambia al estado CmDN1 para evitar caer
en un bucle infinito como el descrito en los problemas citados anteriormente.

44 Mejoras al algoritmo original

(a) (b) (c)

(d) (e) (f)

Figura 3.7: Partiendo del árbol actual y generador final mostrados en (a) y
fijándonos más concretamente en los módulos señalados en (b), vemos un
módulo en estado ASKC1 (acaba de pedir a su vecino del norte que acepte su
módulo comprimido) de color rosa que recibe una señal para desconectarse
de su rama actual y conectarse a la rama de su vecino del oeste. Al recibir
la señal, el módulo pasa a estado CmDW1 y su vecino, como emisor de esta,
pierde el estado de ĺıder y pasa a estado de expansión tal y como se puede
ver en (c) en donde los módulos tienen color verde y azul respectivamente.
Además el módulo en verde ha recibido la confirmación de que puede enviar
su módulo comprimido al norte. Una iteración más tarde el módulo en estado
CmDW1 env́ıa su módulo comprimido y pasa a estado CmDW2 (imagen
(d)). Para acabar, el módulo pasa a estado SDISAW y luego se conecta a
la rama de su vecino del oeste y pasa a estado de ĺıder (imágenes (e) y (f)
respectivamente).

Caṕıtulo 4

Implementación del
algoritmo multiĺıder

4.1. Árbol Inicial [S]

Este apartado describe el proceso mediante el cual se genera el árbol
generador de la configuración inicial.

4.1.1. Inicio del algoritmo

Al principio todos los módulos de la configuración inicial deben encon-
trarse en estado Start. Una vez iniciado el algoritmo todo módulo que no
se encuentre conectado a otro módulo ya sea en dirección este y/o sur se
considera a si mismo como candidato a ráız del árbol y emite un mensaje,
a través del canal 01, a los vecinos a los que está conectado. Este mensaje
indica la posición relativa del módulo vecino respecto al candidato a ráız.
Es decir, considerando siempre el candidato a ráız como el centro de una
cuadŕıcula de 100|times100, donde la ráız ocupa la posición (50,50), esta
env́ıa a su vecino del este la posición (51,50) y la posición (50,51) a su ve-
cino sur. Esta posición relativa se guarda en la variable C00 concatenando
el valor de la coordenada x con el valor de la coordenada y. Es decir, si un
módulo tiene una posición relativa (51,50), el valor de su registro C00 es
de 5150. Una vez enviado el mensaje, el candidato a ráız entra en estado
CanbS.

4.1.2. Cadena de mensajes candidatos

Al recibir los mensajes de los candidatos a ráız con su posición relativa,
un módulo trata los mensajes de la manera siguiente manera:

1. Si es el primer mensaje que recibe, guarda, en el registro C01, la di-
rección de la que ha recibido el mensaje como la dirección hacia la que

45

46 Implementación del algoritmo multiĺıder

se encuentra la ráız, y env́ıa a los vecinos a los que está conectado, ex-
ceptuando el vecino del que ha recibido el mensaje, su correspondiente
posición relativa.

2. Si ha recibido algún otro mensaje anteriormente y el nuevo mensaje
contiene un valor diferente de la posición relativa que el módulo ha
almacenado, compara ambos valores, escoge el mejor de los dos (el
que indique que la ráız está lo más al oeste posible y, en caso de
empate, más al norte) y, en caso de escoger el nuevo mensaje, cambia
su posición relativa, guarda la nueva dirección de la ráız y env́ıa la
nueva posición relativa a sus vecinos.

3. Por último, si ha recibido otro mensaje anteriormente y el nuevo men-
saje contiene el mismo valor que el que el módulo tiene almacenado,
evento que indica la existencia de un ciclo en el grafo de conexiones
entre módulos, el módulo se desconecta de todos los vecinos que le han
enviado el mismo mensaje menos uno. Este módulo al que permanece
conectado se elije según prioridad de la dirección: norte >oeste >este
>sur.

Una vez tratado el mensaje, el módulo entra en estado WaitS. Además,
si un candidato a ráız recibe un mensaje de otro candidato a ráız, trata
el mensaje como en el caso 2) pues esta situación solo se da si existe un
candidato a ráız mejor que él.

4.1.3. Mensaje recibido en las hojas

Una vez que un mensaje con una posición relativa llega a un módulo que
no tiene a quién reenviarlo, ha llegado a una hoja del árbol, y esta empieza
una nueva serie de mensajes en dirección a la ráız del árbol, o a lo que la hoja
cree que es la ráız. Esta serie de mensajes consta de un mensaje de texto y
otro numérico que son enviados al mismo tiempo: uno de ellos indica que se
ha alcanzado una hoja (MWBack) y el otro, enviado por el canal 01, indica
el número total de hijos del módulo que env́ıa el mensaje (en caso de una
hoja este valor es 0). Una vez que un módulo ha enviado estos dos mensajes
en dirección a la ráız este entra en estado BackS.

4.1.4. Cadena de mensajes de las hojas

Cuando un módulo recibe un mensaje Back quiere decir que el camino
de la ráız a una de sus hojas se ha completado correctamente solucionando
los ciclos que haya encontrado en su camino. Al recibir el mensaje, el módu-
lo en cuestión guarda en C02 la dirección del emisor. Es decir, al recibir el
mensaje el módulo suma a su registro C02 el valor 1000, 100, 10 o 1 de-
pendiendo de si ha recibido el mensaje de su vecino del norte, oeste, este

Árbol Inicial [S] 47

o sur respectivamente. Una vez ha recibido el mensaje Back de todos los
módulos a los que está conectado exceptuando a su padre, del cual no puede
llegar a recibirlo nunca, el registro C02 contiene las direcciones de los hijos
del módulo. En este momento, el módulo env́ıa el mensaje Back a su padre
y sigue la cadena.

Además, como con cada mensaje Back recibido el módulo también recibe
una señal numérica indicando su número de descendientes en la dirección
del emisor, el módulo guarda el valor de la señal numérica en su registro
C10, C11, C12 o C13 dependiendo de si ha recibido el mensaje de su vecino
del norte, oeste, este o sur respectivamente. A cada actualización de dichos
registros, reescribe el valor del registro C14 con la suma de sus descendientes
en todas sus direcciones.

4.1.5. Creación de la ráız

Cuando un módulo candidato a ráız recibe el mensaje Back de todos
sus hijos entonces el candidato pasa a ser la ráız. En este momento el árbol
generador inicial está completo, y cada módulo conoce el número de sus
descendientes en cada una de las cuatro direcciones y todas las cadenas
de mensajes Back han llegado a la ráız. Una vez alcanzado este punto la
ráız entra en estado RootS y env́ıa un mensaje a sus hijos para iniciar la
reconfiguración.

4.1.6. Conocer la configuración objetivo

Para simular la transmisión a los módulos de los datos necesarios sobre
la configuración final que deben alcanzar, situamos una copia de dicha con-
figuración objetivo en el mismo universo del simulador. Todos sus módulos
se caracterizan por encontrarse en estado Final, y su módulo más oriental
se encuentra a la misma altura (coordenada y) que el de la configuración
inicial, y a su izquierda.

En el momento en que cambia a estado RootS, la ráız de la configuración
inicial inicializa el valor de su registro C23 a 0. Este registro se incrementa
a cada iteración y contiene el valor de la distancia a la que se encuentra la
ráız del árbol generador inicial de la ráız del árbol generador de la copia de
la configuración final. Una vez que el registro C23 alcanza el valor real de
la distancia entre ambas ráıces, este para de incrementarse y la ráız pasa a
estado RootL para indicar que es ráız y ĺıder al mismo tiempo. Este registro
es la manera que tiene el algoritmo de simular que la ráız conoce todos los
datos necesarios para completar la reconfiguración.

Asimismo, con el mismo objetivo, el conjunto de reglas descritas en los
apartados 4.1.1 a 4.1.5 se aplica también a la copia de la configuración
final, que se usa para simular la transmisión a la ráız de los datos de la
configuración objetivo. En esta caso, sin embargo, la ráız pasa a estado

48 Implementación del algoritmo multiĺıder

RootF y deja de actuar.

4.1.7. Cadena de mensajes Slave

En el instante en que se encuentra la ráız del árbol, esta env́ıa a sus
hijos el mensaje Slave, que indica a todo el que lo recibe que debe entrar en
estado Cmprs. Esta cadena continúa pasando de padres a hijos hasta que
alcanza las hojas del árbol generador inicial que, al no tener hijos, no pueden
continuar la cadena.

4.2. Reglas de compresión [C]

Este apartado explica el funcionamiento de las reglas de compresión del
algoritmo multiĺıder.

4.2.1. Compresión

Una vez la señal Slave ha llegado a una hoja, y esta pasa a estado Cmprs
y, por tanto, entra en fase de compresión, se realiza la primera compresión
f́ısica de un módulo. La compresión consta de tres pasos:

1. El módulo hoja env́ıa a su padre un mensaje ASK Z.

2. El padre, si no contiene ningún módulo comprimido ni ha recibido una
señal DISAL, que se describe más adelante, contesta a su hijo con la
señal CAN Z.

3. Cuando la hoja recibe el mensaje CAN Z, pasa a comprimirse dentro
del padre en la iteración siguiente. Si no recibe el mensaje CAN Z en
dos iteraciones, vuelve al primer paso.

Además, cada vez que un módulo implicado en la compresión env́ıa un
mensaje CAN Z o ASK Z, para evitar interferencias al recibir otros mensajes
y proteger la compresión, entra en un ciclo de estados en donde cada estado
dura una iteración: Cmprs → ASKC1 → ASKC2 → Cmprs.

Una vez se ha comprimido la hoja, esta lo indica dando el valor 1 a sus
registros C24 y C25. El módulo padre, para indicar que contiene un módulo
comprimido en su interior, da valor 1 a sus registros C25 y C15.

Cuando un módulo recibe varias señales ASK Z, de varios hijos diferen-
tes, el módulo atiende las peticiones según la prioridad de compresión. Esta
prioridad es, de mayor a menor: norte, oeste, este y sur.

Por supuesto, al comprimir un módulo y, por tanto, perder un descen-
diente, el padre de la hoja descuenta un descendiente de sus registros C14
y C10, C11, C12 o C13 dependiendo de si la compresión se realiza por el
norte, oeste, este o sur respectivamente.

4.3. REGLAS DE EXPANSIÓN [E] 49

4.2.2. Paso de módulos comprimidos en fase de compresión

Una vez comprimidos, los módulos viajan en dirección a la ráız del árbol.
Para ello utilizan la operación de cambio de módulo comprimido, SWZIP.

Esta operación realiza los mismos pasos que la operación de compresión,
pero ahora, utiliza el mensaje ASKSZ en lugar de ASK Z y la señal de
CANSZ en lugar de CAN Z :

1. El módulo que desea pasar el módulo comprimido env́ıa a su padre un
mensaje ASKSZ.

2. El padre, si no contiene ningún módulo comprimido ni ha recibido una
señal DISAL, contesta a su hijo con la señal CANSZ.

3. Cuando el hijo recibe el mensaje CANSZ, pasa a enviar el módulo
comprimido a su padre en la iteración siguiente. Si no recibe el mensaje
CANSZ en dos iteraciones, vuelve al primer paso.

Como en la operación de compresión, al enviar cualesquiera de los dos
mensajes, los módulos implicados en la operación entran en el mismo ciclo
de protección de la compresión: Cmprs → ASKC1 → ASKC2 → Cmprs.

Aunque el módulo padre recibe el módulo comprimido mientras está en
estado ASKC2, no permitimos que ni el padre ni el hijo que env́ıa el módu-
lo comprimido ejecute ninguna otra regla hasta no estar ambos en estado
Cmprs, aumentando el número de iteraciones entre movimientos de un mis-
mo módulo comprimido a cuatro. Estas cuatro iteraciones en lugar de las
tres que dura el paso de módulos comprimidos en una rama en fase de expan-
sión son necesarias para poder reaccionar correctamente a las operaciones
de cambio de rama sin perder la cuenta de los descendientes y ascendientes
de cada módulo.

Esta operación de paso de módulo comprimido tiene menos prioridad que
la operación de compresión. Es decir, si un módulo recibe al mismo tiempo
la señal ASK Z y la señal ASKSZ, el módulo atiende entes la señal ASK Z
sin importar la dirección de la que proceda.

Al pasar un módulo y, por tanto, perder su módulo comprimido, el emisor
del módulo pone a 0 el valor de sus registros C15 y C25.

4.3. Reglas de expansión [E]

Este apartado describe el funcionamiento de las reglas de expansión del
algoritmo multiĺıder.

Cabe destacar que la fase de expansión y la fase de compresión coinciden
en el tiempo durante parte de la ejecución, por lo que es necesario tener en
cuenta la interferencia de reglas de ambas fases. Es por esta razón por lo
que se ha decidido dar a las reglas de la fase de expansión prioridad sobre
las reglas de la fase de compresión, simplemente para evitar interferencias.

50 Implementación del algoritmo multiĺıder

4.3.1. Expansión del ĺıder

Una vez la ráız ha recibido los datos del árbol generador final, es decir,
cuando ha entrado en estado RootL, y un módulo comprimido ha llegado a
la ráız, empieza la fase de expansión.

El primer paso que realiza la ráız es el de propagar la fase de expansión
por las ramas indicadas por la información del árbol generador final. Esta
información puede provocar dos situaciones distintas: o la ráız no tiene des-
cendientes en la dirección indicada (la rama no existe), en cuyo caso hay
que usar el módulo comprimido contenido en la ráız para expandir la rama,
o la ráız ya tiene descendientes y puede simplemente propagar la señal de
ĺıder en esa dirección.

Al ser este un algoritmo que acepta más de un módulo en estado ĺıder al
mismo tiempo, si la ráız del árbol generador final tiene descendientes tanto
al sur como el este, la ráız del árbol generador actual expande ambas ramas
al mismo tiempo generando situaciones en las que ambas ramas ya existan
o que una rama exista y la otra no. Jamás se da una situación en la que
ambas ramas no existan ya que, por fuerza, el módulo ráız estaba conectado,
al menos, a la rama por la que ha recibido el módulo comprimido.

En el caso en que no existan descendientes en la dirección en la que
debeŕıa expandirse una rama, la ráız del árbol generador actual expande
el módulo comprimido que contiene en su interior en la dirección que co-
rresponda (realizando un movimiento UNZIP) y le otorga el estado de ĺıder
informándole a la vez de que ya no esta comprimido mediante un mensaje
numérico por el canal 02. Si por el contrario ya existen descendientes de
la ráız en la dirección en la que debe expandirse el árbol, simplemente se
le otorga el estado de ĺıder al hijo de la ráız en esa dirección. Al enviar el
mensaje LIDER a sus hijos para que pasen a estado LIDER, el módulo ráız
da el valor 1 a su registro C20 para proteger el paso del estado de ĺıder
evitando la ejecución de otras reglas.

Independientemente del caso, los valores del módulo que ha pasado a
estado LIDER se actualizan con la información del árbol generador final:

C02 pasa a tener valor 0 ya que el módulo ĺıder actual no tiene ningún
hijo en estado de expansión.

C04 indica el número de hijos del ĺıder actual que aún necesitan expan-
dirse y la dirección de estos. El valor del registro se consigue sumando
al registro 1000, 100, 10 y 1 si tiene hijos al norte, oeste, este o sur
respectivamente.

C05 recibe el valor de la dirección a la que el módulo debe enviar los
módulos comprimidos que reciba. La dirección se indica de la misma
manera que en el caso del registro C04.

Reglas de expansión [E] 51

C16, C17, C18 y C19 indican el número de descendientes o ascen-
dientes necesarios en dirección norte, oeste, este y sur, respectivamen-
te para completar la expansión de una o más ramas. El valor es 0
si no se necesitan más módulos, negativo si sobran módulos en una
determinada dirección y positivo si se necesitan más módulos.

Una vez se han creado los primeros módulos ĺıder, estos a su vez siguen
transmitiendo el estado de ĺıder según los parámetros del árbol generador
final.

4.3.2. Expansión a una posición ocupada conexa

Análogamente al caso de la ráız, los módulos, en estado LIDER o Expnd,
que quieren expandir este estado a un vecino al que están conectados, solo
tienen que realizar los mismos pasos que en el caso de la expansión de la
ráız por descendientes ya existentes. Una vez se emite el mensaje LIDER, se
actualiza el valor del registro 02 del emisor, para que registre la dirección en
la que ha expandido un hijo, y el valor de su registro 04, también del emisor,
para que elimine la dirección por la que ha expandido un hijo. Además, al
actualizar dichos registros, si el módulo se encontraba en estado LIDER,
pasa a tener el estado Expnd.

Cada vez que un módulo expande uno de sus hijos, este suma 1 al valor
de su registro C08, que es un contador que indica el número de hijos que ha
expandido un módulo y que permite saber.

4.3.3. Expansión a una posición vaćıa

Como en el caso de la expansión de la ráız, es común encontrar que un
módulo, en estado LIDER o Expnd, considera que debe expandirse a una
posición vaćıa de la cuadŕıcula. En estos casos, se realizan los mismos pasos
descritos para el caso de la expansión de la ráız a una posición vaćıa. Además,
una vez se emite el mensaje LIDER, se actualiza el valor del registro 02 del
emisor, para que registre la dirección en la que ha expandido un hijo, y el
valor del registro 04, también del emisor, para que elimine la dirección por
la que ha expandido un hijo. Al actualizar dichos registros el módulo pasa a
tener el estado PExpn durante una iteración para, a la iteración siguiente,
pasar a estado Expnd.

Cada vez que un módulo expande uno de sus hijos, este suma 1 al valor
de su registro C08.

4.3.4. Expansión a una posición ocupada no conexa

En ocasiones, un módulo, en estado LIDER o Expnd, debe expandir una
rama en una posición en la que se encuentra un módulo en fase de compresión

52 Implementación del algoritmo multiĺıder

al que no está conectado. En estos casos se realiza una operación de cambio
de rama. La operación del cambio de rama consta de los pasos siguientes:

1. El módulo que desea expandir una de sus ramas env́ıa el mensaje
DISAL a su vecino y, si no se encontraba ya en ese estado, pasa a
estado Expnd.

2. El vecino recibe el mensaje y, como le es posible, realiza la operación
de cambio de rama, recibiendo el estado LIDER y actualizando sus
datos.

3. El vecino, ahora ĺıder de la rama, env́ıa al emisor de la señal DISAL
un mensaje EXPDL para confirmar que se ha realizado la operación
con éxito.

4. El ĺıder de la rama emite una señal de recuento, actualizando los conta-
dores de descendientes/ascendientes de todos los módulos de las rama
que ha abandonado y a la que se ha unido.

Por supuesto, este es solo el caso en que la operación se ejecuta con éxito.
Si el vecino que recibe la señal DISAL es una hoja, dependiendo de su estado
es posible que la operación acabe de una forma distinta:

1. El módulo que desea expandir una de sus ramas env́ıa el mensaje
DISAL a su vecino y, si no se encontraba ya en ese estado, pasa a
estado Expnd.

2. El vecino recibe el mensaje y considera que no le es posible realizar el
cambio de rama.

3. El vecino env́ıa al emisor de la señal DISAL el mensaje NDISA, indi-
cando que no se ha realizado la operación de cambio de rama.

4. El emisor de la señal DISAL recupera su estado de ĺıder y actualiza
sus registros.

La razón por la que la operación puede no realizarse es la siguiente: si
el módulo que recibe el mensaje de cambio de rama es una hoja esperando
la respuesta de su padre para comprimirse, en estado ASKC1 o ASKC2,
no le es posible confirmar la operación de cambio de rama hasta saber si
la respuesta de su padre llegará en las iteraciones previstas o no. En estos
casos, para indicar que se ha recibido una señal DISAL, el ciclo de estados del
módulo hoja pasa a ser CmD*1 si se encontraba en estado ASKC1 o CmD*2
si se encontraba en estado ASKC2 (el asterisco cambia según la dirección
por la que se recibe la señal DISAL). Si durante las iteraciones en las que
el módulo hoja se encuentra en estado CmD*1 o CmD*2 recibe el mensaje

Reglas de expansión [E] 53

CAN Z de su padre, el módulo hoja entra en estado ZIPNW, para indicar
que debe comprimirse en la siguiente iteración, y env́ıa el mensaje NDISAL
al emisor de la señal DISAL. Si no recibe el mensaje CAN Z durante ese
tiempo, la hoja realiza el cambio de rama.

En el caso en que el módulo que debe realizar el cambio de rama no es
una hoja, la operación no puede generar un mensaje NDISA. Aún aśı, en
este caso el ciclo de estados del módulo que debe realizar el cambio de rama
se ve alterado de una forma parecida. Como en el caso anterior, el ciclo de
estados del módulo pasa a ser CmD*1 si se encontraba en estado ASKC1 o
CmD*2 si se encontraba en estado ASKC2. Tanto si se recibe un mensaje
CANSZ de su padre mientras se encuentra en estos dos estados como si no, el
módulo pasa del estado CmD*2 (o de CmD*1 si recibe un mensaje CANSZ)
a estado DISAN. La finalidad de este ciclo es la de evitar una repetición de
estados infinita, en la que nunca se ejecute el cambio de rama y en su lugar
se ejecuten siempre operaciones de paso de módulos comprimidos.

Cada vez que un módulo expande uno de sus hijos, suma 1 al valor de
su registro C08.

4.3.5. Actualización de los registros contadores de módulos

Como consecuencia de una operación de cambio de rama, todos los módu-
los que pertenecen a las dos ramas implicadas en la operación actualizan una
serie de registros con valores incorrectos. Estos registros son los que llevan
la cuenta del número de descendientes de cada módulo y del número de
módulos necesarios en cada dirección para completar la reconfiguración. Pa-
ra volver a actualizar estos valores, el módulo que realiza la operación de
cambio de rama emite cuatro cadenas de señales, todas ellas en dirección a
la ráız del árbol generador actual.

Por la rama que ha dejado env́ıa, a través del canal 08, un mensaje
numérico con valor 9999 y, por el canal 07, el número de módulos que ha
perdido la rama. El valor 9999 indica a los demás módulos que reciben
el mensaje que, por la dirección por la que se ha recibido el mensaje, han
perdido el número de módulos que se indica por el canal 07. Una vez recibidos
ambos mensajes, el valor indicado por el canal 07 se guarda en el registro
C06 para poder, una vez actualizados todos los registros, mandar el mismo
valor al antecesor, siguiendo la cadena, hasta llegar a la ráız.

A través de la rama a la que se ha conectado, el módulo que ha realizado
el cambio de rama env́ıa, a través del canal 08, un mensaje numérico con
valor 9998 y, por el canal 07, el número de módulos que ha ganado la rama.
De esta forma, siguiendo la cadena del mismo modo descrito en el párrafo
anterior, se actualizan todos los módulos de la rama hasta llegar a la ráız. La
única diferencia es que el mensaje con valor 9998 indica que se han añadido
módulos a la rama en lugar de haberlos perdido.

Si dos mensajes de este tipo, tanto de perdida de módulos como de

54 Implementación del algoritmo multiĺıder

adición, coinciden a la vez en un mismo módulo, este calcula la diferencia, o
la suma, y emite los mensajes correspondientes hacia la ráız. Si el valor de
la diferencia es 0, no emite ningún mensaje hacia la ráız. Si la diferencia o
la suma, dependiendo de si se han recibido dos mensajes de adición, dos de
pérdida o uno de cada tipo, es negativa, el módulo env́ıa el valor entero del
resultado junto con la señal de pérdida, 9999, hacia la ráız. Si el resultado es
positivo, env́ıa hacia la ráız la señal de adición, 9998, junto con el resultado
hacia.

4.3.6. Paso de módulos comprimidos en fase de expansión

Como en el caso de los módulos comprimidos en fase de compresión, los
módulos comprimidos en fase de expansión también se mueven por las ramas
del árbol generador actual. Aunque los dos casos son parecidos, existen varias
diferencias.

Antes de continuar es necesaria una aclaración: distinguimos un módulo
comprimido en fase de compresión de un módulo comprimido en fase de
expansión simplemente por el estado en la que se encuentren los módulos que
los contienen. Una vez dejado esto claro, podemos describir el procedimiento
de paso de módulos comprimidos en fase de expansión.

1. El módulo que desea pasar el módulo comprimido env́ıa a su padre un
mensaje EXPND.

2. El padre, si no contiene ningún módulo comprimido, contesta a su hijo
con la señal CANEX.

3. Cuando el hijo recibe el mensaje CANEX, env́ıa el módulo comprimido
a su padre en la iteración siguiente. Si no recibe el mensaje CANEX
en dos iteraciones, vuelve al primer paso.

Si un módulo recibe más de un mensaje EXPND a la vez, decide que
mensaje tratar según el orden de prioridad visto anteriormente. De mayor a
menor prioridad: norte, oeste, este y sur.

Al enviar una señal EXPND, los módulos entran en un ciclo de esta-
dos que protege el paso de módulos comprimidos de interferencias de otras
señales: Expnd → ASKE1 → ASKE2 → Expnd. Si un módulo recibe la
señal EXPND, entra en un ciclo de estados distinto: Expnd → ASKE2 →
Expnd. A diferencia del caso en fase de compresión, el número de iteraciones
entre movimientos de un mismo módulo comprimido es de tres iteraciones
en lugar de cuatro. En la fase de expansión, al no existir la amenaza de las
operaciones de cambio de rama, ya que esta operación siempre la realiza un
módulo en fase de compresión, el algoritmo puede permitirse mover módulos
comprimidos por las ramas del árbol generador actual de forma más rápida.

Reglas de expansión [E] 55

Por eso el módulo que recibe la señal EXPND entra en estado ASKE2 en
lugar de pasar por ASKE1.

En el caso en que se trata de pasar un módulo en fase de compresión a
otro en fase de expansión, el módulo en fase de compresión realiza las mismas
acciones que su equivalente en la sección 4.2.2, mientras que el módulo en fase
de expansión entra, al recibir la señal ASKSZ, en el ciclo de estados Expnd
→ ASKE1 → ASKE2 → Expnd, haciendo que el paso de este módulo tarde
en ejecutarse cuatro iteraciones en lugar de tres.

Como se ha mencionado anteriormente, al obtener un módulo comprimi-
do, el módulo que lo recibe da valor 1 a sus registros C15 y C25 mientras
que el módulo que env́ıa el módulo comprimido da, a los mismos registros,
el valor 0.

4.3.7. Dirección de viaje de un módulo comprimido

A diferencia de la fase de compresión, en la fase de expansión los módulos
comprimidos viajan por las ramas no en dirección a la ráız o a un ĺıder
concreto, sino que viajan hacia donde se les necesita. Para saber dónde
hacen falta estos módulos comprimidos, se utilizan los registros C16, C17,
C18 y C19. Esencialmente, estos registros guardan la diferencia entre el
número de descendientes o ascendientes de un módulo en fase de expansión
respecto a los que debeŕıa tener según los datos del árbol generador final.

La dirección a la que se env́ıan los módulos comprimidos que recibe un
módulo en fase de expansión esta indicada por el registro C05. Este registro
señala la dirección del registro con mayor valor de los cuatro mencionados
anteriormente. La dirección se indica con los valores vistos anteriormente
para estos casos: 1000, 100, 10 y 1 para el norte, oeste, este y sur respecti-
vamente.

En caso de empate en el valor de los registros, se sigue la prioridad de
expansión. De mayor a menor prioridad: norte, oeste, este y sur.

Por supuesto, tanto el paso de módulos comprimidos como los cambios
de rama alteran el valor de estos registros.

4.3.8. Retorno del ĺıder

Una vez alcanzada la hoja de una rama del árbol generador final, la señal
de ĺıder vuelve a la ráız. Sin embargo, una vez pasada de hijo a padre, el
módulo padre jamás enviara la señal hacia la ráız hasta no estar seguro de
haber recibido las señales ĺıder de todos sus hijos. Esto se controla gracias
a que por cada módulo expandido hemos sumado 1 al valor del registro C08
del padre del módulo expandido. De esta forma, por cada señal de ĺıder que
vuelva de un hijo, se resta 1 del registro C08 del padre. Una vez que este
registro alcanza el valor 0, el módulo env́ıa la señal de ĺıder a su padre, en
dirección a la ráız.

56 Implementación del algoritmo multiĺıder

El retorno de una señal de ĺıder se indica mediante una señal con valor
1 enviada por el canal C01.

4.4. Fin de la reconfiguración [End]

Una vez un módulo ha enviado de vuelta a la ráız la señal de ĺıder
y ya no debe enviar más módulos comprimidos, es decir, el valor de sus
registros C15, C16, C17, C18, C19, C08 es 0, el módulo pasa a estado
DONEW. En este estado, como el módulo ya sabe que no debe realizar
ningún otro trabajo, busca entre sus vecinos inmediatos, aquellos que están
a una posición de distancia en cualquiera de sus cuatro direcciones, aquellos
en estado DONEW y, si no esta conectado a ellos, se conecta.

De esta forma, la reconfiguración acaba con una estructura con la misma
forma que el árbol generador final pero con todos los módulos conectados
entre śı.

4.4.1. Reglas de reparación

En este algoritmo, las únicas reglas consideradas como reglas de repa-
ración son las que deciden el valor del registro C05 (Apartado 4.3.7) ya
que dependen del valor de otros registros y no de una fase concreta de la
reconfiguración.

Caṕıtulo 5

Complejidad de los
algoritmos y análisis
experimental

l objetivo principal de este proyecto es el de hacer más eficiente el algo-
ritmo de reconfiguración de robots cristalinos, y para ello se han presentado
diferentes modificaciones y versiones del algoritmo de reconfiguración origi-
nal. Para ser capaces de estimar si una modificación ha mejorado o no el
algoritmo original se ha realizado un estudio teórico de las modificaciones y
otro experimental.

A continuación presentamos ambos estudios seguidos de las conclusiones
a las que estos nos han permitido llegar.

5.1. Complejidad de los algoritmos

El estudio teórico del algoritmo se ha realizado comparando el coste o la
mejora que supone una modificación respecto al algoritmo original. Gracias a
este estudio hemos podido estimar el coste adicional en número de mensajes
enviados que genera cada modificación aśı como el número de movimientos
innecesarios ahorrados.

5.1.1. Algoritmo con señal de parada hasta intersección

Esta modificación extiende una señal de pausa desde una hoja de una
rama que ha alcanzado su forma final hasta el primer módulo intersección
que aún necesite expandirse. De esta manera busca detener cuanto antes
los módulos comprimidos que viajan en dirección a la hoja y que ya no son
necesarios para expandir la rama por la que viajan. Esta señal de pausa es
mucho más rápida que el paso del estado ĺıder, el encargado de actualizar
los datos de cada módulo para decidir hacia dónde debe expandirse el árbol

57

58 Complejidad de los algoritmos y análisis experimental

generador actual, y por tanto se espera que sea capaz de evitar que estos
módulos innecesarios se muevan hasta que el módulo que los contiene reciba
el estado de ĺıder y pueda decidir la nueva dirección hacia la que viajar.

Proposición 5.1 El algoritmo con señal de parada hasta la intersección
aplicado a un árbol generador inicial de N módulos y a un árbol generador
final de H hojas env́ıa N − H − 1 mensajes de pausa: O(1) mensajes de
pausa por módulo y O(N) mensajes de pausa en total.

Demostración:

El coste adicional que causa la modificación en una misma reconfigura-
ción depende del número de mensajes de pausa enviados. Cada módulo, en
una misma reconfiguración, extenderá una sola vez la señal de pausa, justo
durante el momento en que la rama de la que forma parte ha alcanzado su
forma final. En concreto, como no es el módulo hoja el que emite la señal
de pausa sino su padre y teniendo en cuenta que el módulo ráız tampoco
emite la señal, el número total de señales de pausa emitidas en una sola
reconfiguración es:

Totalpausa = N −H − 1

Por tanto, el coste adicional por cada módulo que no sea la ráız del árbol
generador actual ni sea una de las hojas del árbol generador actual una vez
acabada la reconfiguración es de O(1) mensajes y el coste total es de O(N)
mensajes de pausa.

�

El número de movimientos ahorrados por módulo comprimido que viaje
por una rama que acaba de alcanzar su forma final es algo más complicado
de deducir. Para llegar a cuantificar el ahorro, primero hay que entender lo
que tarda el algoritmo original a reaccionar ante una rama que ha llegado a
su forma final.

Proposición 5.2 En el algoritmo original, si tenemos una rama de un
módulo intersección de tamaño Nr y un módulo comprimido parte de la
intersección en dirección a la hoja de la rama en el mismo instante en que
dicha hoja emite una señal de ĺıder, ambos elementos, módulo y señal, se
encontrarán cuando el módulo comprimido haya recorrido aproximadamente
el 40 % de Nr.

Demostración: Imaginemos el caso en que un módulo comprimido está conte-
nido en un módulo intersección que aún necesita expandir una de sus ramas
mientras que otra de sus ramas acaba de alcanzar su forma final. Como la
intersección aún no sabe que ya no hay que enviar módulos comprimidos por
la rama que acaba de completarse, env́ıa el módulo comprimido en dirección
a la hoja de la rama a una velocidad de un módulo cada tres iteraciones. En

Complejidad de los algoritmos 59

ese mismo instante la hoja env́ıa la señal de ĺıder hacia la intersección a una
velocidad de un módulo cada dos iteraciones. Si la distancia entre la inter-
sección y la hoja es de Nr módulos podemos ver la distancia que recorren
el módulo (Dmódulo) y la señal (Dĺıder) antes de encontrarse y el número de
iteraciones (T) que tardarán en hacerlo:

Tiempo = Distancia/V elocidad⇒

Nr = Dmódulo + Dĺıder = T
1

3
+ T

1

2
= T

5

6

T =
5

6
Nr = 1,2Nr

Dmódulo =
1

3
T =

2

5
Nr;Dĺıder =

1

2
T =

3

5
Nr

Aśı podemos ver fácilmente que cuando la señal de ĺıder y el módulo
comprimido se cruzan, momento en el cual el módulo comprimido descubre
que debe dar media vuelta, la señal ha recorrido el 60 % de módulos de
la rama mientras que el módulo comprimido ha recorrido el 40 % restante.
Dependiendo del tamaño de la rama el número de movimientos del módulo
comprimido o el número de módulos que avanza la señal puede variar en un
movimiento más o menos, ya que un módulo comprimido solo puede realizar
un número entero de movimientos. �

Proposición 5.3 En el algoritmo con señal de parada hasta intersección,
si tenemos una rama de un módulo intersección de tamaño Nr y un módulo
comprimido parte de la intersección en dirección a la hoja de la rama en
el mismo instante en que dicha hoja emite una señal de pausa, ambos ele-
mentos, módulo y señal, se encontrarán cuando el módulo comprimido haya
recorrido aproximadamente el 25 % de Nr.

Demostración: Si aplicamos el mismo razonamiento que en la demostración
anterior fijándonos en la señal de pausa en lugar de en la señal de ĺıder
podremos calcular la mejora de nuestra modificación. En este caso la señal
avanza a una velocidad de un módulo por iteración:

Nr = T (
1

3
+ 1) = T

4

3
;T =

3

4
Nr

Dmódulo =
1

3
T =

1

4
Nr;Dpausa = T =

3

4
Nr

Podemos ver que esta vez el módulo comprimido solo recorre el 25 % de
la rama. �

Aśı, pues, el ahorro de movimientos entre el algoritmo original y el que
tiene señal de parada hasta intersección puede ser de hasta 15 puntos por-
centuales por rama.

60 Complejidad de los algoritmos y análisis experimental

Puesto que el número de movimientos ahorrados depende de la distancia
entre el módulo comprimido y la señal de pausa, podemos deducir el número
máximo de movimientos ahorrados por un módulo comprimido dentro de
una rama.

Proposición 5.4 Mediante el algoritmo con señal de parada hasta inter-
sección, el número máximo de movimientos Maxahorro que puede ahorrar
un módulo durante una reconfiguración es 2 ∗ 0,15 ∗ (N − 1) movimientos.

Demostración: El máximo ahorro (Maxahorro) al viajar por una rama se da
cuando un módulo comprimido se encuentra en el módulo intersección, o en
la ráız si no existe ninguno, y la señal de pausa aún se encuentra en la hoja,
es decir, en el momento de mayor distancia entre el módulo comprimido y
la señal de pausa, justo en el momento en que el módulo intenta entrar en
la rama. Teniendo en cuenta que la rama más grande posible es de tamaño
N−1, el número de módulos del árbol generador inicial menos la ráız, y que
los movimientos que no realiza adentrándose en la rama son movimientos
que tampoco tiene que realizar para volver a la intersección, entonces:

Maxahorro = 2 ∗ 0,15 ∗ (N − 1)

Con cada rama del árbol generador inicial que se expande el tamaño
potencial que pueden alcanzar las siguientes ramas es menor. Por tanto, el
ahorro máximo por módulo es O(N):∑

hojas

(2 ∗Distanciaintersección−hoja ∗ 0,15) ≤ 2 ∗ 0,15 ∗ (N − 1)

�

Como hemos podido ver en la demostración, el número máximo de mo-
vimientos ahorrados por módulo comprimido puede llegar a ser O(N), sin
embargo aún no hemos dicho nada sobre el número de movimientos ahorrado
de toda la reconfiguración.

Proposición 5.5 El total de movimientos ahorrados en una ejecución del
algoritmo con señal de parada hasta intersección es O(N2).

Demostración: Teniendo en cuenta que existen árboles generadores finales
que al ejecutar esta modificación consiguen que un número O(N) de módulos
se vean afectados por la señal de pausa y que el ahorro de un mismo módulo
aunque se vea afectado varias veces por la señal de pausa nunca supera
Maxahorro, es posible expresar el ahorro total como:

Maxahorro ∗N

Es decir, el ahorro de movimientos es acotado superiormente por O(N2).
Cabe destacar que no hemos podido demostrar la exactitud de esta cota. �

Complejidad de los algoritmos 61

5.1.2. Algoritmo con señal de parada hasta ráız

Al introducir una nueva señal, la señal de reanudado, y al aumentar la
distancia de expansión de la señal de pausa es de esperar que el coste de
comunicación del algoritmo aumente aunque, como veremos, el número de
movimientos ahorrados también aumenta en consecuencia.

Proposición 5.6 El algoritmo de señal de parada hasta la ráız aplicado a
un árbol generador inicial de N módulos y a un árbol generador final de H
hojas env́ıa un total de O(N2) mensajes de pausa y reanudado.

Demostración: Esta modificación, aunque parecida a la modificación de señal
de parada hasta la intersección, se diferencia de ésta en que la señal de pausa
viaja siempre desde la hoja de una rama que ha llegado a su forma final hasta
la ráız del árbol. Eso quiere decir que en vez de emitir la señal de pausa una
sola vez por módulo ahora existe un conjunto de módulos entre la ráız y el
módulo intersección de la rama que acaba de completarse que emiten la señal
de pausa una vez por cada rama del módulo intersección que se complete.
Este coste se suma al calculado en la modificación anterior, ya que el resto de
módulos siguen emitiendo la señal de pausa una sola vez por ejecución. Por
supuesto la distancia entre el módulo intersección y la ráız vaŕıa por cada
módulo intersección por lo que este incremento en el coste debe expresarse
como la suma para todos los módulos intersección, llamemos k al número de
ellos, de la distancia de la ráız a cada intersección (Disti) multiplicado por
el número de ramas de la intersección (Ri). Si no existe ninguna intersección
en el árbol, ningún módulo con más de un hijo, el valor de esta suma es 0.

Para facilitar el cálculo del número de mensajes de pausa enviados, tra-
tamos cada módulo intersección como si fuera la única intersección del árbol,
es decir, solo tenemos en cuenta el módulo intersección más la suma de los
módulos de sus ramas (Ni), la distancia de la ráız del árbol a la intersección
(Disti) y el número de ramas de la intersección (Ri). Los módulos que unen
varios módulos intersección no se consideran parte de una intersección ni ra-
ma de ninguna intersección y solo se tienen en cuenta para calcular (Disti).
En definitiva:

Mensajespausa =
k∑

i=1

(Ni −Ri − 1 + Disti ∗Ri)

Además de los mensajes de la señal de pausa, esta modificación del al-
goritmo introduce la señal de reanudado que permite reanudar los módulos
pausados, los mismos que emiten la señal de pausa desde la intersección
hasta la ráız, sin necesidad de que intervenga la señal de ĺıder. La señal de
reanudado se emite antes de expandir una rama, siempre y cuando se haya
emitido una señal de pausa antes en la reconfiguración. Además esta señal
nunca se emite durante la expansión de la primera rama de cada uno de

62 Complejidad de los algoritmos y análisis experimental

los 2 subárboles posibles que nacen directamente de la ráız, o lo que es lo
mismo, de los 2 posibles hijos de la ráız (Hijosráiz). El coste total del env́ıo
de las dos señales, pausa y reanudado, es pues:

MensajesTotal =
k∑

i=1

(Ni −R1 − 1) + 2 ∗
k∑

i=1

(Disti ∗Ri)−Hijosraı́z

Sabiendo que la señal de pausa se emite una vez por cada una de las
ramas del árbol generador final, y que la señal de reanudado se emite una
vez por rama menos Hijosraı́z, podemos concluir que el coste por módulo
de el env́ıo de ambas señales es O(R) en ambos casos, donde R es el número
de hojas del árbol final.

Dado que el número total de señales enviadas depende del número de
hojas del árbol final, podemos concluir que cuando el árbol final tenga el
máximo número de ramas posibles, que es O(N), las señales enviadas serán
O(N2). �

El ahorro de movimientos innecesarios tanto por módulo como en total
es igual que el de la modificación anterior del algoritmo, O(N) y O(N2) res-
pectivamente, ya que para ahorrar movimientos se usa la misma estrategia,
la señal de pausa, y los módulos comprimidos siguen viajando a la misma
velocidad que en la modificación anterior, la señal de reanudado no afecta al
ahorro sino a la expansión y el máximo ahorro se da cuando todas las ramas
tienen el tamaño máximo posible. Sin embargo los resultados prácticos de
esta modificación serán aún mejores que los de la anterior debido a que aho-
ra restringimos el acceso a todo un subárbol de la ráız del árbol generador
actual en lugar de solo a una rama.

5.1.3. Algoritmo con señal de parada para toda la configu-
ración

El análisis teórico de esta modificación del algoritmo es bastante más
sencillo que en las modificaciones anteriores.

Proposición 5.7 El algoritmo con señal de parada para toda la configu-
ración aplicado a un árbol generador inicial de N módulos y a un árbol
generador final de H hojas env́ıa O(N2) mensajes de pausa y reanudado.

Demostración: Esta versión del algoritmo se diferencia de la versión con
señal de parada hasta la ráız en que sus señales de pausa y reanudado se
expanden por todo el árbol, incluyendo los módulos en fase de compresión
y las ramas del árbol generador actual que ya se hayan expandido por lo
que, esencialmente, cada módulo emite una señal de pausa y una señal de
reanudado por cada hoja del árbol generador final. Aunque estas señales
no siempre se extienden por todos los módulos del árbol generador actual

Complejidad de los algoritmos 63

debido a que algunos de los módulos del árbol están comprimidos en otros
módulos, podemos considerar que cada módulo env́ıa O(H) señales con estos
mensajes. Por tanto, el número total de mensajes es N ∗ H + N ∗ H, esto
es O(H ∗N) que en el peor de los casos es O(N2). Incluso evitando que las
señales se extiendan al subárbol sur de la ráız cuando se expande el subárbol
este del árbol, el coste total se mantiene en O(N2) ya que si no existe ningún
módulo conectado a la ráız en dirección este en el árbol generador final esta
manera de ahorrar en env́ıo de señales tiene lugar en la reconfiguración. �

Como en las anteriores modificaciones versiones del algoritmo el ahorro
de movimientos innecesarios por módulo y total se mantiene en O(N) y
O(N2) debido a que nuestra estimación considera el caso en que todas las
ramas son de tamaño O(N) y a que la velocidad de las señales y de los
módulos comprimidos no ha cambiado respecto de los algoritmos anteriores.

5.1.4. Algoritmo multiĺıder

Este nuevo algoritmo es radicalmente diferente al resto de modificaciones
del algoritmo original analizadas en este apartado, sin embargo, como vere-
mos a continuación, podemos utilizar algunas ideas de los estudios teóricos
anteriores para analizar los costes de este algoritmo.

Para poder determinar el número de señales adicionales que env́ıa este
algoritmo primero debemos realizar un análisis por separado del env́ıo de
las diferentes señales que introduce este algoritmo y que no existen en la
versión original. Para empezar analizamos la señal numérica que acompaña
a la señal de Back .

Proposición 5.8 El algoritmo multiĺıder aplicado a un árbol generador ini-
cial de N módulos y a un árbol generador final de H hojas env́ıa O(N2)
mensajes de de texto Back .

Demostración: La señal de Back es la señal que env́ıan las hojas del árbol
generador inicial una vez han recibido la señal de un candidato a ráız del
árbol. Esta señal viaja de hijos a padres hasta llegar a la ráız del árbol a
no ser que encuentre otra señal de un candidato a ráız mejor que el módulo
que envió la señal que recibieron las hojas, en cuyo caso se env́ıa esta nueva
señal hasta las hojas del árbol y estas vuelven a emitir la señal de Back . A
esta señal de Back se le añade una señal numérica que se env́ıa junto a ella
y que indica el número de módulos que cuelgan del módulo que la recibe en
la dirección por la que ha recibido el mensaje. Por tanto esta señal se emite
tantas veces como la señal de Back . En un caso ideal con un solo candidato
a ráız del árbol esta señal se env́ıa O(N) veces, una vez por cada módulo del
árbol. Sin embargo, es posible existencia de más de un candidato. En el caso
de un árbol con el mayor número posible de candidatos a ráız, como por
ejemplo un árbol en forma de escalera que asciende de oeste a este con N/2

64 Complejidad de los algoritmos y análisis experimental

módulos como candidatos, el número de mensajes numéricos por módulo
es O(N), de manera que el total de mensajes enviados por el algoritmo es
O(N2). �

La señal siguiente a tener en cuenta es la de operación de cambio de rama
denegada. Esta señal depende exclusivamente del número de operaciones de
cambio de rama que se env́ıen a hojas del árbol generador actual que ya
hayan pedido permiso para comprimirse y recibido la confirmación de dicha
acción.

Proposición 5.9 El máximo número de mensajes de operación de cambio
de rama denegada que pueden ser emitidos durante una ejecución del algo-
ritmo multiĺıder es O(N).

Demostración: Como podemos deducir de las condiciones bajo las que se
env́ıa esta señal, predecir el número exacto de veces que esta se env́ıa es im-
posible, ya que depende de cada configuración. Sin embargo, como sabemos
que que esta señal solo puede ser emitida por una hoja en fase de compresión,
podemos garantizar que, como máximo, esta señal se env́ıa O(N) veces, ya
que a lo largo de la reconfiguración solo puede llegar a existir un total de N
hojas en estado de compresión. �

Las señales siguientes a analizar son las dos que actualizan los registros
que indican el número de hijos de cada módulo y el número de módulos que
hace falta enviar en cada dirección. Estas señales se env́ıan cuando se ha
ejecutado una operación de cambio de rama para desconectar un módulo de
una rama en estado de compresión y conectarla a una rama en estado de
expansión. Una de las dos señales informa a la rama en estado de expansión
de que se han añadido nuevos módulos a la rama y la otra informa a la
rama en estado de compresión de que ha perdido módulos como resultado
del cambio de rama.

Proposición 5.10 En el algoritmo multiĺıder la emisión de una pareja de
señales de adición y sustracción produce como máximo O(N) mensajes.

Demostración: Normalmente estas señales se expanden hasta la ráız infor-
mando a todos los módulos que encuentran a su paso. Sin embargo, existe
una excepción: si dos o más señales de este tipo, ya sea de adición o de
sustracción, se encuentran en un mismo módulo intersección este emite una
única señal de adición o sustracción según el número de módulos sumados o
sustráıdos a sus ramas. Estas señales se comportan como la señal de pausa
del algoritmo con señal de parada hasta la ráız, solo que en vez de emitir
una sola señal en este caso se emiten dos al mismo tiempo, una por cada ra-
ma implicada en la operación. Para calcular el coste de emitir estas señales
enumeramos las operaciones de cambio de rama de 1 a k y sumamos las

Complejidad de los algoritmos 65

distancias de la ráız al módulo que ha realiza la operación de cambio de
rama pasando por la rama en estado de expansión (DistEi) y por la rama
en estado de compresión (DistCi).

Mensajesadición,substracción =
k∑

i=1

(DistEi + DistCi)

Teniendo en cuenta que para que exista la operación del cambio de rama
se necesitan dos ramas, y que la suma de la longitud de las dos ramas no
puede ser superior a N − 1, la emisión de estas dos señales juntas produce
a lo sumo O(N) mensajes. �

El total de mensajes en una reconfiguración debido a la emisión de estas
señales es dif́ıcil de calcular. Para conseguirlo hemos analizado diversas si-
tuaciones teóricas que nos permiten poner a prueba el número potencial de
veces que pueden ser emitidas estas señales.

Proposición 5.11 El número de veces que se ejecuta satisfactoriamente
una operación de cambio de rama durante una ejecución del algoritmo mul-
tiĺıder puede llegar a ser N/3 y genera O(N2) mensajes de adición y sus-
tracción en total.

Demostración: Consideremos una rama en estado de compresión que no está
congestionada, esto es, cuyos módulos comprimidos aún tienen espacio para
viajar por ella, y cuya hoja está constantemente perseguida por un módulo
ĺıder que le env́ıa mensajes de cambio de rama. Una hoja en estado de
compresión que tenga espacio para comprimirse siempre genera la señal de
negación de cambio de rama, por lo que es imposible en este caso que las
señales de adición/sustracción se emitan N veces.

Consideremos una rama en estado de compresión y congestionada, es-
to es, cuyos módulos comprimidos se bloquean unos a otros e impiden que
se muevan. Supongamos que está formada por N/2 módulos que contienen
N/2 módulos comprimidos. Consideremos una rama en expansión que env́ıe
señales de cambio de rama a las hojas de la rama en compresión que se
vayan generando. Llega un momento en que los módulos pueden moverse,
generando una situación como la descrita en el párrafo anterior. Por consi-
guiente, las señales de adición y substracción no pueden ser emitidas N/2
veces.

Finalmente, al imaginar una rama en estado de compresión en ĺınea recta
y una rama en estado de expansión que intenta atravesarla varias veces como
una costura vemos que es posible emitir las señales de adición y substracción
N/3 veces. Por tanto podemos decir que el coste total del env́ıo de estas dos
señales en una sola ejecución del algoritmo es N ∗ (N/3) o O(N2) mensajes,
O(N) mensajes por módulo. No hemos podido demostrar que N/3 sea una

66 Complejidad de los algoritmos y análisis experimental

cota superior, pero no hemos podido llegar a plantear ningún otro ejemplo
superior a N/3.

En todo caso, cada módulo solo puede cambiar de rama una vez, de
modo que la cota O(N2) es inmediata. �

Por último solo nos queda analizar el mensaje que indica el número de
módulos encontrados, un mensaje numérico que acompaña a las señales de
adición y sustracción y que indica cuántos módulos se han añadido o perdido
en la rama. Estas señales se env́ıan a la vez que las señales de adición y
sustracción por lo que su coste es el mismo. Cabe destacar que el coste de
las señales de adición y substracción sumado al coste de enviar este tipo de
mensajes sigue siendo O(N2).

Proposición 5.12 El algoritmo multiĺıder aplicado a un árbol generador
inicial de N módulos y a un árbol generador final de H hojas env́ıa O(N2)
mensajes más que el algoritmo original.

Demostración: Utilizando los cálculos de las señales previamente descritas
vemos que en total el número de mensajes adicionales enviados por módulo
es de O(N) mensajes y el total de mensajes adicionales enviados por el
algoritmo, es O(N2).

Costemódulo = N/2 + 1 + 2 ∗N/3 = O(N)

Costetotal = N ∗N/2 + N + N ∗ 2 ∗N/3 = O(N2)

�

Una vez calculado el número de mensajes adicionales que este algorit-
mo produce, nos queda calcular el número de movimientos innecesarios que
evita. Este algoritmo, como los demás, se centra en evitar los movimientos
innecesarios de los módulos que viajan dentro de una rama en estado de ex-
pansión y en ese sentido se puede decir que este algoritmo es prácticamente
perfecto. En ocasiones el algoritmo multiĺıder genera movimientos innecesa-
rios al efectuar una operación de cambio de rama y, por tanto, para calcular
el número de movimiento innecesarios que evita conviene estudiar primero el
número total de movimientos innecesarios que efectúa el algoritmo original,
y a ese número debemos restarle el número de movimientos innecesarios que
genera nuestro algoritmo.

Proposición 5.13 El número de movimientos innecesarios en ramas en
fase de expansión durante una ejecución del algoritmo original puede llegar
a ser O(N2).

Demostración: Pongamos como ejemplo un árbol generador final cuyos módu-
los cuelgan todos del hijo sur de la ráız menos uno que debe convertirse en

Complejidad de los algoritmos 67

el hijo de la ráız en dirección este. Teniendo en cuenta el algoritmo original
y su prioridad de expansión, este módulo será el último en ser expandido
al reconfigurar el árbol generador inicial. Además, en este caso, todos los
módulos del árbol generador inicial cuelgan del subárbol este de la ráız, de
forma que todos los módulos, al ejecutar el algoritmo, pasan por la ráız del
árbol. En el peor de los casos el árbol generador final tiene una rama en el
subárbol sur de la ráız de tal forma que cuando su hoja llega a su forma
final el módulo destinado a convertirse en hijo en dirección este de la ráız se
encuentra contenido en el módulo padre de la hoja de esta rama. Este es el
peor de los casos porque ahora debe volver a la ráız para acabar ocupando su
lugar después de recorrer prácticamente los N módulos del árbol dos veces.
En concreto este módulo, teniendo en cuenta que acabará siendo la única
hoja del sub-árbol este de la ráız, ha realizado 2∗(N−R−raı́z) movimientos
innecesarios, que son O(N2) movimientos. Haciendo una aproximación, asu-
miendo que todos los módulos que realizan movimientos innecesarios pueden
llegar a recorrer casi N módulos dos veces, y sabiendo que solo N/2 módulos
pueden realizar movimientos innecesarios, el número total de movimientos
innecesarios en una ejecución del algoritmo original es de O(N2) movimien-
tos.

Movimientosinnecesarios = 2 ∗ (N −R− raı́z) ∗N/2

�

Para calcular el número de movimientos innecesarios que pueden generar
las operaciones de cambio de rama y las señales de adición y substracción
que esta genera hemos analizado en más profundidad el efecto de dichas
señales.

Proposición 5.14 El número de movimientos innecesarios producidos en
ramas en fase de expansión durante una ejecución del algoritmo multiĺıder
es de O(N2) movimientos.

Demostración: Supongamos un árbol generador actual y final de misma for-
ma que los de la Figura (5.1) pero con diferente número de módulos en sus
ramas. En este ejemplo, en el momento en que la rama sur del árbol en-
cuentra la rama en estado de compresión y realiza la operación de cambio
de rama, contamos con N/6 módulos en estado de expansión ya expandidos,
es decir, que no se encuentran comprimidos, con N/2 módulos comprimidos
viajando, a través de los módulos en fase de expansión, hacia el ĺıder de
la rama sur y con N/3 que se han añadido a la rama sur con la operación
de cambio de rama. En el caso que estamos presentando, los N/3 módulos
añadidos a la rama sur son suficientes para completar la expansión de la
rama y por tanto, a medida que reciben la señal que actualiza el número
de módulos de la rama, los módulos comprimidos que viajan hacia el ĺıder
de la rama sur cambian su dirección para dirigirse al ĺıder de la rama este.

68 Complejidad de los algoritmos y análisis experimental

Teniendo en cuanta que hay 2 módulos vaćıos entre cada módulos comprimi-
dos y considerando el número de módulos comprimidos como C y el número
de módulos en fase de expansión ya expandidos como E, podemos calcu-
lar el número de movimientos innecesarios que han realizado los módulos
comprimidos de la siguiente manera:

Movimientosinnecesarios = 1 + (1 + 3) + (1 + 3 ∗ 2) + ... =

N/6∑
i=1

(1 + i3)

=
N

6
+ 3

N/6∑
i=1

i =
N

6
+ 3

(1 + N
6)N6

2

= O(N2)

�

Figura 5.1: Árbol generador actual a la izquierda y árbol generador final
a la derecha. El árbol generador actual, más concretamente su ĺıder sur,
acaba de realizar una operación de cambio de rama. A consecuencia de esta
operación, un módulo que viaja hacia el ĺıder de la rama sur debe volver al
ĺıder de la rama este.

Tanto el número de movimientos innecesarios eliminados como el número
de movimientos innecesarios añadidos son cuadráticos. Nos ha sido imposible
comparar dichos números en un contexto teórico general, ya que ambos
dependen fuertemente de las configuraciones que se analicen. De hecho, el
caso peor para la Proposición 5.13 no es el mismo que para la Proposición
5.14.

5.2. Análisis experimental de las modificaciones

5.2.1. Introducción a los resultados

A continuación presentamos un estudio experimental de los algoritmos
presentados en este proyecto. Esta serie de experimentos no solo nos permi-

Análisis experimental de las modificaciones 69

ten probar los algoritmos, además podemos analizar las instrucciones ejecu-
tadas y los mensajes enviados para comprobar la certeza de nuestro análisis
teórico y obtener datos reales sobre la media de mensajes y movimientos por
ejecución.

Para minimizar el tamaño de las diferentes gráficas de esta sección hemos
abreviado el nombre de los algoritmos con estas siglas:

Algoritmo original ⇒ AO

Algoritmo con señal de parada hasta la intersección ⇒ PI

Algoritmo con señal de parada hasta la ráız ⇒ PR

Algoritmo con señal de parada para toda la configuración ⇒ PT

Algoritmo multiĺıder ⇒ ML

5.2.2. Herramientas utilizadas

Para realizar al análisis práctico se han utilizado dos herramientas dis-
tintas: el simulador de robots cristalinos y un parser de acciones exportadas
del simulador.

El simulador es el mismo utilizado por otros proyectos de final de carrera
como el de Joan Soler [3], autor del algoritmo original, puede encontrarse
más información respecto a esta herramienta en su página web [6].

El parser de acciones es un programa creado espećıficamente para este
proyecto. Más información sobre el parser se presenta en el anexo 6.

5.2.3. Juegos de prueba

Los juegos de prueba creados para analizar el comportamiento de los
algoritmos de este proyecto están clasificados en las siguientes categoŕıas:

Minihole-Spiralhole-Square: Ejemplos más complejos que los presenta-
dos en la categoŕıa Densidad que buscan ver cómo aumentan la emisión de
señales y el número de movimientos en función del número de módulos que
componen la figura. Estos ejemplos están formados por figuras de forma Mi-
nihole que pasan a forma Spiralhole y Square, figuras Spiralhole que pasan
a forma Minihole y Square y, por último, figuras Square que pasan a forma
Minihole y Spiralhole. Además, todos estos casos se repiten múltiples veces
cambiando el número de módulos que los componen: 10, 20, 50, 100, 200,
500 y 1000.

Peines & Rectángulos: Ejemplos diseñados para estudiar el impacto de
la orientación de las ramas y el orden de compresión y expansión de los
árboles generadores inicial y final en la configuración en figuras poco densas
de tipo histograma (Peines) o muy densas (Rectángulos), que se ilustran en
la Figura .

70 Complejidad de los algoritmos y análisis experimental

Estos juegos de prueba no solo buscan analizar el comportamiento de
los algoritmos según el número de módulos, sino comprobar si la compo-
sición, orientación o densidad de una figura influye de alguna forma en la
reconfiguración. Este análisis nos puede ser útil si en un futuro se deja a los
robots, o en nuestro caso al simulador, la tarea de decidir la mejor manera
de abordar una reconfiguración. Por ejemplo, si se env́ıa a los robots una
forma final, estos podŕıan cambiar la prioridad de compresión y/o expansión
de las diferentes direcciones de un módulo, simulando un cambio de orien-
tación en la figura aunque esta no cambie, si los robots consideran que una
reconfiguración con las prioridades originales no es óptima. Hasta entonces,
esta experimentación también nos sirve para crear cambios de forma que
faciliten la reconfiguración.

Todos estos juegos de prueba aśı como el análisis de sus resultados me-
diante el parser de acciones pueden encontrarse en la página web de este
proyecto.

5.2.4. Movimientos según el número de módulos

Antes de empezar con esta fase de la experimentación debemos puntua-
lizar que entendemos como movimiento toda compresión, expansión o paso
de módulo comprimido. No entendemos como movimientos los cambios de
conexión de un módulo.

Para empezar veamos, con los resultados obtenidos de los casos de prue-
ba Minihole-Spiralhole-Square, cómo evolucionan el número de movimientos
y de mensajes al incrementar el número de módulos de nuestras configura-
ciones.

Como puede verse en la Figura 5.2, todos nuestros algoritmos mejoran
el original. Aunque cada mejora del algoritmo realiza menos movimientos
totales que la anterior, la mejora de una modificación respecto a la anterior
es minúscula salvo para el algoritmo multiĺıder. Si comparamos el algoritmo
con señal de parada hasta intersección, con señal de parada hasta ráız y
con señal de parada para toda la configuración con el algoritmo original
para configuraciones de menos de 20 módulos, la diferencia en el número de
movimientos dif́ıcilmente llega a los 10 movimientos. Incluso hay ocasiones,
como durante la ejecución de los juegos de prueba de 20 módulos, en que
el algoritmo con señal de parada para toda la configuración obtiene peores
resultados que los algoritmos con señal de parada hasta intersección y con
señal de parada hasta ráız. Solo el algoritmo multiĺıder consigue diferenciarse
substancialmente del resto, ya que es capaz de llevar a cabo las mismas
reconfiguraciones con poco más de la mitad de movimientos que el resto de
los algoritmos.

La escasa diferencia de movimientos entre el algoritmo original y los algo-
ritmos con señal de para se debe a que, al fin y al cabo, su funcionamiento es
extremadamente parecido y a que la señal de parada solo evita un pequeño

Análisis experimental de las modificaciones 71

0 200 400 600 800 1000

0

20000

40000

60000

80000

1 · 105

Módulos

M
ov

im
ie

n
to

s

Total de movimientos

AO
PI
PR
PT
ML

Figura 5.2: Gráfica que muestra, para los algoritmos presentados en este
proyecto y el algoritmo original, la media del número total de movimientos
realizados en los juegos de prueba Minihole-Spiralhole-Square.

número de movimientos innecesarios. Por otro lado, el algoritmo multiĺıder
solo realiza movimientos innecesarios al realizar una operación de cambio de
rama, y, aún aśı, el número de módulos afectados por esta operación es mu-
cho menor que el número de módulos que realizan movimientos innecesarios
en los otros algoritmos.

La misma diferencia en el número de movimientos innecesarios se da
tanto en la fase de expansión, Figura 5.4, como en la fase de compresión,
Figura 5.3.

Nuestro cálculo teórico sobre la complejidad de los algoritmos estudiados
en este proyecto, marca una cota superior de O(N2) para todos los algorit-
mos. Aún aśı, como podemos apreciar en la Figura 5.2, durante la ejecución
de los juegos de prueba ninguno de los algoritmos superó la complejidad indi-
cada en el Apartado 5.1 y, concretamente en el caso del algoritmo multiĺıder,
los resultados reales son mucho más bajos que la cota calculada.

5.2.5. Mensajes según el número de módulos

Junto con la comparación de movimientos, comparar el número de men-
sajes que emite cada modificación del algoritmo es otro de los elementos más
interesantes de esta experimentación. Entendemos como mensaje, no solo los
mensajes numéricos y de texto emitidos por los módulos, sino también todas
las lecturas de estados o registros de los módulos vecinos ya que, en la vida
real, estos datos se comunican mediante mensajes.

72 Complejidad de los algoritmos y análisis experimental

0 200 400 600 800 1000

0

5000

10000

15000

20000

25000

Módulos

M
ov

im
ie

n
to

s

Media de movimientos en la fase de compresión

AO
PI
PR
PT
ML

Figura 5.3: Gráfica que muestra, para los algoritmos presentados en este
proyecto y el algoritmo original, la media del número de movimientos reali-
zados en los juegos de prueba Minihole-Spiralhole-Square durante la fase de
compresión.

Al incrementar el número de módulos no solo aumenta el número de
movimientos, el número de mensajes también se ve afectado por este in-
cremento. A continuación presentamos la media de los resultados obtenidos
por cada algoritmo según el número de módulos de los casos de prueba
Minihole-Spiralhole-Square.

Como puede verse en la Figura 5.5, todos los algoritmos con señal de
parada emiten, durante su fase inicial, el mismo número de mensajes que el
algoritmo original. Este hecho era de esperar ya que la fase de búsqueda rea-
liza las mismas acciones en el algoritmo original que en los algoritmos con
señal de parada. El algoritmo multiĺıder, sin embargo, emite N mensajes
más que los demás algoritmos, siendo N el número de módulos de la con-
figuración. Estos mensajes adicionales son los los mensajes numéricos que
acompañan a la señal de Back y que informan a los módulos del número
de descendientes en cada una de sus direcciones. Aún aśı, como veremos,
estos mensajes adicionales no suponen una gran carga en el número total de
mensajes emitidos por el algoritmo multiĺıder.

Es en las Figuras 5.6 y 5.7 donde vemos el efecto especifico sobre los
mensajes de los algoritmos con señales de parada y del algoritmo multiĺıder.
Tanto el algoritmo con señal de parada como el algoritmo multiĺıder emiten
menos mensajes que el algoritmo original. Aunque originalmente esperába-
mos reducir el número de movimientos a costa de un aumento en el número

Análisis experimental de las modificaciones 73

0 200 400 600 800 1000

0

20000

40000

60000

80000

Módulos

M
ov

im
ie

n
to

s

Media de movimientos en la fase de expansión

AO
PI
PR
PT
ML

Figura 5.4: Gráfica que muestra, para los algoritmos presentados en este
proyecto y el algoritmo original, la media del número de movimientos reali-
zados en los juegos de prueba Minihole-Spiralhole-Square durante la fase de
expansión.

de señales emitidas, podemos ver que no ha sido el caso.

La mayor fuente de mensajes emitidos, tanto del algoritmo original como
de los algoritmos con señal de parada, es el env́ıo continuo, a cada iteración,
de mensajes para iniciar una operación de paso de módulo comprimido.
Siempre que un módulo contiene un módulo comprimido intenta, a cada
iteración, iniciar una operación de paso de módulo comprimido y no cesa
de intentarlo hasta conseguir una respuesta de su padre. Los algoritmos
con señal de parada, al pausar los módulos, evitando aśı que los módulos
pausados puedan realizar acción alguna, consiguen evitar también el env́ıo
de los mensajes de inicio de operación de paso de módulo comprimido, y
mientas más módulos pause cada algoritmo, menos mensajes env́ıa. Por eso
los algoritmos con señal de parada que emiten menos mensajes son, en orden
de mayor a menor número de mensajes emitidos, el algoritmo con señal de
parada hasta intersección, el algoritmo con señal de parada hasta la ráız y
el algoritmo de señal de parada para toda la configuración.

El algoritmo multiĺıder, por otro lado, no genera apenas colapsos de
módulos comprimidos durante su fase de expansión, env́ıa los mensajes de
inicio de operación de paso de módulo comprimido una vez cada tres ite-
raciones en lugar de una vez por iteración, y, al haber menos colapsos en
las ramas en fase de expansión, reduce también el tiempo de colapsos de
módulos comprimidos en la fase de compresión. Todo ello reduce en gran

74 Complejidad de los algoritmos y análisis experimental

0 200 400 600 800 1000

0

2000

4000

6000

Módulos

M
ov

im
ie

n
to

s

Media de mensajes emitidos en la fase inicial

AO
PI
PR
PT
ML

Figura 5.5: Gráfica que muestra, para los algoritmos presentados en este
proyecto y el algoritmo original, la media del número de mensajes emiti-
dos en los juegos de prueba Minihole-Spiralhole-Square durante la fase de
búsqueda de la ráız.

medida el número de mensajes emitidos por este algoritmo.

Otra de las razones por la que los algoritmos presentados en este proyecto
emiten menos mensajes que el algoritmo original es que estos mensajes se
emiten para iniciar el movimiento de un módulo. Por tanto, cuantos menos
movimientos realiza el algoritmo, menos mensajes totales necesita enviar.

En definitiva, de entre todos los algoritmos estudiados y propuestos en
este proyecto, el algoritmo multiĺıder es el que menos señales emite con
diferencia.

Si comparamos los resultas obtenidos en la experimentación con los pre-
vistos en el cálculo de la complejidad de los algoritmos (Apartado 5.1) po-
demos ver que no nos equivocamos en el cálculo de su cota superior. Es más,
los resultados reales son menores que la cota calculada dado que el número
de mensajes esta directamente relacionado con el número de movimientos,
por lo que menos movimientos implica menos mensajes emitidos.

Podemos ver en la Figura 5.5 que, tal como se indica en la Proposición
5.8 y en su demostración, el número de mensajes emitidos por el algoritmo
multiĺıder durante su fase inicial supera siempre en poco más de N , siendo N
el número de módulos de la configuración, al número de mensajes emitidos
en la misma fase por el resto de los algoritmos y, en todo caso, es lineal.

Otro dato que podemos comprobar es, tal como muestra la Figura 5.9,
que el número de operaciones de cambio de rama que se realizan, y por

Análisis experimental de las modificaciones 75

0 200 400 600 800 1000

0

5 · 105

1 · 106

1,5 · 106

Módulos

M
ov

im
ie

n
to

s
Media de mensajes emitidos en la fase de compresión

AO
PI
PR
PT
ML

Figura 5.6: Gráfica que muestra, para los algoritmos presentados en este
proyecto y el algoritmo original, la media del número de mensajes emiti-
dos en los juegos de prueba Minihole-Spiralhole-Square durante la fase de
compresión.

tanto el número de mensajes de cambio de rama que se emiten, nunca supera
1/3∗N (Proposición 5.11). Curiosamente, la Figura 5.9 también nos muestra
que mientras más módulos hay en una configuración más numerosas son las
operaciones de cambio de rama.

5.2.6. Orden de compresión en los algoritmos

Uno de los elementos que más llaman la atención durante la ejecución del
algoritmo multiĺıder es que, comparado con el algoritmo original, su orden
de compresión resulta aparentemente caótico y aleatorio para el usuario.
Este desorden en la compresión no es el comportamiento que esperábamos
en el algoritmo multiĺıder, por lo que, durante la la experimentación con
el algoritmo multiĺıder, hemos buscado la causa de la falta de orden en la
compresión de ramas del árbol generador actual.

En el algoritmo original existe un orden de expansión definido: recibir un
módulo del oeste tiene más prioridad que recibir un módulo del norte, que
a su vez tiene más prioridad que recibir un módulo del este que, finalmente,
tiene más prioridad que recibir un módulo del sur. Esta prioridad consigue
mantenerse gracias a una serie de mensajes, que se repiten a cada iteración,
en que un módulo que contiene un módulo comprimido le pide a un vecino,
al que esta conectado, que acepte el paso de dicho módulo. Este mensaje se
env́ıa siempre, incluso durante la iteración en la que sabemos con seguridad

76 Complejidad de los algoritmos y análisis experimental

0 200 400 600 800 1000

0

2 · 106

4 · 106

6 · 106

Módulos

M
ov

im
ie

n
to

s

Media de mensajes emitidos en la fase de expansión

AO
PI
PR
PT
ML

Figura 5.7: Gráfica que muestra, para los algoritmos presentados en este
proyecto y el algoritmo original, la media del número de mensajes emiti-
dos en los juegos de prueba Minihole-Spiralhole-Square durante la fase de
expansión.

que el módulo comprimido va a enviarse pues ya se ha confirmado la ope-
ración. Además la velocidad a la que viajan los módulos comprimidos, un
módulo cada tres iteraciones, permite que un módulo que ha empezado a re-
cibir módulos comprimidos env́ıe, casi a cada iteración, una señal de paso de
módulo comprimido. Toda esta cantidad de mensajes, aunque innecesaria,
asegura que si un módulo intersección con dos ramas en fase de compresión,
por ejemplo su rama este y su rama sur, empieza a recibir módulos de su
rama este, entonces la intersección no puede recibir módulos de su rama sur
hasta que la rama este no ha sido absorbida en su totalidad. Esto ocurre
debido a que las señales continuadas que env́ıa la rama este siempre dan
prioridad a dicha rama.

Por otra parte, en el algoritmo multiĺıder, aunque comparte la misma
prioridad de compresión que el algoritmo original, no ocurre lo mismo. A di-
ferencia del algoritmo original, el algoritmo multiĺıder no env́ıa estas señales
de paso de módulo comprimido a cada iteración, sino que las emite cuan-
do el módulo que ha enviado la señal sabe que es imposible que se reciba
una confirmación, una vez pasada la tercera iteración desde que se envió
la petición. Otra diferencia es que los módulos comprimidos en ramas en
fase de compresión del algoritmo multiĺıder viajan a un módulo cada cuatro
iteraciones en lugar de tres, como en el algoritmo original. Todo esto crea
una distancia entre módulos comprimidos lo suficientemente grande como

Análisis experimental de las modificaciones 77

0 200 400 600 800 1000

0

2 · 106

4 · 106

6 · 106

Módulos

M
ov

im
ie

n
to

s

Mensajes emitidos totales

AO
PI
PR
PT
ML

Figura 5.8: Gráfica que muestra, para los algoritmos presentados en este
proyecto y el algoritmo original, la media del número total de mensajes emi-
tidos en los juegos de prueba Minihole-Spiralhole-Square durante las fases
inicial, de expansión y de compresión.

para que algunos módulos comprimidos de otras ramas con menor prioridad
puedan ser recibidos por el módulo intersección. Incluso cuando los módu-
los comprimidos entran en ramas en fase de expansión, en donde viajan a
la misma velocidad que en el algoritmo original, se sigue manteniendo esta
distancia entre módulos.

En ocasiones, en el caso del algoritmo multiĺıder, podemos observar ra-
mas con mayor prioridad que dejan de comprimirse hasta que otra rama,
con menor prioridad, no se ha comprimido por completo. Esto es debido
a que un módulo, de una rama con menos prioridad, ha aprovechado la
mencionada distancia entre módulos comprimidos para entrar en el módulo
intersección justo en el momento en que la rama con mayor prioridad env́ıa
su mensaje de paso de módulo comprimido. Como en ese momento el módu-
lo intersección ya contiene un módulo comprimido, no puede confirmar la
operación. De esta forma, se crea un ciclo en la rama con mayor prioridad
en que, siempre que esta env́ıa el mensaje de paso de módulo comprimido al
módulo intersección, la intersección siempre está ocupada por otro módulo.

Como resultado de estas intrusiones en la compresión, las ramas en fase
de compresión se comprimen, en apariencia, de forma caótica. Si bien este
detalle no afecta negativamente a la reconfiguración, la velocidad a la que
los módulos en fase de compresión se incorporan a una rama en fase de
expansión se mantiene siempre estable, śı que puede hacer que la fase de

78 Complejidad de los algoritmos y análisis experimental

0 200 400 600 800 1000

0

20

40

60

80

100

Módulos

M
ov

im
ie

n
to

s

Operaciones de cambio de rama

ML

Figura 5.9: Gráfica que muestra, para el algoritmo multiĺıder, el número
total de operaciones de cambio de rama realizadas durante los juegos de
prueba Minihole-Spiralhole-Square.

compresión resulte más confusa para el usuario del simulador.

Un ejemplo claro de la diferencia en el orden de compresión es el del
juego de prueba de Rectángulos en el que se mide el impacto de la orien-
tación de una figura densa. Tal como se puede apreciar en la Figura 5.10,
el orden de compresión del algoritmo multiĺıder es más impredecible que el
del algoritmo original. En la imagen (b) de la figura, se observa un orden de
compresión en el que ninguna ninguna rama puede comprimirse hasta que
otra de mayor prioridad haya acabado de hacerlo. En el caso del algoritmo
multiĺıder, imagen (c), la rama con mayor coordenada X representa la rama
con mayor prioridad. Aqúı se observa lo poco predecible que puede llegar a
ser la compresión de sus ramas en fase de compresión. En este caso tanto las
ramas con menor coordenada X, menor prioridad, como la rama con mayor
coordenada X, mayor prioridad, consiguen comprimir módulos hacia la ráız
de forma paralela.

5.2.7. Impacto de la orientación en figuras densas

Para estudiar el impacto de la orientación en figuras densas usamos los re-
sultados de experimentar con los juegos de prueba agents rectangles 5x20x5
y agents rectangles 20x5x20 de la categoŕıa Rectangulos ejecutando el al-
goritmo multiĺıder. Estos dos juegos de prueba son como los mostrados en
la Figura 5.10 del apartado 5.2.6, un rectángulo en horizontal que pasa a
formal un rectángulo en vertical y viceversa.

Análisis experimental de las modificaciones 79

(a)

(b) (c)

Figura 5.10: Las imágenes (b) y (c) muestran un árbol generador actual
de forma rectangular que pasa de horizontal a vertical, tal como muestra
la imagen (a). La imagen de la izquierda, (b), muestra una reconfiguración
mediante el algoritmo original. La imagen de la derecha, (c), muestra una
reconfiguración mediante el algoritmo multiĺıder.

Como podemos ver en la Figura 5.11, el paso de vertical a horizontal
realiza menos movimientos, y por tanto emite menos mensajes, que el paso
de horizontal a vertical. Esto se debe a dos motivos. El primer motivo es
que el algoritmo multiĺıder, y todos los demás algoritmos estudiados en este
proyecto, tiende a formar largas ramas hacia el sur. El segundo es la altura,
la distancia de la ráız al módulo con menor coordenada Y, de la figura.

El motivo más obvio es la altura. En el caso de vertical a horizontal
se realizan menos movimientos porque a la hora de expandir módulos en
dirección sur encontramos suficientes módulos no comprimidos y, por tan-
to, no necesitamos realizar ningún movimiento para realizar la expansión.
En el caso de horizontal a vertical la altura es menor, por lo que no exis-
ten suficientes módulos al sur de la ráız para expandir las primeras ramas,
realizando aśı más movimientos que en el caso anterior.

La razón por la que la dirección de las ramas ayuda a reducir movimientos
es menos evidente. Estas ramas se forman durante la fase inicial al resolver
los ciclos del grafo de adyacencia. Gracias a la prioridad de dirección a la
hora de resolver este problema, siempre que un módulo puede recibir un

80 Complejidad de los algoritmos y análisis experimental

1000

1200

1400

1600

1800

M
ov

im
ie

n
to

s

Movimientos totales

VH HV

Figura 5.11: Gráfico de barras que representa el número de movi-
mientos realizados por el algoritmo multiĺıder al ejecutar los juegos
de prueba agents rectangles 5x20x5 (VH, de vertical a horizontal) y
agents rectangles 20x5x20 (HV, de horizontal a vertical).

mensaje de un mismo candidato a ráız por más de una dirección, entre
las que se encuentre la dirección norte, el módulo permanece unido a su
vecino del norte una vez acabada la fase inicial. De esta forma, una vez se
inicia la fase de expansión, en el caso de vertical a horizontal, ya existen
suficientes módulos hacia el sur como para expandir las primeras ramas
del árbol generador actual sin tener que realizar movimiento alguno. En
el caso de horizontal a vertical, al tener menos altura, se han comprimido
demasiados módulos y, a la hora de realizar la expansión de las primeras
ramas, se realizan movimientos que el caso anterior evita. Si el algoritmo
no generara las ramas en linea recta y de norte a sur, no podŕıa realizarse
de forma tan rápida esta expansión de las ramas más cercanas a la ráız,
el árbol generador actual no tendŕıa módulos al sur de la ráız como para
expandir estas primeras ramas, aumentando aśı el número de movimientos
del algoritmo. Puede existir el caso en que al pasar de vertical a horizontal
se necesite realizar algún movimiento para expandir las ramas más cercanas
a la ráız, sin embargo nunca serán tantos como cuando el movimiento de
una figura se realiza de horizontal a vertical.

5.2.8. Impacto de la orientación en figuras poco densas

Para experimentar con la orientación de las figuras poco densas se han
usado los casos de prueba de la categoŕıa Peines ejecutando el algoritmo

Análisis experimental de las modificaciones 81

multiĺıder. Cada juego de prueba representa un histograma, orientado en
una de las cuatro direcciones de los puntos cardinales, que debe cambiar
su orientación. Cada barra del histograma, aśı como su base, es de un solo
módulo de ancho. Además, estos juegos de prueba también contemplan el
paso de una orientación a la misma.

Para analizar los resultados de esta experimentación, hemos agrupado
los resultados según su orientación de origen. Un mismo grupo de resultados
contiene tres cambios de orientación y una reconfiguración de una orienta-
ción a si misma.

0

100

200

300

400

500

M
ov

im
ie

n
to

s

Movimientos totales

N W E S

Figura 5.12: Gráfico de barras que representa el número de movimientos
realizados por el algoritmo multiĺıder al ejecutar los juegos de prueba de la
categoŕıa Peines con misma forma inicial y final. Cada sigla de la leyenda
representa la orientación de su forma inicial.

Empezamos observando los resultados de los movimientos realizados al
cambiar de una forma a si misma. Como es lógico, en estos casos, se realizan
los mismos movimientos durante la fase de compresión que durante la fase
de expansión (todos los módulos comprimidos deben volver a su posición
inicial). Sin embargo, podemos apreciar un dato algo extraño: los juegos
de prueba con dirección de origen norte y oeste no realizan los mismos
movimientos que los de dirección de origen este y sur (Figura 5.12). Antes
de explicar el porqué de este suceso primero veamos el resultado de los otros
juegos de prueba.

El resto de juegos de prueba muestran resultados igual de extraños (Fi-
gura 5.13). Si nos fijamos bien en los juegos de prueba inversos vemos que
nos encontramos en la misma situación que la descrita en el párrafo anterior.

82 Complejidad de los algoritmos y análisis experimental

0

500

1000

1500

M
ov

im
ie

n
to

s

Movimientos totales

NW NE NS WN WE WS EN EW ES SN SW SE

Figura 5.13: Gráfico de barras que representa el número de movimientos
realizados por el algoritmo multiĺıder al ejecutar los juegos de prueba de
la categoŕıa Peines con forma inicial y final diferentes. La primera sigla
de la leyenda representa la orientación de su forma inicial y la segunda la
orientación de su forma final.

Entendemos como juegos de prueba inversos dos juegos de prueba diferentes
cuya forma inicial en uno es la forma final del otro y donde la forma final del
primero es igual a la forma inicial del segundo. Los resultados de los juegos
de prueba de norte a oeste y de oeste a norte son idénticos, como lo son
los de los juegos de prueba de este a sur y de sur a este. Sin embargo, los
resultados de los juegos de prueba del resto de casos inversos no coinciden.
Es más, los resultados de algunos juegos de prueba que, a simple vista, no
tienen nada que ver coinciden, como los juegos de prueba de norte a este y
de oeste a sur.

Tras analizar los datos obtenidos de las gráficas de las Figuras 5.12 y
5.13 podemos llegar a una conclusión. La orientación de una figura poco
densa solo importa porque puede llegar a determinar si la ráız del árbol
generador, tanto inicial como final, tiene un hijo o dos. Todos los juegos de
prueba invertidos que coinciden, solo coinciden porque ambos pasan de un
árbol generador inicial a un árbol generador final con el mismo número de
hijos, no por ser uno el caso inverso del otro. Es más, los juegos de prueba
no invertidos cuyos resultados coinciden, son los que pasan de un árbol
generador inicial a un árbol generador final cuyas ráıces tienen un número
diferente de hijos y cuya carga de módulos se se distribuyen de la misma
manera durante la reconfiguración.

Análisis experimental de las modificaciones 83

En definitiva, la orientación en una figura poco densa solo influye en la
reconfiguración si esta determina el número de hijos de la ráız.

5.2.9. Reconfiguración de figuras sin ciclos

Todos los juegos de prueba presentados hasta ahora están formados, an-
tes de iniciar la ejecución de un algoritmo, por módulos conectados a todos
sus vecinos. Sin embargo, puede interesarnos abordar casos en que el grafo
de adyacencias inicial esta formado por módulos que no están conectados a
todos sus vecinos, tal como en los ejemplos de la Figura 5.14. Por supues-

Figura 5.14: Figura que muestra un juego de pruebas con tres rectángulos
sin ciclos que deben tomar la misma forma de la que parten.

to todos de los algoritmos, tanto el original como los presentados en este
proyecto, son capaces de llevar a cabo la reconfiguración de una figura sin
ciclos, ya que, durante la fase de inicial de la reconfiguración, el grafo de
adyacencias se rompe en forma de árbol generador inicial, que es un grafo
de adyacencia sin ciclos.

84 Complejidad de los algoritmos y análisis experimental

Caṕıtulo 6

Analizador sintáctico de
acciones

El analizador sintáctico de acciones, o parser de acciones, es una herra-
mienta diseñada para analizar las diferentes acciones realizadas durante la
ejecución de un conjunto de reglas por el simulador de robots cristalinos.

6.1. ¿Para qué necesitamos un parser de acciones?

Si queremos analizar en profundidad el impacto de un conjunto de reglas
para el simulador de robots cristalino sobre un grupo de robots necesitamos
saber exactamente el número de mensajes o movimientos realizados durante
la ejecución del conjunto de reglas.

Aunque el simulador de robots cristalino dispone de una serie de he-
rramientas que registran y permiten visualizar qué reglas se han aplicado
en cada iteración nos es imposible saber el número de movimientos o de
mensajes que han producido o emitido dichas reglas a no ser que el usuario
busque y anote, iteración tras iteración, los cambios en el sistema de robots.
Realizar estas anotaciones a mano puede ser factible, aunque tedioso, en
sistemas con un número de módulos reducido, sin embargo, para sistemas
con decenas o cientos de módulos esta tarea consumiŕıa demasiado tiempo y
esfuerzo. Es por esta razón por la que decidimos crear el parser de acciones
de robots cristalinos.

6.2. Menu principal

Al ejecutar el simulador se abre la ventana del menú principal con cuatro
opciones:

85

86 Analizador sintáctico de acciones

6.2.1. Repair Rules File

Esta opción prepara el conjunto de reglas para poder ser analizado co-
rrectamente por el parser.

Una vez pulsado este botón, se abre una ventana en donde podemos
elegir un fichero de reglas del simulador. Escogido el conjunto de reglas a
reparar, el parser genera un nuevo fichero de reglas con dos correcciones:

Se eliminan los espacios a principio de linea.

Se asigna una fase inventada, [WW], a las reglas que no tienen indicada
una fase a principio de su nombre.

Como estas reparaciones puede que no hagan falta si las reglas se han
redactado correctamente, esta acción es opcional.

6.2.2. Numerate and Parse Rules

Al seleccionar esta opción se abre una ventana que permite elegir un
fichero de reglas a analizar.

Si las reglas no tienen ninguno de los fallos mencionados en el Apartado
6.2.1 esta opción genera dos nuevos ficheros.

Uno de ellos, terminado en numbered, contiene el conjunto de reglas
numeradas a partir de 0. Para que el parser sea capaz de interpretar las
acciones que ha realizado cada regla en una reconfiguración es importante
que en el simulador se haya abierto este conjunto de reglas numeradas en
lugar del conjunto de reglas original. Esta opción no numera ninguna regla
que se aplique al árbol generador final ya que este árbol no es más que un
artificio de la simulación, en el caso de aplicar las reglas a un robot real, este
árbol no existiŕıa.

El segundo fichero, terminado en actions, contiene una lista que consta
de cada número que identifica una regla seguido del número de acciones de
cada tipo que realiza dicha regla. El orden en que se representan las acciones
es:

1. Cambios de estado.

2. Mensajes numéricos emitidos.

3. Mensajes de texto emitidos.

4. Movimientos por la superficie.

5. Valores de registros alterados.

6. Acoplamientos o desacoplamientos.

7. Paso de módulo comprimido.

6.3. VENTANA DE ANÁLISIS ESTADÍSTICO 87

8. Compresión de módulo.

9. Descompresión de módulo (expansión de un módulo comprimido en
un espacio vaćıo).

10. Mensajes de acción de compresión.

11. Mensajes de confirmación de acción de compresión.

12. Mensajes de negación de acción de compresión.

13. Mensajes de acción de paso de módulo comprimido.

14. Mensajes de confirmación de paso de módulo comprimido.

15. Mensajes de operación de cambio de rama.

16. Mensajes de confirmación de operación de cambio de rama.

17. Mensajes de negación de operación de cambio de rama.

18. Mensajes de paso del estado ĺıder.

19. Mensajes de pausa.

20. Mensajes de reanudación.

21. Mensajes de recuento de módulos.

Si el parser encuentra una acción que no comprende en una regla, escribe
Error en lugar del número de veces que la regla realiza cada acción.

6.2.3. Parse log File

Esta opción es la responsable de analizar las acciones realizadas durante
una o más ejecuciones de un conjunto de reglas. Al seleccionarla abre la
ventana de análisis estad́ıstico.

6.2.4. Exit

Esta opción cierra el parser de acciones.

6.3. Ventana de análisis estad́ıstico

Esta ventana consta de varios botones:

El primer botón, en el que puede leerse Open, permite elegir el fiche-
ro actions del conjunto de reglas que se ha usado para ejecutar la
reconfiguración a analizar.

88 Analizador sintáctico de acciones

El botón de Add Log añade a la lista de logs de acciones a analizar el
fichero que seleccionemos. Es importante que estas acciones correspon-
dan a las realizadas por un conjunto de reglas numeradas, el mismo
conjunto que genera la opción del Apartado anterior 6.2.2 a partir del
conjunto de reglas original.

El botón Remove Log elimina el log de la lista de logs a analizar que
esté seleccionado.

El botón Remove All elimina todos los logs de la lista de logs a analizar.

El botón Parse analiza los logs de los ficheros de acciones importados
del simulador y genera un único fichero común con el análisis de las
diferentes acciones generadas por fase de ejecución. Al final del fichero
podemos encontrar una media y un total del número de mensajes y
movimientos totales del conjunto de logs analizados.

El botón Cancel cierra esta ventana y vuelve a la ventana del menú
principal del parser.

6.4. ¿Cómo funciona?

Para poder analizar las acciones realizadas durante una reconfiguración
primero necesitamos ejecutar todas las opciones del simulador. Antes de
empezar hay que tener en cuenta que todos los archivos generados por el
parser serán creados en el mismo directorio en que se encuentra el parser.

Primero, al ejecutar el parser, si el fichero de reglas contiene alguno de los
dos errores mencionados en el Aparatado 6.2.1, debemos ejecutar la primera
opción, Repair Rules File, y una vez generado el nuevo conjunto de reglas
substituimos la fase [WW] por la fase pertinente.

Como segundo paso debemos ejecutar la opción de Numerate and Par-
se Rules. Esta opción genera los dos ficheros clave para el análisis de las
acciones, Nombre numbered y Nombre actions.

El tercer paso es el de ejecutar tantas reconfiguraciones como se desee
usando como conjunto de reglas el fichero Nombre numbered generado en el
paso anterior. No hay que olvidar que después de cada ejecución hay que
guardar en un fichero las acciones que el simulador muestra en la pestaña
actions.log usando la opción save de dicha pestaña.

Por último abrimos la ventana de análisis estad́ıstico y cargamos, me-
diante el botón Open, el fichero Nombre actions generado en el segundo paso.
Luego añadimos a la lista de logs a analizar los ficheros de actions.log que
hemos guardado después de cada iteración. Una vez hemos añadido todos
los logs que queremos analizar podemos pulsar Parse para generar el fichero
con los resultados del análisis.

6.5. REQUISITOS 89

6.5. Requisitos

Nuestro parser solo necesita los siguientes elementos:

Una versión de Java compatible con el simulador de robots cristalinos
(superior a la versión 6.0).

El Simulador de robots cristalinos.

Un sistema operativo de Microsoft Windows superior a Windows 95.

90 Analizador sintáctico de acciones

Caṕıtulo 7

Gestión del proyecto

7.1. Planificación

Para realizar la planificación inicial, el proyecto se dividió en 4 bloques:

1. Programación: Esta fase incluye el estudio del simulador, diseño e
implementación de los algoritmos de mejora e implementación y eje-
cución de los juegos de prueba.

a) Estudio del simulador: Estudio del funcionamiento del simu-
lador y del lenguaje de sus reglas de actuación.

b) Primera versión del algoritmo: Diseño e implementación de
un algoritmo simple con señal de parada hasta intersección. In-
cluye la creación y ejecución de los juegos de prueba correspon-
dientes.

c) Segunda versión del algoritmo: Diseño e implementación de
un algoritmo con señal de parada hasta la ráız del árbol e im-
plementación de una segunda cadena de señales de reanudado.
Incluye la ejecución de los juegos de prueba correspondientes.

d) Tercera versión del algoritmo: Diseño e implementación de
un algoritmo con señal de parada para toda la configuración.
Incluye la ejecución de los juegos de prueba correspondientes.

e) Versión final del algoritmo: Diseño e implementación del al-
goritmo multiĺıder. Incluye la ejecución de los juegos de prueba
correspondientes.

2. Experimentación: Esta fase esta formada por el estudio de la com-
plejidad de los algoritmos y la experimentación de juegos de prueba
más avanzados para obtener resultados reales sobre el rendimiento de
los algoritmos.

91

92 CAPÍTULO 7. GESTIÓN DEL PROYECTO

a) Estudio de complejidad: Estudio de la complejidad de los 5
algoritmos del proyecto.

b) Experimentación: Ejecución de una serie de jugos de prueba
espećıficos para medir el rendimiento de los algoritmos estudiados
en el proyecto aśı como el análisis de dichos resultados.

3. Página web: En esta fase se planificó la creación o modificación de
la página web del proyecto sobre algoritmos distribuidos de robots
cristalinos.

4. Memoria: Esta fase abarca la redacción de la memoria del proyecto.

5. Presentación: Por último, en esta fase se produce la preparación de
la defensa del proyecto.

El cálculo de horas inicial fue complejo debido a que, al tratarse de un
proyecto de investigación, es dif́ıcil llegar a hacerse una idea de todos los
posibles problemas que pueden surgir.

La metodoloǵıa seguida en cada fase es la siguiente:

Se planifica la fase y se anotan los posibles imprevistos y dudas que
hayan surgido durante la planificación.

Se presenta la planificación a la directora del proyecto, se discute dicha
planificación y se decide la mejor manera de continuar el proyecto.

Implementación de la fase y obtención de resultados.

Se presentan los resultados de la fase a la directora para su validación.

Redacción en la memoria del tema relacionado con la fase que se ha
implementado.

Podemos ver el diagrama de gantt inicial en la Figura 7.3. Durante el
proyecto se ha modificado el calendario a medida que nos hemos encontrado
con diferentes problemas e incidentes. La figura 7.4 muestra el diagrama de
gantt final.

Como se puede apreciar en el diagrama final, las fechas de la implemen-
tación del algoritmo multiĺıder, experimentación y redacción de la memoria
se han alejado bastante de las fechas originales debido a los problemas en-
contrados durante la implementación del algoritmo y la experimentación. En
estas fases han intervenido factores no previstos como la excesiva aparición
de errores durante la implementación del algoritmo, el fallo del algoritmo
de Joan Soler durante la experimentación y el tiempo de ejecución de los
juegos de prueba del simulador. Estos problemas o no se previeron durante

7.2. PRESUPUESTO 93

la planificación o bien, en el caso de la implementación del algoritmo mul-
tiĺıder o el tiempo de ejecución de los juegos de prueba, han necesitado una
mayor inversión de tiempo de la prevista.

Además, en el diagrama final se ha añadido una nueva sub-fase a la
experimentación dedicada a la modificación del algoritmo de Joan Soler.

7.2. Presupuesto

En la valoración económica de este proyecto no se ha tenido en cuenta el
coste del simulador ya que forma parte de otros proyectos anteriores a este.

Todos los recursos utilizados son humanos. El material usado es digital
y libre, por lo que su coste no tiene relevancia en el presupuesto.

En el proyecto han intervenido dos personas: la directora del proyecto y
el analista y programador. La Figura 7.1 muestra el precio por hora de cada
una de las personas implicadas en el proyecto.

Figura 7.1: Tabla de precio por hora según rol.

En la Figura 7.2 se muestran los recursos utilizados, las horas invertidas
y los costes de cada fase.

Figura 7.2: Desglose económico del proyecto.

94 CAPÍTULO 7. GESTIÓN DEL PROYECTO

Figura 7.3: Diagrama de gantt inicial.

7.2. PRESUPUESTO 95

Figura 7.4: Diagrama de gantt final.

96 CAPÍTULO 7. GESTIÓN DEL PROYECTO

Caṕıtulo 8

Conclusiones

8.1. Resultados obtenidos

El objetivo principal del trabajo era conseguir mejorar el algoritmo dis-
tribuido original para conseguir una reducción en el número de movimientos.
No solo hemos conseguido reducir el número de movimientos de forma es-
pectacular, sino que, además, hemos conseguido reducir la comunicación
entre módulos a una pequeña fracción de lo que se generaba en el algoritmo
original.

En un primer momento se consideró el estudio de un algoritmo distri-
buido 3D pero al final, al ver que el algoritmo era idéntico al algoritmo 2D
pero añadiendo reglas para las 2 nuevas direcciones posibles (encima y de-
bajo), vimos que el estudio carećıa de interés y optamos por abandonar este
objetivo.

Además, hemos analizado la complejidad de todos los algoritmos de me-
jora presentados y hemos experimentado con ellos para comprobar, no solo
su eficiencia real, sino también que la complejidad real se ajusta a la teori-
zada.

También hemos creado un analizador de acciones que nos permite ex-
traer, a partir de un log del simulador, todos los movimientos y mensajes
realizados por la simulación aśı como su tipo.

Por último hemos conseguido encontrar patrones que en un futuro ayu-
darán a mejorar la eficiencia del algoritmo como la importancia de la den-
sidad de módulos en una figura y la de su orientación respecto el universo
del simulador.

8.2. Dificultades encontradas

La primera dificultad que hemos encontrado ha sido el lenguaje del simu-
lador. Comprender en profundidad el lenguaje del simulador ha sido dif́ıcil
ya que nos hemos encontrado con algunas situaciones como el caso en que el

97

98 CAPÍTULO 8. CONCLUSIONES

simulador acepta un asterisco a la hora de indicar que puedes recibir un men-
saje de cualquier dirección, por ejemplo M*Expnd, pero no lo acepta cuando
quieres comprobar la negación de la expresión, por ejemplo !M*Expnd, obli-
gando a alargar las precondiciones de las reglas.

La manera en que el simulador interpreta las reglas también ha sido un
problema. El simulador comprueba, para cada módulo, qué reglas pueden
ejecutarse y, después de validar todas las reglas posibles, las ejecuta sin
comprobar nada más. De esta forma, si una de las reglas que el simulador da
como válida altera el estado de un módulo, haciendo aśı que deje de cumplir
la precondición del resto de reglas válidas, el simulador sigue ejecutando
el resto de reglas aunque no se cumpla su precondición. Para solucionarlo
hemos tenido que utilizar toda una serie de estados y contadores que, en
muchas ocasiones, evitan que se ejecute más de una regla por iteración,
entorpeciendo la reconfiguración y haciendo que dure más ejecuciones de las
que debeŕıa, y obligando a crear muchas reglas adicionales.

La gran cantidad de reglas existentes también han sido una gran fuente de
problemas. Asegurar que más de 700 reglas no van a interferir unas con otras
es prácticamente imposible. Cada vez que encontrábamos un problema y
creábamos un nuevo conjunto de reglas para solucionarlo, surǵıan problemas
nuevos causados por la interferencia de las reglas nuevas con las antiguas en
situaciones extremadamente variadas.

Cuando no hab́ıa problema con las reglas nuevas, aparećıan circunstan-
cias imprevistas. En ejemplos pequeños, de menos de 100 módulos, ninguno
de los algoritmos estudiados en el proyecto daba problemas, sin embargo, al
incrementar el número de módulos, empezaban a surgir casos extremos en
donde incluso el conjunto de reglas del algoritmo de Joan Soler [3] dejaba de
funcionar correctamente e interfeŕıa con otras reglas. En concreto, en el ca-
so de las reglas de Joan Soler, se han llegado a encontrar problemas incluso
durante las últimas semanas del proyecto.

Por último cabe resaltar la estabilidad del simulador. Ya sea por el cam-
bio a las nuevas versiones de java, por el hecho de estar programado en java
o por el gran número de módulos de algunos ejemplos, el simulador en oca-
siones deja de funcionar al llegar a la última ejecución de la reconfiguración.
Esto era un problema a la hora de realizar la experimentación porque dejaba
de funcionar antes de ejecutar la opción, introducida por consola, que obliga
al simulador a guardar el log de acciones una vez acabada la configuración e
imposibilita que pueda volver a ejecutar otro caso de prueba. Para solucio-
narlo, aprovechando que el simulador guarda las acciones realizadas en un
archivo temporal, creamos un script para powershell de windows que abŕıa
el simulador, ejecutaba el caso de prueba, al cabo de un tiempo guardaba el
log de acciones y luego mataba el proceso del simulador en el sistema para
volverlo a abrir con un nuevo juego de prueba.

8.3. FUTURO DEL PROYECTO 99

8.3. Futuro del proyecto

Algunas de las tareas que podŕıan llevarse a cabo en un futuro podŕıan
ser:

Ampliar el algoritmo multiĺıder: Aunque el algoritmo multiĺıder evi-
ta la gran mayoŕıa de los movimientos innecesarios durante la fase
de expansión, podŕıamos intentar reducirlo aún más desde la fase de
compresión o incluso desde el momento en que se busca la ráız. Si se
conseguimos que un módulo sepa si ya ocupa una posición que existe
en la forma final y que existe un camino de módulos ya en posición
desde el módulo a la ráız, entonces podŕıamos dejar ramas enteras del
árbol generador inicial en fase de expansión incluso antes de iniciar la
fase de compresión.

Integración del analizador de acciones: En un futuro podŕıamos inte-
grar el analizador de acciones en el simulador siempre y cuando este
permita al usuario añadir nuevos patrones a reconocer como si de un
conjunto de reglas se tratara.

Implementar un sistema threads: En ocasiones, sobretodo para casos
de prueba con muchos módulos, el simulador tarda demasiado en eje-
cutar la reconfiguración y no llega a aprovechar toda la potencia del
ordenador que lo ejecuta. Para evitarlo podŕıamos estudiar si creando
una serie de threads durante la ejecución se puede llegar a reducir el
tiempo que lleva el terminar una reconfiguración.

Modo consola: Aunque la gran mayoŕıa de las veces nos interesa ver
paso a paso la ejecución de una reconfiguración, en ocasiones no es
necesario. Para intentar ahorrar tiempo en la ejecución de la reconfi-
guración y facilitar la experimentación podŕıa ser interesante crear un
modo de ejecución solo por consola, que no mostrara ningún tipo de
ventana ni imagen.

8.4. Valoración personal

La verdad es que durante la planificación e implementación de los dife-
rentes algoritmos he disfrutado much́ısimo. Horas y horas implementando
nuevas versiones, solucionando errores, mirando paso por paso la ejecución,
preguntándome qué pieza del rompecabezas se me escapaba para, finalmen-
te, verlo funcionar a la perfección. Es por estos momentos por lo que más
he disfrutado este trabajo. Me hubiera gustado ampliar aún más el último
algoritmo, llevarlo al extremo de generar reconfiguraciones perfectas sin mo-
vimientos innecesarios, pero mi tiempo con este proyecto ha llegado a su
fin.

100 CAPÍTULO 8. CONCLUSIONES

Una vez acabado, incluso con los resultados de la experimentación en la
mano y viendo lo que ha mejorado el algoritmo con su versión multiĺıder, soy
consciente que solo he realizado una pequeña parte de un proyecto mucho
más grande, con mucho historia y con mucho futuro y potencial.

Además, durante el tiempo en que he estado trabajando en este proyecto
he aprendido mucho más sobre Java[7][8], html5[9][10], powershell[11][12][13][14][15][16][17]
y LATEX[18][19][20][21][22][23][24][25][26][27][28][29][30].

Por último me gustaŕıa dar las gracias a Vera Sacristán y a su dedicación
en este proyecto. Con su ayuda, y sobretodo su paciencia, me ha ayudado
en mis momentos más bajos y de menor motivación y me ha animado a
continuar con el proyecto cuando ya me flaqueaban las fuerzas. Ayuda mucho
saber que hay alguien interesado en tu trabajo y que te ayuda y plantea
nuevas ideas que en su momento no hab́ıas sido capaz de ver.

Gracias.

Bibliograf́ıa

[1] Daniela Rus, Marsette Vona. A Physical Implementation of the Self-
reconfiguring Cyristalline Robot. Proceedings of the IEEE Intl. Confe-
rence on Robotics and Automation pp. 1726–1733, 2000.

[2] G. Aloupis, S. Collette, M. Damian, E. D. Demaine, R. Flatland, S.
Langerman, J. O’Rourke, V. Pinciu, S. Ramaswami, V. Sacristán, S
Wuhrer. Efficient Constant-Velocity Reconfiguration of Crystalline Ro-
bots. Robotica, Vol. 29, N. 1, pp. 59-71, 2011.

[3] J. Soler. Reconfiguració de robots cristal·lins (in Catalan). Degree the-
sis under the supervision of V. Sacristán, Facultat de Matemàtiques i
Estad́ıstica, Universitat Politècnica de Catalunya, 2013.

[4] J. W. Suh, S. B. Homans and M. Yim, “Telecubes: Mechanical Design of
a Module for Self-Reconfigurable Robotics,” Proceedings of the IEEE
International Conference on Robotics and Automation, Washington,
DC (May 11–15, 2002) pp. 4095–4101.

[5] R. Wallner. A System of Autonomously Self-Reconfigurable Agents.
Diploma Thesis, Institute for Software Technology, Graz University of
Technology, 2009.

[6] http://www-ma2.upc.edu/vera/CrystalSimulation/.

[7] http://stackoverflow.com/questions/7442310/adding-elements-to-jlist-
in-swing-java.

[8] http://stackoverflow.com/questions/4005378/console-writeline-and-
system-out-println.

[9] http://www.w3schools.com/html/html5 video.asp.

[10] https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Using HTML5 audio and video.

[11] https://technet.microsoft.com/en-us/magazine/2008.12.heyscriptingguy.aspx.

[12] https://www.youtube.com/watch?v=2IC-YbzUZAc.

101

http://www-ma2.upc.edu/vera/CrystalSimulation/
http://stackoverflow.com/questions/7442310/adding-elements-to-jlist-in-swing-java
http://stackoverflow.com/questions/7442310/adding-elements-to-jlist-in-swing-java
http://stackoverflow.com/questions/4005378/console-writeline-and-system-out-println
http://stackoverflow.com/questions/4005378/console-writeline-and-system-out-println
http://www.w3schools.com/html/html5_video.asp
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Using_HTML5_audio_and_video
https://technet.microsoft.com/en-us/magazine/2008.12.heyscriptingguy.aspx
https://www.youtube.com/watch?v=2IC-YbzUZAc

102 BIBLIOGRAFÍA

[13] http://stackoverflow.com/questions/17849522/how-to-perform-
keystroke-inside-powershell.

[14] https://technet.microsoft.com/en-us/library/ee156818.aspx.

[15] http://stackoverflow.com/questions/19824799/how-to-send-ctrl-or-alt-
any-other-key.

[16] http://stackoverflow.com/questions/9788492/powershell-extract-file-
name-and-extension.

[17] http://stackoverflow.com/questions/18847145/loop-through-files-in-a-
directory-using-powershell.

[18] http://elclubdelautodidacta.es/wp/2013/03/latex-sumatorio-y-
productorio/.

[19] http://tex.stackexchange.com/questions/69373/how-to-write-
properly-math-accent-for-letter-i.

[20] http://en.wikibooks.org/wiki/LaTeX/List Structures.

[21] https://es.sharelatex.com/learn/Sections and chapters.

[22] http://en.wikibooks.org/wiki/LaTeX/Mathematics.

[23] http://en.wikibooks.org/wiki/LaTeX/List Structures#Itemize.

[24] http://www.latex-community.org/forum/viewtopic.php?f=46&t=21257.

[25] http://texblog.net/help/latex/markboth.html.

[26] http://pgfplots.sourceforge.net/.

[27] https://es.sharelatex.com/learn/Pgfplots package.

[28] http://tex.stackexchange.com/questions/45529/pgfplot-axis-mark.

[29] https://www.sharelatex.com/learn/Pgfplots package.

[30] http://tex.stackexchange.com/questions/31276/number-format-in-
pgfplots-axis.

http://stackoverflow.com/questions/17849522/how-to-perform-keystroke-inside-powershell
http://stackoverflow.com/questions/17849522/how-to-perform-keystroke-inside-powershell
https://technet.microsoft.com/en-us/library/ee156818.aspx
http://stackoverflow.com/questions/19824799/how-to-send-ctrl-or-alt-any-other-key
http://stackoverflow.com/questions/19824799/how-to-send-ctrl-or-alt-any-other-key
http://stackoverflow.com/questions/9788492/powershell-extract-file-name-and-extension
http://stackoverflow.com/questions/9788492/powershell-extract-file-name-and-extension
http://stackoverflow.com/questions/18847145/loop-through-files-in-a-directory-using-powershell
http://stackoverflow.com/questions/18847145/loop-through-files-in-a-directory-using-powershell
http://elclubdelautodidacta.es/wp/2013/03/latex-sumatorio-y-productorio/
http://elclubdelautodidacta.es/wp/2013/03/latex-sumatorio-y-productorio/
http://tex.stackexchange.com/questions/69373/how-to-write-properly-math-accent-for-letter-i
http://tex.stackexchange.com/questions/69373/how-to-write-properly-math-accent-for-letter-i
http://en.wikibooks.org/wiki/LaTeX/List_Structures
https://es.sharelatex.com/learn/Sections_and_chapters
http://en.wikibooks.org/wiki/LaTeX/Mathematics
http://en.wikibooks.org/wiki/LaTeX/List_Structures#Itemize
http://www.latex-community.org/forum/viewtopic.php?f=46&t=21257
http://texblog.net/help/latex/markboth.html
http://pgfplots.sourceforge.net/
https://es.sharelatex.com/learn/Pgfplots_package
http://tex.stackexchange.com/questions/45529/pgfplot-axis-mark
https://www.sharelatex.com/learn/Pgfplots_package
http://tex.stackexchange.com/questions/31276/number-format-in-pgfplots-axis
http://tex.stackexchange.com/questions/31276/number-format-in-pgfplots-axis

Anexo: Definiciones

En este anexo describimos no solo la estructura de nuestros conjuntos de
reglas y la función de todos y cada uno de los estados, contadores y mensajes
que utilizan.

Cada apartado describe los estados, contadores y mensajes que usa cada
conjunto de reglas y que difieren de los descritos en los apartados anteriores
de este mismo anexo.

Clasificación en las tres fases principales de los al-
goritmos algoritmo

Todas las reglas tanto del algoritmo original como de las modificaciones
están clasificadas en tres fases según cuando y para qué se utilizan. Esto se
expresa el principio de cada regla con una sigla entre corchetes que, aunque
no tiene efecto en el algoritmo, ayuda al usuario a comprender mejor las
reglas. A continuación describimos dichas fases:

[S] Fase inicial: Esta fase consta de las reglas que buscan la ráız del
árbol generador inicial y que dan a cada módulo el valor inicial de sus regis-
tros y su estado inicial. Cada módulo que no esta conectado a ningún otro
módulo ni por el norte ni por el oeste se considera a si mismo como candidato
a ráız y env́ıa un mensaje a sus vecinos con sus coordenadas relativas. Estos
vecinos a su vez env́ıan el mismo mensaje a sus vecinos con las coordenadas
actualizadas. Si un módulo recibe dos mensajes de diferente origen (coorde-
nadas) elije el mensaje del módulo que esta más al noroeste y lo transmite.
Para evitar ciclos, un módulo que recibe el mismo mensaje de más de una
dirección reconoce que hay un ciclo en el grafo de conexiones y rompe una de
estas. Cuando un mensaje llega a un módulo hoja, este vuelve a ser enviado
en dirección a su padre. Finalmente, si un módulo candidato a ráız recibe
su propio mensaje, se reconoce ráız y empieza la fase de compresión.

[C] Fase de compresión: La fase de compresión consta de reglas que
se aplican una vez se ha encontrado una ráız en el árbol generador inicial.
Esta ráız env́ıa una señal que viaja por todo el árbol y una vez ha llegado a
las hojas provoca que estas se compriman en sus padres y viajen a través de
las ramas del árbol hacia la ráız. Este proceso de compresión y movimiento

103

104 Definiciones

se repite siempre que sea posible. Esta fase se ejecuta al mismo tiempo que
la fase de expansión.

[E] Fase de expansión: Consta de las reglas que se aplican al llegar
a la ráız el primer módulo comprimido, siempre que la ráız tenga toda la
información disponible para empezar la reconfiguración (una vez la ráız del
árbol generador ha encontrado la ráız del árbol final). Esta fase expande una
señal de ĺıder que viaja desde la ráız del árbol siguiendo el camino indicado
por la información del árbol generador final para acabar formando, rama a
rama, la figura deseada. Para conseguirlo, se transmite la señal de un módulo
en fase de expansión a otro o, en caso de encontrar una posición vaćıa,
expandiendo módulos comprimidos para llenar esos huecos. La dirección en
que se expande la señal tiene un sistema de prioridades: primero se intenta
expandir hacia el sur, luego hacia el este, hacia el oeste y por último hacia el
norte. Para facilitar la expansión, los módulos comprimidos siguen al ĺıder
a través de las ramas. Esta fase se ejecuta al mismo tiempo que la fase de
compresión.

Fases o grupos secundarios

[F] Fase inicial de la copia de la forma final: La representación de
la forma final y todas las reglas que se aplican sobre ella es la manera que
tenemos en nuestro simulador de simular que la ráız tiene la información de
la forma a la que ha de llegar. Por eso cuando analizamos y estudiamos las
reglas aplicadas a los diferentes juegos de prueba nunca tenemos en cuenta
las reglas que se le han aplicado. Las reglas de este grupo son las mismas
que se aplican a la configuración inicial.

[R] Reglas de reparación: Reglas auxiliares que se aplican en todos los
módulos independientemente de la fase en la que se encuentren, no pertene-
cen a una fase espećıfica. Normalmente son reglas que mantienen contadores
o que expanden señales que han de viajar por todo el árbol independiente-
mente de en qué fase se encuentre cada módulo.

[End] Fin de la reconfiguración: En la última modificación del algo-
ritmo existe esta última fase o grupo de reglas compuesto por exactamente
cuatro reglas. Su única función es la de conectar entre śı módulos vecinos que
ya hayan acabado su trabajo en el árbol actual y que ya no deban realizar
ninguna otra acción para alcanzar la forma final.

Algoritmo original

Descripción de estados

Start: Estado inicial de todos los módulos de la configuración inicial.
Es necesario asignar a los módulos este estado antes de empezar a aplicar el

Algoritmo original 105

algoritmo.
Final: Estado inicial de todos los módulos de la configuración final. Es

necesario asignar a los módulos este estado antes de empezar a aplicar el
algoritmo.

CanbS: Estado que adquieren los módulos de la configuración inicial que
no tienen ningún vecino ni al norte ni al oeste al iniciar la reconfiguración.
Estos módulos son candidatos a ser ráız del árbol generador.

CanbF: Estado que adquieren los módulos de la representación de la
forma final que no tienen ningún vecino ni al norte ni al oeste al iniciar la
reconfiguración. Estos módulos son candidatos a ser ráız del árbol generador.

WaitS: Estado que adquieren los módulos de la configuración inicial que
han recibido el mensaje enviado por un módulo candidato a ráız del árbol.
Incluso si el módulo que recibe el mensaje es un candidato a ráız del árbol
este también cambia a este estado ya que recibirlo indica la existencia de un
candidato mejor.

WaitF: Estado que adquieren los módulos de la representación de la
forma final que han recibido el mensaje enviado por un módulo candidato
a ráız del árbol. Incluso si el módulo que recibe el mensaje es un candidato
a ráız del árbol este también cambia a este estado ya que recibirlo indica la
existencia de un candidato mejor.

ForwS: Cuando un módulo en estado WaitS difunde el mensaje que ha
recibido de un candidato a ráız del árbol generador inicial, pasa a estado
ForwS. Permanece en este estado hasta recibir un mensaje que proviene de
una hoja del árbol o hasta recibir otro mensaje de un candidato a ráız mejor
que el recibido anteriormente.

ForwC: Cuando un módulo en estado WaitC difunde el mensaje que
ha recibido de un candidato a ráız del árbol generador final, pasa a estado
ForwC. Permanece en este estado hasta recibir un mensaje que proviene de
una hoja del árbol o hasta recibir otro mensaje de un candidato a ráız mejor
que el recibido anteriormente.

BackS: Una vez el mensaje enviado por un candidato a ráız ha llegado
hasta una hoja del árbol generador inicial esta entra en estado BackS y
env́ıa un mensaje hacia la ráız. Todos los módulos que reciben este mensaje
adquieren este estado. Si por el camino un módulo en este estado recibe el
mensaje de un candidato a ráız mejor que el actual vuelve a estado WaitS.

BackF: Una vez el mensaje enviado por un candidato a ráız ha llega-
do hasta una hoja del árbol generador final esta entra en estado BackF y
env́ıa un mensaje hacia la ráız. Todos los módulos que reciben este mensaje
adquieren este estado. Si por el camino un módulo en este estado recibe el
mensaje de un candidato a ráız mejor que el actual vuelve a estado WaitF.

RootS: Estado al que pasa un módulo candidato a ráız del árbol gene-
rador inicial cuando recibe su propio mensaje de vuelta de todos sus hijos.
Una vez alcanzado este estado el módulo env́ıa a sus hijos un mensaje para
comenzar la fase de compresión.

106 Definiciones

RootF: Estado al que pasa un módulo candidato a ráız del árbol gene-
rador final cuando recibe su propio mensaje de vuelta de todos sus hijos.

RootL: Cuando el estado de ĺıder pretende pasar de una rama del árbol
generador actual a la otra (del hijo sur de la ráız del árbol al hijo del este)
este tiene que pasar por la ráız del árbol. Para indicar que la ráız es el ĺıder
actual del árbol esta pasa al estado RootL.

RootP: Cuando una ráız del árbol generador actual en estado RootL
expande un módulo comprimido a una posición vaćıa, pasa a estado RootP.
Este estado se mantiene por una iteración. Pasado este tiempo el módulo
vuelve a estado RootL.

LIDER: Este estado otorga al módulo que lo obtiene la potestad de de-
cidir la dirección por la que debe expandirse el árbol. Según pasa de módulo
a módulo esta señal deja una marca que indica a los módulos comprimidos
que llegan la dirección a seguir. Este estado surge de la ráız del árbol gene-
rador actual. La reconfiguración acaba cuando el estado vuelve a la ráız una
vez alcanzada la forma final.

PLIDR: Estado que tiene un módulo que ha sido expandido a una
posición vaćıa. Este estado se conserva durante una iteración, la misma en
la que el módulo ha sido descomprimido. Pasado este tiempo el módulo
obtiene el estado LIDER.

PExpn: Estado utilizado para proteger a un módulo que acaba de en-
tregar su estado de ĺıder de cualquier otra regla que se encuentre entre la
que le ha obligado a entregar su estado y la regla que le hace pasar del
estado PExpn a Expnd. Este estado solo se mantiene durante una fracción
de iteración ya que se obtiene y se pierde durante la misma iteración.

Expnd: Cuando un módulo entrega su estado de ĺıder, pasa a estado
Expnd (después de pasar por el estado PExpn por una fracción de itera-
ción). Este estado indica que un módulo ya ha llegado a la posición que le
corresponde en la configuración final.

Cmprs: Estado de los módulos que reciben el mensaje de la ráız del árbol
generador inicial una vez esta ha sido escogida. Este estado indica a las hojas
del árbol que deben comprimirse en dirección a la ráız y a los módulos ya
comprimidos que deben moverse por las ramas del árbol en dirección a la
ráız. Un módulo pierde este estado al entrar en estado de ĺıder.

Slave: Estado de los módulos que reciben el mensaje de la ráız del árbol
generador final una vez esta ha sido escogida.

Descripción de registros

C00: Este registro guarda la posición relativa del de cada módulo tanto
del árbol generador inicial como del árbol generador final respecto de la
ráız de cada árbol. Ambas ráıces dan a este registro el valor de 5050 (50 de
coordenada x y 50 de coordenada y).

C01: Cada módulo guarda en este registro la dirección que hay que seguir

Algoritmo original 107

desde su posición para llegar viajando a través de las ramas del árbol a su
ráız, ya sea del árbol final o inicial. Esta dirección se expresa mediante un
número de cuatro cifras. El valor 1000 indica la dirección norte, 100 indica
el oeste, 10 el este y 1 el sur.

C02: El valor de este registro es la suma de los valores 1000, 100, 10 y 1
dependiendo de si en ese momento el módulo tiene algún hijo en la dirección
norte, oeste, este o sur respectivamente.

C04: Dirección en la que el módulo debe tener hijos y todav́ıa no lo
tiene. Por ejemplo, considerando las cuatro direcciones como 1000, 100, 10
y 1 (norte, oeste, este y sur respectivamente) si un módulo lee del árbol
generador final que debeŕıa tener un hijo al oeste, otro al este y otro al sur
pero actualmente solo tiene un hijo al este el valor de C04 seŕıa de 0101 para
registrar la falta de hijos al oeste y al sur.

C05: Cuando un módulo entrega su estado de ĺıder, guarda en este
registro la dirección por la que se puede encontrar el nuevo ĺıder. De esta
forma los módulos comprimidos pueden encontrar siempre el camino a seguir
hacia el ĺıder.

C16: Registro que indica que un módulo hoja que ha pedido confirma-
ción para comprimirse además ha recibido una señal de cambio de rama. El
valor de este registro es la dirección por la que ha recibido la señal de cambio
de rama, es decir 1000, 100, 10 o 1 (norte, oeste, este o sur respectivamente).
Si el valor de este registro es diferente de 0 y el módulo recibe una señal de
confirmación de compresión, utiliza la información del registro para enviar
un mensaje negando la operación de cambio de rama y luego da al registro
el valor de 3000. El valor 3000 en este registro indica que el módulo esta
listo para comprimirse.

C17: Señal que cuenta el número de iteraciones que ha pasado desde
que un módulo hoja en compresión pidió permiso para comprimirse. Si el
módulo no recibe ninguna confirmación para comprimirse en 2 iteraciones
pero śı que ha recibido una señal de cambio de rama, ejecuta el cambio de
rama en vez de volver a pedir permiso para comprimirse.

C18: Booleano que indica que un módulo hoja ha enviado un mensaje
pidiendo permiso para comprimirse. Su valor es 1 cuando ha pedido permiso
y 0 si aún no lo ha pedido, si han pasado 2 iteraciones desde que lo pidió y
si esta ejecutando la acción de cambio de rama.

C20: Este registro tiene dos funciones. La primera es la de contador
para retrasar la ejecución de otras reglas sobre el módulo ráız del árbol
generador inicial cuando este ha empieza a expandir su hijo del sur o del
oeste. La segunda es la de señalar en la dirección en la que se ha enviado un
mensaje que pueda cambiar la fase de un módulo de compresión a expansión
(es decir, un mensaje de cambio de rama o de paso de ĺıder a un módulo
en fase de compresión). Aunque a primera vista pueda parecer que tiene la
misma función que el registro C005 en realidad son muy diferentes, mientras
que C005 solo toma valor una vez confirmado el paso del estado ĺıder y

108 Definiciones

permanece con ese valor hasta la vuelta de dicho estado, C020 solo tiene
valor diferente de 0 desde el momento en que se env́ıa el mensaje de cambio
de ĺıder (las señales descritas antes en este mismo párrafo) hasta que se
confirma el cambio.

C22: Booleano que evita que se cree más de un ĺıder cuando el módulo
ráız adquiere dicho estado. Solo tiene valor 1 en el módulo ráız.

C23: Es la distancia a la que un módulo del árbol generador inicial sabe
que encontrará el módulo del árbol final que tiene los datos que necesita para
completar la configuración. Es la manera que tenemos de simular que la ráız
del árbol generador inicial conoce los datos necesarios para completar la
configuración. El valor de este registro lo calcula la ráız del árbol generador
inicial y lo transmite al pasar el estado de ĺıder.

C24: Al comprimir un módulo, el módulo que acoge al comprimido ac-
tualiza el valor de este registro para marcar que ahora es un módulo com-
primido. Su valor es siempre 1 si el módulo esta comprimido y 0 si no lo
está.

C25: Al comprimir un módulo, el módulo que se comprime actualiza
el valor de este registro para marcar que ahora contiene un módulo com-
primido. Durante algunas operaciones de compresión o de env́ıo de módulo
comprimido también hace a la vez de contador, por lo que a veces su valor
es 2.

Algoritmo con señal de parada hasta intersección

Descripción de estados

Pause: Este es el estado al que pasan los módulos que reciben una señal
numérica de pausa. Esto mantiene a los módulos pausados y sin realizar
acción alguna hasta recibir la señal de ĺıder, momento en el cual vuelven a
estado LIDER.

También existen en este algoritmo todos los estados descritos para el
algoritmo original en el Apartado 8.4.

Descripción de registros

C08: Registro que marca los módulos que han sido pausados alguna vez.
Se usa para evitar enviar más de un mensaje de pausa por rama. Aunque
hubiera sido más complicado, esta modificación del algoritmo original se
podŕıa haber levado a cabo sin este registro (aunque con muchas más reglas).
Sin embargo, como veremos en el Apartado 8.4, este registro nos permite
evitar la repetición de env́ıo de otro tipo de señal.

Esta modificación conserva además la función de todos los registros des-
critos para el algoritmo original en el Apartado 8.4.

Algoritmo con señal de parada hasta ráız 109

Algoritmo con señal de parada hasta ráız

Descripción de estados

Los estados que usa esta modificación son los descritos en el Apartado
8.4.

Descripción de registros

C08: Además de la función especificada en el Apartado 8.4, ahora es-
te registro también evita que se env́ıe más de una señal de reanudación al
expandir una nueva rama. Como todos los módulos que no han sido pau-
sados (esto incluye los módulos recién expandidos) tienen el valor de este
registro a 0, el algoritmo solo env́ıa la señal de reanudación si un módulo
ĺıder intenta expandirse mientras el valor de su registro C008 es 1, es decir,
no env́ıa nunca el mensaje de reanudación al expandir ni la primera rama
de la reconfiguración ni, una vez enviado el mensaje de reanudación y con
el estado ĺıder perteneciendo a un módulo recién expandido, al continuar
expandiendo ninguna otra rama.

Esta modificación conserva además la función de todos los registros des-
critos en el Apartado 8.4.

Algoritmo con señal de parada para toda la confi-
guración

Descripción de estados

Los estados que usa esta modificación son los descritos en el Apartado
8.4.

Descripción de registros

Las funciones de todos los registros en esta modificación son los descritos
en el Apartado 8.4.

Versión multiĺıder del algoritmo

Descripción de estados

ASKL1: Estado al que pasa un módulo ĺıder cuando un vecino al que
está conectado le pide permiso para enviarle un módulo comprimido. El
primero de un grupo de dos estados que controlan y protegen el proceso de
paso de módulo comprimido en módulos ĺıder.

ASKL2: Estado que sigue a ASKL1 para proteger de interferencias de
otras reglas al módulo ĺıder mientras recibe un módulo comprimido. En

110 Definiciones

caso de no recibir en dos iteraciones el módulo comprimido se restauran los
registros del módulo que esperaba recibirlo y se cambia su estado a LIDER
de nuevo.

ASKE1: Estado al que pasa un módulo en fase de expansión cuando
un vecino al que está conectado le pide permiso para enviarle un módulo
comprimido o cuando un módulo en fase de expansión pide permiso para
enviar un módulo comprimido. El primero de un grupo de dos estados que
controlan y protegen el proceso de paso de módulo comprimido en módulos
en fase de expansión.

ASKE2: Estado que sigue a ASKE1 para proteger de interferencias
de otras reglas a un módulo en fase de expansión mientras recibe o env́ıa
un módulo comprimido. En caso de no recibir en dos iteraciones el módulo
comprimido o el permiso de env́ıo del módulo comprimido, se restauran los
registros del módulo que esperaba recibirlo y se cambia su estado a Expnd.

ASKC1: Estado al que pasa un módulo en fase de compresión cuando
un vecino al que está conectado le pide permiso para enviarle un módulo
comprimido o bien cuando un módulo en fase de compresión pide permiso
para enviar un módulo comprimido. El primero de un grupo de dos esta-
dos que controlan y protegen el proceso de paso de módulo comprimido en
módulos en fase de compresión.

ASKC2: Estado que sigue a ASKC1 para proteger de interferencias
de otras reglas al módulo en fase de compresión mientras recibe o env́ıa
un módulo comprimido. En caso de no recibir en dos iteraciones el módulo
comprimido o el permiso de env́ıo de módulo comprimido, se restauran los
registros del módulo que esperaba recibirlo y se cambia su estado a Cmprs.

CmD*1: Para evitar la ejecución ćıclica de los estados ASKC1, ASKC2,
y Cmprs se creó este estado que asume un módulo que se encontraba en
estado ASKC1 cuando ha recibido una señal de cambio de rama. El asterisco
indica la dirección por la que ha recibido la señal de cambio de rama (N para
norte, W para oeste, E para este y S para sur).

CmD*2: Estado que sigue a CmD*1. Si en la iteración siguiente a obte-
ner este estado no se ha recibido el módulo comprimido o no se ha recibido
confirmación para comprimirse, en vez de volver al estado Cmprs se pasa
al estado DISA* el cual obliga a realizar un cambio de rama. El asterisco
indica la dirección por la que ha recibido la señal de cambio de rama (N
para norte, W para oeste, E para este y S para sur).

DISA*: Estado que fuerza al módulo a realizar una operación de cambio
de rama para conectarse a la rama indicada por el asterisco (N para la rama
al norte, W para la rama al oeste, E para la rama al este y S para la rama al
sur). Se obtiene cuando un módulo en compresión ha pasado dos iteraciones
esperando a recibir un módulo o una señal de otro módulo vecino sin recibir
nada y, mientras esperaba, otro vecino le ha enviado una señal de cambio
de rama.

ZIPNW: Para solucionar problemas como los descritos en el Apartado

Versión multiĺıder del algoritmo 111

3.1.4 se alargó a dos iteraciones el tiempo necesario para realizar la compre-
sión de una hoja tras recibir permiso para comprimirla. Durante la primera
iteración se adquiere este estado y en la segunda se restaura el estado del
módulo hoja a Cmprs y se comprime en dirección al padre. Si durante este
estado el módulo hoja recibe un mensaje de cambio de rama responde con
un aviso al emisor del mensaje negando que se vaya a realizar el cambio.

El resto de estados que usa esta modificación son los descritos en el
Apartado 8.4.

Descripción de registros

C05: En esta modificación este registro ha pasado a indicar la dirección
por la cual un módulo debe enviar o expandir cualquier módulo comprimido
que reciba. Su valor depende del número de módulos comprimidos que hagan
falta en cada una de las cuatro direcciones del módulo para llegar a la forma
final. La dirección que necesita más módulos tiene prioridad sobre las demás.
En caso de empate se utiliza la prioridad de expansión del algoritmo original
(S, W, E y N). El valor 1000 indica el norte, 100 el oeste, 10 el este y 1 el
sur.

C06: Registro auxiliar en el que se guarda durante una iteración el núme-
ro de módulos que la rama en la que se encuentra el módulo ha ganado o
perdido a causa de una operación de cambio de rama.

C07: Booleano que protege a los módulos que acaban de expandir un
módulo comprimido en una posición vaćıa para evitar que ejecuten otras re-
glas durante esa iteración. Esta función puede llevarse a cabo con un cambio
de estado como los que tiene este algoritmo para otras operaciones como el
paso de módulos comprimidos, pero para simplificar el código y no aumentar
aún más el número de reglas, se decidió asignar la función a un registro.

C08: Para conseguir que cuando el estado ĺıder vuelva a la ráız se espera
a recibir tantas señales de asignación de ĺıder como ĺıderes ha expandido
un módulo, se utiliza este registro como contador. Por cada ĺıder expandido
aumenta, y con cada señal de asignación de ĺıder recibida disminuye. Cuando
el valor del registro es 0, el módulo tiene estado ĺıder y además ya no debe
expandirse más, se env́ıa el estado ĺıder en dirección a la ráız.

C10: Número de descendientes que cuelgan en cada momento de un
módulo en dirección norte. Si se puede llegar a la ráız del árbol generador
inicial por esta dirección su valor es 0.

C11: Número de descendientes que cuelgan en cada momento de un
módulo en dirección oeste. Si se puede llegar a la ráız del árbol generador
inicial por esta dirección su valor es 0.

C12: Número de descendientes que cuelgan en cada momento de un
módulo en dirección este. Si se puede llegar a la ráız del árbol generador
inicial por esta dirección su valor es 0.

C13: Número de descendientes que cuelgan en cada momento de un

112 Definiciones

módulo en dirección sur. Si se puede llegar a la ráız del árbol generador
inicial por esta dirección su valor es 0.

C14: Total del número de descendientes que cuelgan en cada momento
de un módulo en todas sus direcciones.

C15: Booleano que indica si un módulo contiene otro módulo compri-
mido o no. Su valor es 0 en caso positivo y 1 en caso negativo.

C16: Número de módulos que hacen falta en dirección norte para al-
canzar el número de descendientes en esa dirección que se necesiten en la
forma final. El valor es negativo si deben llegar módulos comprimidos por esa
dirección y positivo si todav́ıa es necesario mandar módulos en esa dirección.

C17: Número de módulos que hacen falta en dirección oeste para al-
canzar el número de descendientes en esa dirección que se necesiten en la
forma final. El valor es negativo si deben llegar módulos comprimidos por esa
dirección y positivo si todav́ıa es necesario mandar módulos en esa dirección.

C18: Número de módulos que hacen falta en dirección este para alcanzar
el número de descendientes en esa dirección que se necesiten en la forma final.
El valor es negativo si deben llegar módulos comprimidos por esa dirección
y positivo si todav́ıa es necesario mandar módulos en esa dirección.

C19: Número de módulos que hacen falta en dirección sur para alcanzar
el número de descendientes en esa dirección que se necesiten en la forma final.
El valor es negativo si deben llegar módulos comprimidos por esa dirección
y positivo si todav́ıa es necesario mandar módulos en esa dirección.

C20: Al tener información de sobra sobre el estado del árbol generador
actual en cada momento este registro conserva solo una de sus funciones
originales, la de indicador de que se ha enviado un mensaje de algún tipo.

C21: Booleano que indica si el estado ĺıder de un módulo es por expan-
sión o porque esta esperando a que lleguen otras señales de asignación de
ĺıder para volver a la ráız. Su valor es 0 si el estado es de expansión y 1 si
se trata de una espera.

Esta modificación conserva además la función de todos los registros des-
critos en el Apartado 8.4, siempre que no estén descritos aqúı.

Descripción de las señales de los algoritmos

Aqúı se enumeran y describen de las señales tanto numéricas como de tex-
to que emiten los algoritmos presentados en el proyecto. Las señales numéri-
cas se presentan según el canal por el que se emiten ya que, en nuestros
algoritmos, es el canal el que da sentido al número emitido. Los módulos de
nuestro algoritmo disponen de 8 canales distintos de emisión/recepción de
señales.

Descripción de las señales de los algoritmos 113

Señales de texto

Detac: Mensaje enviado durante la fase de búsqueda de la ráız. Este
mensaje indica al módulo que la recibe que debe desconectarse del vecino
que le ha enviado la señal.

Back : Mensaje enviado durante la fase de búsqueda de la ráız. Este
mensaje se env́ıa una vez que la señal de un candidato a ráız ha alcanzado
una hoja del árbol. Este mensaje se emite hacia la ráız para comprobar
que el árbol generador inicial es correcto. Todos los módulos que emiten
esta señal pasan a estado BackS o BackF dependiendo de si se trata de un
módulo del árbol generador inicial o final respectivamente.

Slave: Mensaje enviado durante la fase de búsqueda de la ráız. Este
mensaje se env́ıa una vez que se ha encontrado la ráız del árbol e indica que
todos los módulos deben pasar a estado Slave o Cmprs dependiendo de si
forman parte del árbol generador final o inicial respectivamente.

LIDER: Mensaje enviado durante la fase de expansión. Todo módulo
que recibe este mensaje pasa a estado LIDER.

EXPND: Mensaje enviado durante la fase de expansión. Este mensaje
indica al módulo que el emisor de la señal pide permiso para enviarle un
módulo comprimido.

CANEX: Mensaje enviado durante la fase de expansión. Este mensaje
indica al módulo que el emisor de la señal da permiso para enviarle un
módulo comprimido.

Disal: Mensaje enviado durante la fase de expansión. Este mensaje in-
dica al módulo que lo recibe que debe, si le es posible, abandonar su rama
para incorporarse a la rama del emisor de la señal.

NDISA: Mensaje enviado durante la fase de expansión. Este mensaje
indica al módulo que lo recibe que la operación de cambio de rama que se
ha pedido no va a realizarse. Este mensaje solo se env́ıa en respuesta a la
señal Disal.

EXPDL: Mensaje enviado durante la fase de expansión. Este mensaje
indica al módulo que lo recibe que la operación de cambio de rama se ha
realizado satisfactoriamente. Este mensaje solo se env́ıa en respuesta a la
señal Disal.

ASK Z: Mensaje enviado durante la fase de compresión. Indica al módu-
lo que lo recibe que el emisor de la señal desea comprimirse en su interior.

CAN Z: Mensaje enviado durante la fase de compresión. Indica al módu-
lo que lo recibe que el emisor de la señal le da permiso para se comprima en
el emisor. Este mensaje solo se emite en respuesta a la señalASK Z.

ASKSZ: Mensaje enviado durante la fase de compresión. Este mensaje
indica al módulo que lo recibe que el emisor de la señal le pide permiso para
enviarle un módulo comprimido.

CANSZ: Mensaje enviado durante la fase de compresión. Este mensaje
indica al módulo que lo recibe que el emisor de la señal le da permiso para

114 Definiciones

enviarle un módulo comprimido. Este mensaje solo se emite en respuesta a
la señalASKSZ.

NO SZ: Mensaje enviado durante la fase de compresión. Este mensaje
indica al módulo que lo recibe que la operación de paso de módulo compri-
mido ya confirmada, mediante una señal CANSZ, no va a poder realizarse.
Este mensaje solo se emite en respuesta a la señalCANSZ.

Señales numéricas

01: Este canal se utiliza en dos fases: en la fase de búsqueda de la ráız
(solo en el caso del algoritmo multiĺıder) y en la fase de expansión. En la
fase de búsqueda de la ráız se utiliza este canal para que un hijo pueda
informar a un padre del número de descendientes del padre. En la fase de
expansión este canal se utiliza para notificar que la señal de ĺıder viaja en
dirección a la ráız, una vez completada la expansión de una rama y para
pausar o reanudar la actividad de los módulos (este último caso solo tiene
lugar en los algoritmos con señal de parada). Para notificar el paso de la
señal de ĺıder el valor que viaja por el canal es 1, para pausar o reanudar la
actividad de los módulos el valor es 9999 y 9998 respectivamente.

02: Este canal se utiliza durante la fase de expansión. Su única utilidad
es la pasar el valor 1 a un módulo que acaba de ser expandido en una posición
vaćıa para indicarle que ya no está comprimido dentro de ningún módulo.

07: Este canal se utiliza durante la fase de expansión para informar a
un módulo del número de módulo que se han añadido o retirado de su rama
a consecuencia de una operación de cambio de rama. El valor puede ser
cualquier número natural hasta 32767.

08: Este canal se utiliza durante la fase de compresión para informar a
un módulo que se ha realizado una operación de cambio de módulo en su
rama y que, por tanto, se han perdido o añadido módulos en esta. Su valor
es 9999 en caso de perder módulos y a 9998 en caso de añadir módulos.

	Introducción
	Robots modulares
	Robots cristalinos
	Objetivo del trabajo
	Estructura de la memoria

	El modelo y la simulación
	Movimientos modulares
	Compresión
	Expansión
	Paso de módulos comprimidos
	Otras operaciones

	Algoritmo distribuido
	Las Reglas
	Precondición
	Acciones

	El simulador
	Universe
	Agents and Rules
	Actions
	Position
	Errors
	Agents generator
	Módulos

	Mejoras al algoritmo original
	Algoritmo con señal de parada hasta intersección
	Objetivo
	Estrategia
	Reglas
	Problemas
	Alternativas
	Modelos de prueba

	Algoritmo con señal de parada hasta raíz
	Objetivo
	Estrategia
	Reglas
	Problemas
	Alternativas
	Modelos de prueba

	Algoritmo con señal de parada para toda la configuración
	Objetivo
	Estrategia
	Reglas
	Problemas
	Alternativas
	Modelos de prueba

	Versión multilíder del algoritmo
	Objetivo
	Estrategia
	Reglas
	Problemas
	Alternativas
	Modelos de prueba

	Implementación del algoritmo multilíder
	Árbol Inicial [S]
	Inicio del algoritmo
	Cadena de mensajes candidatos
	Mensaje recibido en las hojas
	Cadena de mensajes de las hojas
	Creación de la raíz
	Conocer la configuración objetivo
	Cadena de mensajes Slave

	Reglas de compresión [C]
	Compresión
	Paso de módulos comprimidos en fase de compresión

	Reglas de expansión [E]
	Expansión del líder
	Expansión a una posición ocupada conexa
	Expansión a una posición vacía
	Expansión a una posición ocupada no conexa
	Actualización de los registros contadores de módulos
	Paso de módulos comprimidos en fase de expansión
	Dirección de viaje de un módulo comprimido
	Retorno del líder

	Fin de la reconfiguración [End]
	Reglas de reparación

	Complejidad de los algoritmos y análisis experimental
	Complejidad de los algoritmos
	Algoritmo con señal de parada hasta intersección
	Algoritmo con señal de parada hasta raíz
	Algoritmo con señal de parada para toda la configuración
	Algoritmo multilíder

	Análisis experimental de las modificaciones
	Introducción a los resultados
	Herramientas utilizadas
	Juegos de prueba
	Movimientos según el número de módulos
	Mensajes según el número de módulos
	Orden de compresión en los algoritmos
	Impacto de la orientación en figuras densas
	Impacto de la orientación en figuras poco densas
	Reconfiguración de figuras sin ciclos

	Analizador sintáctico de acciones
	¿Para qué necesitamos un parser de acciones?
	Menu principal
	Repair Rules File
	Numerate and Parse Rules
	Parse log File
	Exit

	Ventana de análisis estadístico
	¿Cómo funciona?
	Requisitos

	Gestión del proyecto
	Planificación
	Presupuesto

	Conclusiones
	Resultados obtenidos
	Dificultades encontradas
	Futuro del proyecto
	Valoración personal

	Referencias

