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Abstract. We study a class of geometric optimization problems closely related to the 2-
center problem: Given a set S of n pairs of points in the plane, for every pair, we want to
assign color red to a point of the pair and color blue to the other point in order to optimize
the radii of the minimum enclosing ball of the red points and the minimum enclosing ball
of the blue points. In particular, we consider the problems of minimizing the maximum and
minimizing the sum of the two radii of the minimum enclosing balls. For each case, minmax
and minsum, we consider distances measured in the L2 and in the L∞ metrics.

1 Introduction

In this paper we consider the following geometric optimization problem:

The 2-Center Color Assignment problem: Given a set S of n pairs of points in the plane, for
each pair of S choose one point to be red and the other to be blue, in such a way that a function
of the size of the minimum enclosing balls of the set of red points R and the set of blue points B
is minimized.

We consider two optimization criteria: the first one is to minimize the maximum of the radii
of the minimum enclosing balls of R and B, respectively, while the second one is to minimize
their sum. For each criterion, we study the problem for both the L∞ and the L2 metrics. Thus,
we consider four variants of the 2-Center Color Assignment problem that will be referred
to as: the MinMax-L∞ problem, the MinMax-L2 problem, the MinSum-L∞ problem, and the
MinSum-L2 problem.

A natural variant of these problems is the Pairs of Points 1-Center problem, in which the
goal is to determine a minimum-radius ball that encloses at least one point of each of the pairs.
We consider the corresponding versions of this problem in the L∞ and L2 metrics. We refer to
them as the Pairs of Points L∞ 1-Center problem and the Pairs of Points L2 1-Center
problem, respectively.

⋆ A preliminary version of this paper appeared in Proc. 10th Latin American Symposium on Theoretical
Informatics, 2012, pp. 25-36.
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Motivation. In addition to being a natural variant of the fundamental 2-center problem from
facility location, our problem is motivated by a problem in “chromatic clustering”, the Chromatic
Cone Clustering problem, which arises in certain applications in biology, as studied by Ding
and Xu [19] and described in the related work section below. We also mention below connections
between our model and certain problems in the study of imprecise (or “indecisive”) points.

Another motivating view of our problem comes from a transportation problem in which there
are origin/destination pairs of points between which traffic flows. We have the option to establish
a special high-priority traffic corridor, modeled as a straight segment, which traffic flow is required
to utilize in going between pairs of points. The corridor offers substantial benefit in terms of safety
and speed. Our goal is to locate the corridor in such a way that we minimize off-corridor travel
when traffic between origin/destination pairs utilizes the corridor. Models dealing with alternative
transportation systems have been suggested in location theory [7], and simplified mathematical
models have been widely studied in order to investigate basic geometric properties of urban trans-
portation systems [2]. Recently, there has been an interest in facility location problems derived
from urban modeling. In many cases one is interested in locating a highway that optimizes some
given function that depends on the distance between elements of a given point set [5,11,18,28].
Specifically, in this work, we are motivated by an application in air traffic management, in which
the use of “flow corridors” (or “tubes”) has had particular interest. Flow corridors have been pro-
posed as a potential means of addressing high demand routes by establishing dedicated portions of
airspace designed for self-separating aircraft, requiring very little controller oversight [33,34,35,36].
Given a set S of pairs of points (origin/destination pairs) in the plane, we want to find two “cen-
ters”, which define the endpoints of a corridor. Traffic travels from its origin to one endpoint of
the corridor, follows the corridor to the other endpoint, then proceeds directly to its correspond-
ing destination; see Fig. 1. Of course, the real air-traffic problem has to take into consideration
many other issues, including traffic congestion, sector geometry, fuel consumption, flight dynamics,
time, etc. Here, we consider a simplified model in which we assign each airport to one of the two
endpoints of the flow corridor and must determine an optimal location for the flow corridor, with
the objective of minimizing the distances from airports to their assigned endpoints. In this model,
we assume that every pair must utilize the corridor, explicitly ruling out the possibility of going
directly between the pair of points; such direct flights may result in unwanted traffic congestion
outside the neighborhoods of the corridor endpoints.

A1

A2

Fig. 1. Schematic of a flow corridor (bold segment) servicing air traffic between blue and red points
(airports). The maximum distances between the airports of each color and their closest endpoint depend
on the radii of the disks.

Related work. Both the 1-center (also called Minimum Enclosing Disk) and the 2-center
problem have been widely studied for points in the plane. The 1-center problem for n points in
the plane is well known to be solvable in O(n) time using techniques related to linear-programming
and prune-and-search [15,21,31]. The 2-center problem has received much attention in recent
years; the current best known deterministic algorithm is due to Chan [14], and the current best
randomized algorithm is due to Eppstein [22]. The Rectilinear 2-center problem, in which the
metric used is L1 or L∞, can be solved in linear time [20]. The discrete version was considered by
Bespamyatnikh and Segal [9]. However, the restriction on the coloring of the pairs of points that
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we have in this paper makes our problems rather different, and it seems that we cannot directly
apply any similar methods to our case.

Our problem is also similar to the facility location problems with the objective of minimizing
the maximum cost of the customers, where the cost of a customer is the minimum between the
cost of using the facility and the cost of not using the facility [12]. However, the objective functions
we use are more complex, leading to considerably more involved problems.

A problem closely related to ours is the Chromatic Cone Clustering problem of Ding and
Xu [19]: Given a point set G = G1∪G2∪ . . .∪Gn ⊂ Rd formed by the n point sets G1, G2, . . . , Gn,
such that each Gj consists of k points of positive coordinates (i.e., points in the positive orthant),
find k cones C1, C2, . . . , Ck with apex at the origin such that each Ci contains a distinct point from
every point set Gj and the total amplitude of the cones is minimized. The authors give a (1 + ε)-
approximation algorithm for this problem by projecting the points of G into the unit sphere and
finding spheres C ′

1, C
′
2, . . . , C

′
k of minimum total radius such that each contains a distinct point

from every Gj . Observe that for k = 2 the input is precisely a set of pairs of points, and each of
the two output spheres (defining the cones) contains a different point from each pair. Then the
Chromatic Cone Clustering problem for k = 2 is directly related to the MinSum-L2 problem.
The running time of Ding and Xu’s algorithm, stated for high dimensions d, has the parameter 1/ε
as an exponent. In comparison, our problem, formulated in the two-dimensional plane, is solved
deterministically and the approximation algorithms have running times polynomial in both n and
1/ε.

The problems studied in this paper can also be seen from the perspective of data imprecision.
Data imprecision in computational geometry has received a lot of attention lately (see [30] and
references therein). Even though most data imprecision models represent an imprecise point as
a continuous region (e.g. a disk or rectangle), in the so-called indecisive point model [27], an
imprecise point is given by a set of possible locations for the point. The setting studied here can
be seen as dealing with indecisive points, having each of them exactly two possible locations. In
fact, the minimum enclosing disk problem is one of the measures studied in [27], but their goal
is not to compute the smallest possible disk (that would be closely related to our Pairs of Points
1-Center problem), but to compute the whole distribution of possible values for the size of the
disk. Therefore their algorithms address a rather different problem than ours.

In the time since the first version of this paper appeared, there has been further related work
studying the setting considered in this paper, that of problems on pairs of points. The paper by
Dı́az-Báñez et al. [17] studied computing the convex hull of a set of n pairs of points, where the goal
is to find the smallest (or largest) convex polygon that contains at least one point from each pair.
The same problem, among others, was studied in a more general setting in a paper by Consuegra
et al. [16], where a class of problems called avatar problems are proposed. These are problems in
which the input is a set of objects each having k copies (avatars), and one wants to compute some
structure using (at least) one copy of each object. The case in which the objects are points in the
plane and k = 2 corresponds to our setting. Consuegra et al. [16] study this setting for several
geometric problems, namely segment intersection, convex hull, and minimum spanning trees.

Results. We present exact algorithms for all four variants of the 2-Center Color Assignment
problem. In addition, we present a (1 + ε)-approximation (with two variants that give different
dependencies between n and ε) that works for both the MinMax-L2 problem and the MinSum-L2

problem, which gives simple and fast alternatives to the slower exact algorithms. We also solve
the Pairs of Points L∞ 1-Center problem and the Pairs of Points L2 1-Center problem.
The algorithms we propose for the latter one can be used to solve the MinSum problems. The
running times of the algorithms are summarized in Table 1.

Notation. Set S denotes the set of n pairs of points. By CR and CB we denote the two balls
that form an optimal solution, ball CR covers the points colored red and ball CB covers the
points colored blue. Given a point u, we denote by x(u) and y(u) the x- and y-coordinates of u,
respectively.
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MinMax MinSum Pairs of Points 1-Center

L∞ O(n)
O(n log2 n) worst case
O(n logn) expected

Ω(n logn) lower bound

O(n log2 n) worst case
O(n logn) expected

Ω(n logn) lower bound

L2

O(n3 log2 n)
O((n/ε2) logn log(1/ε)) (1 + ε)-approx
O(n + (1/ε6) log2(1/ε)) (1 + ε)-approx

O(n4 log2 n)
O((n/ε5) log(1/ε)) (1 + ε)-approx

O(n + (1/ε7) log2(1/ε)) (1 + ε)-approx
O(n2 logn)

Table 1. Summary of the running times of the algorithms for the different variants of the problem.

Outline. TheMinMax-L∞ problem and theMinMax-L2 problem are studied in Sections 2 and 3,
respectively. In Section 4 we consider both the Pairs of Points L∞ 1-Center problem and the
Pairs of Points L2 1-Center problem. In Sections 5 and 6 the MinSum-L∞ problem and the
MinSum-L2 problem are solved, respectively. Finally, in Section 7, we point to future directions
of research.

2 The MinMax-L∞ problem

Let H denote the smallest axis-aligned rectangle covering S. Using the local optimality, we can
assume, without loss of generality, that disks (squares) CR and CB have equal radius and that
each of them has one of its vertices coinciding with a corner of H. We consider two fixed vertices
of H and assume that CR and CB are anchored to them, respectively. For each pair (p, p′) of S,
let rp,p′ be the smallest radius that CR and CB must have in order to satisfy that one element of
(p, p′) belongs CR and the other element belongs to CB . Observe that rp,p′ can be computed in
constant time (see Fig. 2). Therefore, the smallest feasible radius of CR and CB subject to their
anchors is equal to the maximum of rp,p′ among all pairs (p, p′) of S.

These observations lead to a simple and efficient algorithm. First of all, H can be found in
linear time, and there are O(1) combinations of vertices of H to anchor CR and CB . Moreover,
the smallest feasible radius of CR and CB for each anchor combination can be computed in linear
time. Hence the following result is obtained.

p

p′
CR

CB

2rp,p′

H

(a) (b) (c)

Fig. 2. (a) H is the smallest axis-aligned rectangle covering S. (b) We assume the optimal squares have
vertices in corners of H. (c) For each pair (p, p′) we can determine in constant time the smallest radius
rp,p′ needed to cover the pair with CR and CB .

Theorem 1. The MinMax-L∞ problem can be solved in optimal time Θ(n).
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(a) (b)

Fig. 3. (a) The set ID: possible locations for centers of blue disks. (b) The set IDD: intersection of all
pairs of disks with both points inside CR.

3 The MinMax-L2 problem

3.1 An exact algorithm

We assume that optimal disks CR and CB have equal radius, denoted by r∗. Observe that we can
further assume that one of the disks is the minimum enclosing disk of its corresponding points of S.
Otherwise, it would be possible to shrink both disks by at least some small amount, contradicting
the optimality of CR and CB.

The overall idea is to perform a binary search on all the candidate radii r for CR and CB,
testing whether there exists a feasible solution (C ′

R, C
′
B) in which the radius of both disks is equal

to r. Since the minimum enclosing disk of a set of n points is defined by either two or three points,
there are O(n3) candidate values for r.

For each candidate radius r, we potentially test all the Θ(n2) disks of radius r that have two
points from S on its boundary. Each of those disks is a candidate for one of the disks C ′

R and C ′
B.

Without loss of generality, we assume that it is the disk C ′
R. Then we test if there exists a second

disk of radius r, C ′
B , that together with C ′

R forms a feasible solution.
For each candidate disk C ′

R, we proceed as follows. If there are pairs of S with both points
outside C ′

R, then C ′
R is discarded as a candidate disk. Otherwise, C ′

R covers at least one point
of each pair. The question is then whether a feasible second disk C ′

B exists. Three situations can
occur.

1. Both points of each pair are inside C ′
R. In this case, C ′

R and C ′
B = C ′

R form a feasible solution.
2. Each pair of S has only one point in C ′

R. All these points are colored red and we can take C ′
B

as the minimum enclosing disk of the remaining (blue) points. There is a feasible solution for
C ′

R if and only if the resulting C ′
B has radius at most r.

3. Otherwise, points outside C ′
R are colored blue and their counterparts red. To color the remain-

ing pairs we need a more involved procedure that is explained next.

In order to handle the third case, we start by finding the locus of the centers of the disks
with radius r that cover the points outside C ′

R (trivially blue). We denote this locus by ID, which
corresponds to the intersection of all disks with radius r centered at blue points (see Fig. 3(a)).
The region ID is convex, its boundary has linear complexity, and can be computed in O(n log n)
time [10,26].

For a pair of points, consider the union of the two disks of radius r centered at each of the
points of the pair; we call this the (radius-r) double disk of the pair. Let IDD be the intersection
of all radius-r double disks corresponding to pairs of points inside C ′

R. Note that any disk with
radius r centered in IDD covers, at least, one point of each pair inside C ′

R (see Fig. 3(b)). Using
several geometric properties of both ID and IDD, we can prove the following important lemma:

Lemma 1. A point in the intersection ID ∩ IDD, if one exists, can be computed in O(n log n)
time.
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CR

u

IDD

ID

a1

a3

a4

a6

a2

a5

(a) (b)

u

Fig. 4. (a) ID∩IDD. (b) Splitting the boundary of the union of each pair of disks into six arcs a1, a2, . . . , a6,
so that no two arcs intersect in more than one point.

Proof. We will first prove that the complexity of IDD is O(nα(n)) and can be computed in
O(n log n) time, where α(n) is the extremely slowly-growing inverse of Ackermann’s function.
Second, we will show how to find a point in IDD ∩ ID in nearly linear time, if IDD ∩ ID ̸= ∅. Refer
to Fig. 4(a) during the proof.

Observe that IDD is a star-shaped region bounded by r-radius circular arcs, and the center point
of C ′

R, denoted by u, belongs to the kernel of IDD. This holds because all disks that determine IDD

contain u. To upper bound the complexity of IDD we bound the number of arcs of its boundary.

To simplify the analysis, we split the boundary of each double disk C1 ∪C2 defining IDD into
six arcs by using the two points in which the boundaries of C1 and C2 intersect, and the four
intersection points of the boundary of C1 ∪ C2 with the two axis-parallel lines that go through
u, as shown in Fig. 4(b). Hence we obtain a set Z of at most 6n arcs. The two axis-parallel lines
through u split the plane into four quadrants, with apex at u. The important property of this way
of splitting each double disk boundary into six arcs is the following. For any two disks of equal
radius C and C ′ whose boundaries intersect in two points a, b, if one considers any third point
c in the interior of C ∩ C ′, then ∠acb > π/2. In particular, when c = u, this implies that the
intersection points a and b belong to different (open) quadrants from u.

This property, together with the fact that u belongs to C1 ∩C2 for every double disk C1 ∪C2,
implies that the two intersection points between the boundaries of every pair of different disks,
each belonging to some double disk defining IDD, must lie in different quadrants from u, thus the
two intersection points must involve different pairs of arcs from Z. In other words, every pair of
arcs taken from Z intersects at most once. Hence, computing IDD is equivalent to computing the
lower envelope of the set of arcs Z, seen radially around u. Since each pair of arcs intersects at
most once, it follows from standard results of combinatorial geometry that IDD has complexity
O(nα(n)) [32, Theorem 1.9] and can be computed in O(n log n) time [24].

It remains to compute a point in ID ∩ IDD, where ID has complexity O(n) and IDD has
complexity O(nα(n)). Since ID is convex and IDD is star-shaped with respect to u, an angular
sweep around u allows to keep track of the closest arc to u for each angle, and to find a point in their
intersections, if one exists, in time proportional to the complexities of ID and IDD. Altogether,
the running time is O(n log n). ⊓⊔

If this intersection is non-empty, then there exists a point u′ that is at distance at most r from
all blue points (i.e. u′ is in ID), and is at distance at most r from at least one point from each
pair totally inside C ′

R (i.e. u′ is in IDD). Therefore, a disk of radius r centered at u′ is a feasible
candidate for C ′

B . It then follows that C ′
R and C ′

B form a feasible solution. Note that the converse
is also true: if the intersection is empty, no feasible solution for C ′

R exists (however, this does not
rule out that some other disk different from C ′

R, with the same radius r, can be part of a feasible
solution).
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In summary, the algorithm has two phases. In the first phase the candidate radii are computed
and sorted in O(n3 log n) time. The second phase consists in the binary search on the radii to find
the optimal value r∗. Solving an instance of the decision problem for a particular value of r takes
time O(n2) · O(n log n) = O(n3 logn), and this is performed O(log n) times. The following result
is thus obtained.

Theorem 2. The MinMax-L2 problem can be solved in O(n3 log2 n) time.

3.2 Two approximation algorithms

In this section we present two simple algorithms that give (1+ε)-approximations for the MinMax-
L2 problem, for any constant ε ∈ (0, 1). Our methods are similar to techniques used for approxi-
mating the standard k-center problem [3].

Algorithm 1: First, we apply the MinMax-L∞ algorithm given in Section 2 and obtain squares
QR and QB covering the red and blue points, respectively. Observe that the solution induced by
(QR, QB) is a

√
2-approximation for the MinMax-L2 problem. Assume without loss of generality

that QR is larger than QB. For simplicity, scale the point set so that QR becomes a 1× 1 square,
thus it has circumradius

√
2/2. Let r∗ denote the radius of optimal disks CR and CB of an optimal

solution to the MinMax-L2 problem. Then we have 1/2 ≤ r∗ ≤
√
2/2. Additionally, notice that

the centers of CR and CB lie in the bounding box of S.
Next we overlay a square grid on top of the point set (see Fig. 5). Each cell has size ε/4× ε/4.

Notice that we are only interested in grid cells that potentially intersect the (unknown) optimal
disks CR and CB. Since the centers of CR and CB lie in the bounding box of S, and r∗ ≤

√
2/2,

it suffices to consider the grid restricted to the bounding box of S, together with a buffer of width√
2/2. In this way, the set of all cells considered, denoted by C, has size O(1/ε2).

QR

QB

CR

CB

Ca

a

Fig. 5. Left: schematic drawing of two optimal squares and the set of cells C (shaded). Center: optimal
disks CR and CB . Right: Ca (dashed) is a (1 + ε)-approximation of CR (solid). The center u of CR is
shown with a black square.

The algorithm performs a binary search on the radius of the optimal (largest) disk, and tests
whether there exists a feasible solution (C ′

R, C
′
B) with the current radius. The main difference

in comparison with the setting of the previous section is that, for a fixed radius, it is enough to
consider only one disk for each grid cell, resulting in overall O(1/ε2) disks. Moreover, we do not
try all possible radii, but only those in the set R = {1/2, 1/2 + ε/4, 1/2 + 2ε/4, . . . ,

√
2/2}. Then,

there are only Θ(1/ε) possible radii.
For any cell a of C and radius r ∈ R, let Ca(r) denote the disk of radius r centered at the center

of the cell a. Given a fixed radius r ∈ R, for each cell a of C we set C ′
R = Ca(r) and test (using

the O(n logn)-time algorithm of Section 3.1) if there exists a second disk C ′
B of radius r such that

(C ′
R, C

′
B) is a feasible solution. This algorithm has O((n/ε2) log n log(1/ε)) running time. It only

remains to show that it indeed computes a (1 + ε)-approximation (see next lemma).

Lemma 2. Let C ′
R and C ′

B be the disks reported by the algorithm for some ε ∈ (0, 1). Then the
radius of C ′

R and C ′
B is at most (1 + ε)r∗, where r∗ is the radius of the optimal disks.
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r∗

CR
r′

a

v

Fig. 6. The optimal disk CR has center, shown with a black square, in cell a. The boundary dotted disk,
of radius r′, is the smallest disk centered at the center of a (shown with a red dot) and contains CR.

Proof. The proof is based on the claim that the algorithm (eventually) tries a radius r̂ ∈ R and
a cell a of C such that: CR ⊆ Ca(r̂) and r̂ ≤ (1 + ε)r∗.

Let u denote the center of CR (refer to Fig. 6). By construction, the cells in C cover all CR. Let
a be the cell containing u, and u′ denote the center of a. Let v be the intersection point between
the ray emanating from u′ that contains u, and the boundary of CR. Then, the disk centered at
u′ and having v on its boundary contains CR. Since u and u′ lie in the same cell, the radius r′ of
this disk satisfies r′ ≤ r∗ + ε/(

√
2 · 4) < r∗ + ε/4. As the difference between two consecutive radii

in R is ε/4, there is a radius r̂ ∈ R such that r′ ≤ r̂ ≤ r′ + ε/4. Therefore, Ca(r̂) contains the
optimal disk CR. Moreover, we have that r̂ ≤ r∗ + ε/2. Using that 1/2 ≤ r∗, we obtain ε/2 ≤ εr∗,
which implies r̂ ≤ r∗ + εr∗ = (1 + ε)r∗. Since CR ⊆ Ca(r̂) and r∗ ≤ r̂, when the algorithm tries
the disk C ′

R = Ca(r̂), a second disk C ′
B with radius r̂ exists such that (C ′

R, C
′
B) is a feasible pair

of disks for the problem, and is found by the algorithm. ⊓⊔

Algorithm 2 (Decoupling n and 1/ε in the running time): The following alternate method
allows to make the dependency between n and 1/ε in the running time of the approximation
algorithm additive, instead of multiplicative.

The square grid is the same as before, each cell has size ε/6 × ε/6 and the set of O(1/ε)
possible radii to try in the search is R′ = {1/2, 1/2+ ε/6, 1/2+ 2ε/6, . . . ,

√
2/2}. In an additional

preprocessing phase, we identify all pairs of cells that have a pair of points using them. That
is, for every pair of points of the input, we compute the corresponding grid cell for each point.
For each pair of cells identified, we add the pair of their center points to the set L. For each
pair of points of S this takes O(1) time (assuming the floor function is available), then L can be
computed in O(n) time using O(1/ε4) space. Note that the number N of elements of L satisfies
N ≤ min{n,K/ε4} = O(1/ε4), for some constant K.

Next we proceed (essentially) as in the exact algorithm of Section 3.1, considering only the
pairs of points of L as input, doing the binary search on the set R′ for the radius of CR, and
trying all the possible Θ(1/ε2) disks CR of that radius centered at the cell centers. For each
candidate disk CR, we identify in O(N) = O(1/ε4) time all the pairs of L having both points
inside CR, one inside and one outside, or both outside. If L contains a pair with both points
outside, CR can be immediately discarded. Otherwise, we use Lemma 1 of Section 3.1 to find CB

in O(N logN) = O((1/ε4) log(1/ε)) time, if such a disk exists. The total running time of this
approximation algorithm is then O(n+ (1/ε2) log(1/ε)N logN) = O(n+ (1/ε6) log2(1/ε)).

The proof that the algorithm computes a (1+ε)-approximation of the optimal disks goes along
the same lines as the proof of Lemma 2: Let r∗ be the radius of the optimal disks. Then, there
exists a disk C ′

R of radius r′ = r∗+
√
2(ε/6) that covers CR, is centered at the center of some cell,

and contains, for every point p of S in CR, the center point of the cell that contains p. A similar
disk C ′

B of radius r′ exists for the optimal disk CB . The radius reported by our approximation is
at least r∗ and at most r′ + ε/6 = r∗ +

√
2(ε/6) + ε/6 ≤ (1 + ε)r∗ since it holds by construction

that 1/2 ≤ r∗ ≤
√
2/2. Hence, our algorithm is a (1 + ε)-approximation.
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Theorem 3. For any ε ∈ (0, 1), a (1+ε)-approximation of the MinMax-L2 problem can be found
in O((n/ε2) log n log(1/ε)) or O(n+ (1/ε6) log2(1/ε)) time.

Comparing the exact algorithm, Algorithm 1, and Algorithm 2: Ignoring the log factors
in the running times, we briefly make a comparison between the running times of the exact
algorithm and the two approximation algorithms. Observe that the (asymptotic) running time of
Algorithm 1 is (roughly) less than the O(n3 log2 n) running time of the exact algorithm if ε > n−1.
For Algorithm 2, the running time improves on that of the exact algorithm if ε > n−1/2. On the
other hand, Algorithm 1 has a better asymptotic running time than Algorithm 2 if ε ≤ n−1/4.
Thus, we can run the exact algorithm for ε ∈ (0, n−1], run Algorithm 1 for ε ∈ (n−1, n−1/4], and
run Algorithm 2 for ε ∈ (n−1/4, 1).

4 The 1-center problems for pairs of points

In this section we study the 1-center problems for pairs of points, for the metrics L∞ and L2. Both
problems are related to the Minimum Color Spanning Object problem, when the object is
disk or a square, studied by Abellanas et al. [1]: Given n points in the plane, colored with k ≤ n
colors, find a smallest axis-parallel square or disk that contains at least one point of each color.
For both objects, the authors gave a solution in O(kn log n) time using the upper envelope of
Voronoi surfaces [25,32]. Any instance of the 1-center problems can be reduced to an instance of
the Minimum Color Spanning Object problem by coloring the 2n points with k = n colors,
so that two points receive the same color if and only if they form a pair.

In the case of the Pairs of Points L∞ 1-Center problem, we must find a square of smallest
size that contains at least one point from each pair. As the following theorem shows, an optimal
square can be found in nearly linear time.

Theorem 4. The Pairs of Points L∞ 1-Center problem can be solved in O(n log2 n) time in
the worst case.

Proof. We first consider the decision version of the problem: Given a size d > 0, does there exist
a square of size d (i.e. radius d/2) covering at least one point of each pair? This question can be
answered in O(n log n) time as follows.

For each point p of S, let Hp be the axis-aligned square of size d centered at p. Given paired
points p and p′ of S, represent the set Hp ∪ Hp′ by the union of at most three rectangles with
pairwise disjoint interiors. Let Qp,p′ denote the set of those rectangles. Then the problem reduces
to asking if the depth of the arrangement induced by the union of the sets Qp,p′ , over all paired
points p and p′ of S, is equal to n. This can be solved in O(n log n) time (see for example [6])9.

Next we can integrate the solution of the decision problem into an optimization algorithm,
based on matrix searching.

First notice that there always exists an optimal solution Q having points of S in two opposite
sides, and the L∞ distance between those points is the size of Q. Then, every two points p and q
of S determine at most two values for the parameter d, |x(p) − x(q)| and |y(p) − y(q)|. In order
to compute the optimal value for d among all candidates of the form |x(p)− x(q)| (for two points
p, q of S), we do the following: Let p1, p2, . . . , p2n be the points of S sorted by x-coordinate in
ascending order, and consider the 2n× 2n matrix M such that:

Mi,j =

{
x(pi)− x(p2n−j+1) if i > 2n− j + 1
(i+ j)− 2n− 2 if i ≤ 2n− j + 1

9 Notice that, if a point q in the plane belongs to the boundary of two rectangles in Qp,p′ and these two
rectangles come from the subdivision of the same set Hp ∪ Hp′ , then we need that only one of two
rectangles contributes to the depth at q, in order for our characterization to be correct. The algorithm
in [6] can be adapted to measure the depth in the desired way for this particular case.
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Note that M is a sorted matrix (i.e. every row and every column is sorted) containing all the
possible values of d of the form |x(p)− x(q)|. Hence we can apply matrix searching [4] in order to
find the optimal value of d, solving O(log n) instances of the decision problem. Finally, we obtain
an O(n log2 n)-time algorithm since the value of every entry of M can be computed in constant
time, once we know the order of S by x-coordinate.

We use an analogous procedure to compute the optimal value for d among all candidates of
the form |y(p)− y(q)|. ⊓⊔

In the following we show that the Pairs of Points L∞ 1-Center problem can be solved in
O(n log n) expected time by using the Chan’s randomized technique for optimization problems [13].
After that, we complement this result by proving that this problem has an Ω(n log n) lower bound
in the algebraic decision tree model.

Lemma 3 (Lemma 2.1 in [13]). Let α < 1, ε > 0, and r be constants, and let D(·) be a function
such that D(n)/nε is monotone increasing in n. Given any problem P of size n and solution w(P ),
suppose that within D(n) time,

(a) we can decide whether w(P ) < t for any given t ∈ R, and
(b) we can construct r subproblems P1, . . . , Pr, each of size at most ⌈αn⌉, so that

w(P ) = min{w(P1), . . . , w(Pr)}.

Then for any problem P , we can compute the solution w(P ) in O(D(n)) expected time.

Theorem 5. The Pairs of Points L∞ 1-Center problem can be solved in O(n log n) expected
time.

Proof. The idea is to use Lemma 3, specifically an adaptation of Chan’s arguments to solve in
O(n log n) expected time the problem of finding a smallest axis-parallel square that contains at
least k of n given points [13].

We extend the problem slightly: given a set S of n pairs of points in the plane and a rectangle T ,
we will compute w(S, T ), the radius of the smallest square that contains at least one element from
each pair of S and, in addition, contains T (initially, T is empty). The O(n log n)-time decision
algorithm in the proof of Theorem 4 can be modified for this extended problem. Further, in linear
time we can divide the problem into at most five subproblems by using the next 4 lines: Let ℓ1
be the leftmost line between the next two lines: (1) the vertical line at the ⌈n/5⌉th smallest x-
coordinate of the points in S, and (2) the leftmost vertical line at the right point of a pair of S.
We say that ℓ1 is an extreme line if and only if it falls in the case (2). Symmetrically, we can define
the vertical rightmost line ℓ2, the horizontal bottommost line ℓ3, and the horizontal topmost line
ℓ4. Let T0 denote the rectangle bounded by ℓ1, ℓ2, ℓ3, and ℓ4, and let Hi (i = 1, 2, 3, 4) denote the
open halfplane bounded by ℓi that contains the interior of T0. The optimal square Q must belong
to one of the next two cases:

Case 1: Q contains T0. Then w(S, T ) = w(S′, T + T0), where S′ is the set of the pairs of S that
have both points not in T0, and T + T0 denotes the minimum enclosing rectangle of T ∪ T0.

Case 2: Q ⊂ Hi for some i ∈ {1, . . . , 4} where ℓi is not an extreme line. Then w(S, T ) =
w(S′′, T + Ti), where S′′ is the set of the pairs of S that have both points in Hi, and Ti is the
minimum enclosing rectangle of the partners of the points not in Hi.

The first case generates one subproblem of size at most 2⌈n/5⌉ and the second one generates
at most four subproblems each of size at most 4⌈n/5⌉. Lemma 3 can thus be applied with α = 4/5,
ε = 1, and r = 5. ⊓⊔

Theorem 6. The Pairs of Points L∞ 1-Center problem has an Ω(n log n) lower bound in
the algebraic decision tree model, even in one dimension.
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Proof. Given a set X = {x1, x2, . . . , xn} of n real numbers, MAXGAP(X) (i.e. the maximum
gap of X) is defined as the maximum difference between consecutive elements of X. Computing
MAXGAP(X) is known to have an Ω(n log n) lower bound in the algebraic decision tree model [29].

Let X = {x1, x2, . . . , xn} be a set of n real numbers, and assume w.l.o.g. that 0 < xi < 1 for
every i. Let x′

1 < x′
2 < · · · < x′

n be the sorting of x1, x2, . . . , xn. We build the following instance of
the Pairs of Points L∞ 1-Center problem on the real line: for i = 1, . . . , n we add the pair of
points −1+xi, xi. Finally, we add the pairs −1+x′

n,−1+x′
n and x′

1, x
′
1. Let [α, β] be a solution of

this instance. Observe that α = −1+x′
i and β = x′

i−1 for some i ∈ [2 . . . n]. Furthermore, we have
that β − α = 1− (x′

i − x′
i−1), which implies MAXGAP(X) = 1 − (β − α). Since this construction

can be done in O(n) time, the theorem thus follows via problem reduction. ⊓⊔

In one dimension, the Pairs of Points L∞ 1-Center problem can be solved in O(n) time if
the points are already sorted. Namely, the problem can be reduced in linear time to an instance of
the following modified problem: Given an interval s of the real line and a set S of n pairs of points
such that each pair of S has one element to the left of s and the other element to the right of s,
compute the solution of the Pairs of Points L∞ 1-Center problem for S subject to contain
s. We leave the details as an exercise.

The above results for the Pairs of Points L∞ 1-Center problem can be straightforward
modified to solve theMinimum Color Spanning Object problem of Abellanas et al. [1] when the
object is a square. Comparing above results with their O(kn log n)-time algorithm, our worst-case
O(n log2 n)-time algorithm represents an improvement for k = ω(log n), and the O(n log n)-time
expected algorithm reduces the complexity in a factor of k.

For the Pairs of Points L2 1-Center problem the goal is to find a disk of smallest radius
containing at least one point from each pair. As expected, this problem seems to be harder than
its square counterpart. Note that Theorem 6 implies an Ω(n log n) lower bound for the Pairs of
Points L2 1-Center problem.

Theorem 7. The Pairs of Points L2 1-Center problem can be solved in O(n2 log n) time.

Proof. Color the 2n points with k = n colors, such that two points receive the same color if and
only if they form a pair. Then apply the algorithm of Abellanas et al. [1] running in O(kn log n) =
O(n2 log n) time. ⊓⊔

5 The MinSum-L∞ problem

In this section we study the problem of finding two squares under the MinSum criterion, thus we
want to minimize the sum of their radii. A major difference with the previous MinMax version
is that now we need to take both radii into account. Let CR and CB denote, respectively, the
two squares of an optimal solution, where CR encloses all red points and CB encloses all blue
points. Up to symmetry, there are four relative positions of CR and CB , as depicted in Fig. 7. In
the following, we will show how to find optimal solutions of type (a), (b), or (c). In the case in
which the solution is of type (d), CR is a minimum enclosing square of all points of S, and CB

is a solution to the Pairs of Points L∞ 1-Center problem. Hence, this case can be solved in
O(n log2 n) time in the worst case (see Theorem 4) or in O(n log n) expected time (see Theorem 5).

In what follows we focus on cases (a)–(c). Let H be the smallest axis-aligned rectangle covering
S, and p1, p2, p3 be the points of S contained on the left, top, and right boundaries of H,
respectively (possibly p1 = p2 or p2 = p3). We assume that p1 and p2 belong to the left and top
boundaries of CR, respectively. Hence, the top-left corner of H is also the top-left corner of CR,
denoted u. Further, we assume that p3 and the bottommost point colored blue are on the right and
bottom boundaries of CB , respectively. Let v be the bottom-right vertex of CB. By the previous
assumption, x(v) = x(p3), but y(v) is unknown. Therefore, vertex u is fixed (given by p1 and p2),
but from the coordinates of the vertex v only x(v) is known.
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Fig. 7. Relative positions of CR and CB .
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Fig. 8. (a) The possible positions v1, . . . , v5 for vertex v. (b) One sweep event case. (c) The other sweep
event case.

Algorithm overview. Initially, all points of S are considered black, meaning that their (red/blue)
colors are undefined. We say that a pair of points of S is black if its two points are black.

We start with a square C ′
R covering S and with its top-left vertex anchored at u. We color

both p1 and p2 red and their partners (in their pairs) blue, and also color p3 blue and its partner
red. Next we sweep S with the boundary of C ′

R by moving its bottom-right vertex (diagonally)
towards u. The sweep events occur when the boundary of C ′

R crosses a point p. If p is black, then
we color point p blue and its partner red, and, considering C ′

R fixed, compute the smallest feasible
blue square C ′

B . Notice that C ′
B , having bottom-right vertex v, covers all points colored blue and

for each black pair the point closer to v that is not lying below v. At this point the pair (C ′
R, C

′
B)

is considered a candidate solution to our problem. If p is red, this means that C ′
R cannot be made

smaller, and the sweep ends. During the sweep, we keep track of the candidate solution (C ′
R, C

′
B)

minimizing the sum of the radii.

The challenging part of the algorithm is to recompute the optimal C ′
B each time the coloring

changes, more precisely, to determine y(v) after each event. Observe that if at any time the bottom
boundary of C ′

R crosses a point p of S, which must be the lowest point of S, then p will be colored
blue and from that point on the vertex v will become fixed at the bottom-right corner of H. Once
v is fixed, it is easy to implement the sweep in O(n log n) time. Hence, the challenging part of the
algorithm is in the first part of the sweep, until the bottom boundary of C ′

R finds the first point
(note that, depending on the points of S, this may never happen). This implies that we can focus
only on the events corresponding to points of S being crossed by the right boundary of C ′

R.

Details of the algorithm. We now proceed to explain how the above sweep (only for the right
boundary of C ′

R) can be done in O(n log n) time. First note that there exist O(n) possible locations
for vertex v because the bottom boundary of optimal CB contains the lowest point colored blue.
For each candidate v there is no pair of points of S whose two elements are below v (see Fig. 8(a)).
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Let v1, v2, . . . , vm denote from bottom to top the possible positions for vertex v. At the kth
event of the sweep (k ≥ 0, where k = 0 means that no event has occurred yet), or just at event k,
let rk(vi), i ∈ [1 . . .m], denote the size of the smallest feasible square C ′

B having vi as bottom-right
vertex. Let Ck(vi) denote such a square.

After each event k ≥ 1, when the right boundary of C ′
R crosses a black point p of S, the

black pair consisting of p and its partner p′ (which is to the left of p) is colored. Then the
smallest square among Ck(v1), Ck(v2), . . . , Ck(vm) might change and we must (implicitly) produce
the values rk(v1), . . . , rk(vm) from rk−1(v1), . . . , rk−1(vm), and compute min{rk(v1), . . . , rk(vm)}.
There are two event cases to follow according to the relative position of p and its partner p′:

Case 1: p′ is below p (Fig. 8(b)). We must update the rk−1(·) value of all points vi among
v1, v2, . . . , vm that are below the bisector of p and p′ (in the L∞ metric) and do not contain the
point p. This must be done since, after this event, the square Ck(vi) must cover the point p that
is colored blue and further from vi than is p′ (Fig. 9).

Case 2: p′ is above or horizontally aligned with p (Fig. 8(c)). We must discard the points
vt, vt+1, . . . , vm strictly above the horizontal line through p because now p is blue and p′ red.
Any vi can be discarded by considering rk(vi) = +∞.

ℓ

boundary of C′

R

p

p′

bisector of p and p′ in L∞

vf

vj

v1

Ck−1(·) contains p

Ck−1(·) contains both p′ and p

Ck−1(·) contains p′, not p

vm

⇒ Ck−1(·) must be updated

vj+1

vf+1

Fig. 9. The values of rk−1(·) that need to be updated at event k, for the Case 1 in Fig. 8(b).

Lemma 4. For every sweep event k ≥ 0, the top boundaries of squares Ck(v1), . . . , Ck(vm) are
sorted, that is, y(v1) + rk(v1) ≤ y(v2) + rk(v2) ≤ · · · ≤ y(vm) + rk(vm).

Proof. Suppose, for the sake of contradiction, that there exists a pair i < j such that y(vi) +
rk(vi) > y(vj) + rk(vj). Let p be the point in Ck(vi) at maximum distance from vi; note that p
is on the top or left side of Ck(vi). Since y(vi) < y(vj) and y(vi) + rk(vi) > y(vj) + rk(vj), p is
not contained in Ck(vj). Hence, the partner p′ of p belongs to Ck(vj). Since Ck(vj) is contained
in Ck(vi), then Ck(vi) could be shrunk by covering p′ instead of p, which is a contradiction. ⊓⊔

Lemma 5. Let k ≥ 1 be an event of Case 1, generated by the point p, and j = j(k) be the largest
index such that Ck−1(vj) does not contain p. Then the next statements are satisfied:

(a) Ck−1(vi) does not contain p for i = 1, . . . , j.
(b) j is the greatest index such that y(vj) + rk−1(vj) < y(p).
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(c) rk(vi) = y(p)− y(vi) for i = 1, . . . , j and rk(vi) = rk−1(vi) for i = j + 1, . . . ,m.
(d) For every event k′ > k of Case 1 it holds j(k′) ≥ j.

Proof. Since Ck−1(vj) does not contain p but does contain the partner of p, vj is below the line
with slope −1 through p, which implies y(vi) + rk(vi) < y(p) for i = 1, . . . , j by Lemma 4. Hence,
statements (a) and (b) follow. For i = 1, . . . , j, Ck−1(vi) must be enlarged to cover the point p,
then rk(vi) = y(p)− y(vi) and statement (c) holds. Statement (d) can be observed from Lemma 4
and the fact that y(vi) + rk(vi) = y(p) for i = 1, . . . , j. ⊓⊔

Lemma 6. Let k1 ≥ 1 be the last event of Case 1, generated by the point p, and let k2 ≥ 1
be the last event of Case 2. Further, let k = max{k1, k2} be the last event among those ones.
Suppose that v1, v2, . . . , vj were updated at k1 and vt, vt+1, . . . , vm are all the vertices that have
been discarded during the sweep up to event k. Then we have:

min
{
rk(v1), . . . , rk(vm)

}
= min

{
y(p)− y(vj), r0(vj+1), r0(vj+2), . . . , r0(vt−1)

}
. (1)

Proof. By Lemma 5(c), we have rk(vi) = y(p)−y(vi) for i = 1, . . . , j, then min{rk(v1), . . . , rk(vj)} =
y(p)− y(vj). By Lemma 5(d), it holds rk(vi) = r0(vi) for i = j+1, . . . , t−1. Since vt, vt+1, . . . , vm
have been discarded, then rk(vi) = +∞ for i = t, . . . ,m. The result follows. ⊓⊔

Lemma 7. Computing r0(vi) for all i ∈ [1 . . .m] can be done in O(n log n) time.

Proof. We start by computing r0(vm), which can be done in linear time by finding, for each black
pair, the point not below vm that is closer to vm. Then, we compute r0(vm−1), r0(vm−2), . . . , r0(v1)
as follows:

Let ℓ be the vertical line containing v1, v2, . . . , vm; that is, ℓ is the vertical line through the
rightmost point of S (assumed to be p3). We sweep along ℓ, with a point w, from vm to v1 in the
following way. For each position of w, we consider the n critical points of S which are those that
must be covered by the smallest feasible blue square C ′

B with bottom-right vertex w denoted by
C ′

0(w). Each pair of S determines one critical point: if both points are colored, then the blue one
is the critical point. Otherwise, if the pair is black, then the critical point is the element of the
pair with y-coordinate greater than or equal to w’s that minimizes the (L∞) distance to w.

During the sweep we maintain a priority queue Π over the critical points, where the priority
of a point is its distance to w. We denote by Px (respectively, Py) the set of critical points whose
distance to w is realized by a difference in x-coordinates (respectively, y-coordinates). At any time,
C ′

0(w) is determined by the critical point with maximum priority.
Priorities in Π are not explicitly maintained. Instead, we use two independent priority queues

Πx and Πy for the sets Px and Py, respectively. The priority of a point p ∈ Px in Πx is its distance
to w, while the priority of a point p ∈ Py in Πy is y(p) − y(vm). Then, if rx is the maximum
priority of Πx and ry is the maximum priority of Πy, then the maximum priority of Π (i.e., the
size of C ′

0(w)) is equal to max{rx, ry + y(vm)− y(w)}. Queues Πx and Πy change whenever point
w crosses an intersection point of ℓ with: (i) a line with slope −1 through a point p of S, (ii) a
horizontal line through a point p of S, or (iii) the bisector in the L∞ metric of a pair (p, p′) of S.

In case (i) we proceed as follows. If p is not stored in Π then we continue with the sweep.
Otherwise, we have that p is stored in Πx and then we remove p from Πx and insert p in Πy with
priority y(p)− y(vm).

In case (ii), if p′ (which satisfies y(p′) > y(w) and is stored in Π) is further from w than p
then we remove p′ from the queue and insert p in Πx with priority x(p)− x(w).

In case (iii), assuming, without loss of generality, that p is the critical point before the inter-
section with the bisector (notice that p must be stored in Πy), we remove p from Πy and insert p′

in Πx with priority x(w)− x(p′).
It is thus easy to see now that this sweep can be done in O(n log n) time, allowing computation

of r0(vm−1), r0(vm−2), . . . , r0(v1), in overall O(n logn) time. ⊓⊔

Lemma 8. At every event k ≥ 1, the square of minimum size among Ck(v1), Ck(v2), . . . , Ck(vm)
can be found in O(log n) time.
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Proof. Suppose that k falls in Case 1 and was generated by the point p. In the more general case,
suppose that k1 < k was the previous event of Case 1, generated by the point p1, in which the
interval v1, v2, . . . , vj′ was updated. Further, suppose that vt, vt+1, . . . , vm were discarded at events
of Case 2. By Lemma 5, the value of j ≥ j′ such that the interval v1, v2, . . . , vj must be updated
at event k can be found with a binary search over the values y(p1) < y(vj′+1) + r0(vj′+1) ≤
y(vj′+2)+r0(vj′+2) ≤ · · · ≤ y(vt−1)+r0(vt−1). By Lemma 6, we compute min{rk(v1), . . . , rk(vm)}
by finding the minimum value among r0(vj+1), r0(vj+2), . . . , r0(vt−1), which can be done in O(1)
time by preprocessing r0(v1), r0(v2), . . . , r0(vm) for range minimum queries [8,23] or in O(log n)
time using a balanced binary tree. If k falls in Case 2 the arguments are similar. By keeping track
of both the point p and index j of the last event of Case 1, and the index t, each sweep event can
be processed in O(log n) time. ⊓⊔

Putting all the above arguments together, we have that an optimal solution to the MinSum-
L∞ problem satisfying case (a), (b), or (c) can be found in O(n log n) time. The bottleneck of the
running time of the algorithm comes from case (d), which requires O(n log2 n) time in the worst
case (Theorem 4) or O(n logn) expected time (Theorem 5).

Theorem 8. The MinSum-L∞ problem can be solved in O(n log2 n) time in the worst case and
in O(n log n) expect time.

Theorem 9. The MinSum-L∞ problem has an Ω(n log n) lower bound in the algebraic decision
tree model.

Proof. We use an extension of the proof of Theorem 6. Let X = {x1, x2, . . . , xn} be a set of n
real numbers, and assume w.l.o.g. that 0 < xi < 1 for every i. Let x′

1 < x′
2 < · · · < x′

n be the
sorting of x1, x2, . . . , xn. We build the following instance of the MinSum-L∞ problem. On the real
line we add the same points as in the proof of Theorem 6: for i = 1, . . . , n we add the pair of
points −1 + xi, xi, and the pairs −1 + x′

n,−1 + x′
n and x′

1, x
′
1. Let S1 denote these added points.

Finally, we add four extra pairs of points in R2: (2, 2), (0, 0); (−2, 2), (0, 0); (−2,−2), (0, 0); and
(2,−2), (0, 0). The repetitions of the point (0, 0) can be avoided with a suitable perturbation. Let
S4 = {(2, 2), (−2, 2), (−2,−2), (2,−2)}. If each square of the solution covers at least two elements
of S4, then the solution has value 4. Otherwise, if one square contains three elements of S4 and
the other one contains exactly one, then the solution has value at least 3, since the second square
must contain the origin (0, 0). Therefore, in the optimal solution, one square contains all S4 (and
thus all points) and the other square (which must contain the origin (0, 0)) contains from each of
the pairs in S1 at least one point, case in which the solution has value less than 5/2. Then, the
second square is the solution of the Pairs of Points L∞ 1-Center problem for S1. Therefore,
using the same arguments as in the proof of Theorem 6, it follows that by solving this instance of
the MinSum-L∞ problem we can compute MAXGAP(X). ⊓⊔

6 The MinSum-L2 problem

6.1 Exact algorithms

This variant of the problem seems to be considerably harder than the previous ones. A brute force
approach tries each possible pair of disks defined by points in S, and checks each pair for feasibility,
leading to O(n7) running time. In this section we present a faster algorithm, which unfortunately
still has a rather high running time.

The MinSum-L2 problem can be solved by considering each possible disk CR that contains
at least one point from each pair. For each selection of CR, the pairs with one point in CR and
one outside become colored accordingly, while for the others the color assignment is still unclear.
Then we must compute the minimum enclosing disk CB of all blue points and at least one point
of each uncolored pair. It is easy to see that the computation of CB corresponds to an instance
of the Pairs of Points L2 1-Center problem, and can thus be solved in O(n2 log n) time (by
Theorem 7). This implies an overall O(n5 log n)-time algorithm. Notice that any improvement in
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the time needed to solve the Pairs of Points L2 1-Center problem would result in a faster
algorithm for the MinSum-L2 problem.

A faster alternative is to follow the lines of the algorithm for the MinMax-L2 problem in
Section 3.1. We try all possible disks for CR, that is, Θ(n3) of them. For each fixed CR, we find
the smallest possible CB for the chosen CR, as follows.

Assume without loss of generality that CB is larger (or equal) than CR. We use the same
approach as in Section 3.1: we compute ID and IDD. The only difference is that, since we do not
know the radius of CB, we need an extra binary search to find it. Because we assumed that CB is
larger than CR, IDD is still star-shaped from the center of CR. Then we can still compute a point
in the intersection of ID and IDD in O(n log n) time, in exactly the same way. This results in an
O(n4 log2 n)-time algorithm.

6.2 Approximation schemes

Given the high running time of our exact algorithms, it is worth noting that O(n)-time approxi-
mations very similar to the ones of Section 3.2 can be applied to this problem as well. There are
two main differences.

On the one hand, we need a different initial constant-factor approximation. We can, again, use
the algorithm for the MinMax-L∞ problem of Section 2 to compute the initial approximation.
It is not hard to verify that the solution to the MinMax-L2 problem is a 2-approximation for
the MinSum-L2 problem. Therefore, the solution obtained with the algorithm of Section 2 gives
an initial 2

√
2-approximation for the MinSum-L2 problem. Adjusting the size of the grid cells

accordingly, a very similar approach leads to a (1 + ε)-approximation algorithm.

On the other hand, we cannot use a binary search to guess the radius of the first disk, as we do
in the first approximation algorithm of Section 3.2. Instead, we have to try all possible disks for
CR, of which there are O(1/ε3) ones. Once CR is fixed, we can do a binary search on the radius of
CB (there are O(1/ε) radii and O(1/ε2) disks for each radius), to find the smallest possible CB for
the choice of CR, in O((n/ε2) log(1/ε)) time. Therefore, this leads to a first (1+ ε)-approximation
running in O((n/ε5) log(1/ε)) time.

The second approximation in Section 3.2 that has a running time of the formO(n+polylog(1/ε))
can be adapted for the MinSum-L2 problem. Again, the initial binary search cannot be used, and
finding CR takes O(1/ε3) time instead of O(1/ε2). This leads to a second (1 + ε)-approximation
running in O(n+ (1/ε7) log2(1/ε)) time.

We summarize the results in this section with the following theorem.

Theorem 10. The MinSum-L2 problem can be solved in O(n4 log2 n) time. A (1+ε)-approximation
can be computed in O((n/ε5) log(1/ε)) or O(n+ (1/ε7) log2(1/ε)) time for any ε ∈ (0, 1).

Comparing the asymptotic running times of the exact algorithm and the two approximation
algorithms (ignoring the log factors), we can run the exact algorithm for ε ∈ (0, n−3/5], run the first
approximation algorithm in O((n/ε5) log(1/ε)) time for ε ∈ (n−3/5, n−1/2], and run the second
approximation algorithm in O(n+ (1/ε7) log2(1/ε)) time for ε ∈ (n−1/2, 1).

7 Further research

The main open problems derived from this work are related to improving several of our algorithms,
in particular the solutions given for MinMax-L2 problem, MinSum-L2 problem, and Pairs of
Points L2 1-Center problem. In particular, it is an intriguing open question whether there
exists a subquadratic time algorithm for the later problem. On the other hand, it would also be
interesting to obtain lower bounds for these three problems, and to study all of our problems in
higher dimensions.
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