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Motivation

Imagine a set of 11 points in 2D with the following summary statistics:

● Mean value of x = 9
● Variance of x = 11
● Mean value of y = 7.5
● Variance of y = 4.1
● Correlation between x and y = 0.8
● Linear regression line y = 3 + 0.5x
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Anscombe’s Quartet

mean x = 9
var(x)   = 11
mean y = 7.5
var(y)   = 4.1
corr(x,y) = 0.8
reg:   y=3+0.5x

Anscombe, 1973
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Moral of the story: Summary statistics of a dataset are great, but we should 
nevertheless look at the data!

Anscombe’s Quartet
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Moral of the story: Summary statistics of a dataset are great, but we should 
nevertheless look at the data!

Or in fortune cookie language

Anscombe’s Quartet
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Imagine a graph with the following properties (statistics):

● 12 vertices
● 21 edges
● girth 𝛾 = 3
● number of triangles 𝞓 = 10

● global clustering coefficient = 0.5

Stephen’s Quartet
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Stephen’s Quartet

|V| = 12 
|E| = 21 
 𝛾  = 3
 𝞓 = 10 
GCC = 0.5
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Stephen’s Quartet

|V| = 12 
|E| = 21 
 𝛾  = 3
 𝞓 = 10 
GCC = 0.5

These four graphs have 
the same 5 statistics but 
they differ in structure, 
planarity, connectivity, 
symmetry, etc.
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Moral of the story: every graph drawing paper could begin with these 4 graphs as 
the motivation behind “Why We Still Need to Draw our Graphs”

Stephen’s Quartet
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So, can we modify a given graph and preserve a given set of summary statistics 
while significantly changing other graph properties and statistics?

Question
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Same Stats, Different Graphs

https://docs.google.com/file/d/11o3TwsyGjaVJ8bw2J5TRoX9yG8i1o5_s/preview


Graph Properties Considered

● normalized to [0,1] 
● assortativity: [-1,1]
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Correlations between Graph Properties

* Data from EuroVis’18 paper where we generated 4950 graphs with 100 vertices
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Correlations between Graph Properties

Can we trust the numbers from the previous table? 
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Correlations between Graph Properties

Can we trust the numbers from the previous table? 

Let’s look at the set of all (non-isomorphic) graphs on 100 vertices and compute 
the correlations again

Good idea, but the number of (non-isomorphic) graphs grows very quickly: 

For |V| = 1, 2 . . . 9 the numbers are 1, 2, 4, 11, 34, 156, 1044, 12346, 274668, 
and for |V| = 16 we have 6 x 1022
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Correlations between Graph Properties

4950 graphs with 100 vertices from 
EuroVis’17 experiment

ground truth for |V|=9 and the results 
are different...
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Ground Truth Data for Small |V|
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Ground Truth Data for Small |V|
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Ground Truth Data for Small |V|

Let’s look at one of these more carefully

As |V| grows the correlation changes!
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Graph Generators to the Rescue

We cannot explore the ground data for large values of |V|, so let’s use generators

● Erdos-Renyi
● Watts-Strogatz
● Barabasi-Albert
● geometric

But which generator does a good job in this context?

What do we want from a graph generator?
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Desirable Generator Properties

Does the graph generator: 

● represent the ground truth data well, i.e., does the generator yield a sample 
that with similar properties as those in the ground truth?

● cover the complete range of values for the properties found in the ground 
truth data?
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Graph Generator Representativeness

We measure how representative a graph generator is by comparing pairwise 
correlations in the sample and in the ground truth. 
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Graph Generator Coverage

We measure how well a graph generator covers the range of values in the ground 
truth data by comparing the volumes of the generated data and the ground truth

For example, we can compare the ratios of the 10D bounding boxes of the two 
datasets (generator, ground truth)
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Graph Generator Performance?

No graph generator is good at representing the ground truth and covering it well

Why?

It seems the answer is that all generators sample the space of isomorphic graphs 
whereas we are considering the space of non-isomorphic graphs
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Same Stats, Different Graphs

We can generate graphs with fixed set of statistics that vary in another statistic:

|V| = 9, SCC ∈ (0.75, 0.85), ACC ∈ (0.75, 0.8), r ∈ (-0.3, -0.2), Rt ∈ (0.35, 
0.45), and we can find graphs in 6 out of 8 buckets for connectivity

for small sizes we can simply look in the ground truth data

for large sizes we must use generators
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Open Problems

1. Some drawing algorithms may not allow us to see differences in statistics 
between two graphs purely from their drawings; how can we address this?

2. Efficiently generate graphs of the “same stats, different graphs” type?
3. What are the correlations between different graph properties/statistics?
4. Generator that represents and covers the space of non-isomorphic graphs?

                                  ACC=0.1     ACC=0.3                    ACC=0.7                   ACC=0.9
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