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Motivation

Imagine a set of 11 points in 2D with the following summary statistics:

Mean value of x = 9

Variance of x = 11

Mean value of y = 7.5

Variance of y = 4.1

Correlation between x and y = 0.8
Linear regression line y = 3 + 0.5x
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Motivation
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Anscombe’s Quartet
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Anscombe’s Quartet

Moral of the story: Summary statistics of a dataset are great, but we should
nevertheless look at the data!
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Anscombe’s Quartet

Moral of the story: Summary statistics of a dataset are great, but we should
nevertheless look at the data!

Or in fortune cookie language

| see
| hear and 1 forget. 1 S¢

and 1 remember.
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Stephen’s Quartet

Imagine a graph with the following properties (statistics):

12 vertices

21 edges

girth y =3

number of triangles 4 = 10

global clustering coefficient = 0.5
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Stephen’s Quartet

V] = 12
|E| = 21
y =3
4=10
GCC =05
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Stephen’s Quartet
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|E| = 21
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GCC =05
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Stephen’s Quartet
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Stephen’s Quartet

V] = 12
|E| = 21
y =3
4=10
GCC =05

These four graphs have
the same 5 statistics but
they differ in structure,
planarity, connectivity,
symmetry, etc.

JAVAVAVAVAV/
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Stephen’s Quartet

Moral of the story: every graph drawing paper could begin with these 4 graphs as
the motivation behind “Why We Still Need to Draw our Graphs”
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Question

So, can we modify a given graph and preserve a given set of summary statistics
while significantly changing other graph properties and statistics?
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Question

So, can we modify a given graph and preserve a given set of summary statistics
while significantly changing other graph properties and statistics?

This is significantly harder to do with graphs than with the 2D pointsets in
Anscombe’s quartet, as some graph properties are correlated...
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Question

So, can we modify a given graph and preserve a given set of summary statistics
while significantly changing other graph properties and statistics?

This is significantly harder to do with graphs than with the 2D pointsets in
Anscombe’s quartet, as some graph properties are correlated...

Why? graph anonymization, to measure graph property perception in layouts, ...
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Question

So, can we modify a given graph and preserve a given set of summary statistics
while significantly changing other graph properties and statistics?

This is significantly harder to do with graphs than with the 2D pointsets in
Anscombe’s quartet, as some graph properties are correlated...

Why? graph anonymization, to measure graph property perception in layouts, ...
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https://docs.google.com/file/d/11o3TwsyGjaVJ8bw2J5TRoX9yG8i1o5_s/preview

Graph Properties Considered

Average Clustering ACC(G) = %Z?:l c(ui),ui € Vin = |V| e normalized to [0,1]
Coeflicient olad) { (w,w)|u, wel (v),(u,w)€ E}|

= 1T (o) (| (v)|-1)/2 V0, w €V e assortativity: [-1,1]

s ClnStOring 3x|triangles|
Coefficient GCC(G) = 3x|triangle:

T |eonnected triples| in the graph

ky kv
Eu.::l u"= w1 qu (u,w)

Zf“': 1 Zt': w1 [ay (u,w)4qu(u,w)]

roraoce P: . — ane n—1
Average Path Length APL = ave{ pr— d(“‘")‘”#v“}

Z_ry zy(epy—ay b”)

Square Clustering SCC(G) =

Degree Assortativity r =

”llnh
Diameter diam(G) = max{dist(v,w),v,w € V}
g . _ __3E
Density den = VTOVI=T
A Th.:. " - _ |triangles|
Ratio of Triangles Rt = VIOVI=1)/3

Cv: the minimum number of nodes to remove

Node Connectivit ;
Y to disconnect the graph

Ce: the minimum number of edges to remove

Edge Connectivity .
& ‘ to disconnect the graph
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Correlations between Graph Properties

Gce

ACC

Yele] 0.20 0.86 - 0] -0.32 FREY -0.14 -0.05 -0.13 -0.12

APL -0.80 -0.80 L0k L0 - WOIKTN 0.43 -0.64 -0.76 -0.76
¢ -0.41 -0.41

diam -0.61 -0.61
o3 0.92 1 0.19
x4 0.92 0.92
oA 0.99 0.99
oy 0.99 0.99

* Data from EuroVis’18 paper where we generated 4950 graphs with 100 vertices
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Correlations between Graph Properties

Can we trust the numbers from the previous table?
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Correlations between Graph Properties

Can we trust the numbers from the previous table?

Let’s look at the set of all (non-isomorphic) graphs on 100 vertices and compute
the correlations again
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Correlations between Graph Properties

Can we trust the numbers from the previous table?

Let’s look at the set of all (non-isomorphic) graphs on 100 vertices and compute
the correlations again
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Correlations between Graph Properties

Can we trust the numbers from the previous table?

Let’s look at the set of all (non-isomorphic) graphs on 100 vertices and compute

the correlations again

Good idea, but the number of (non-isomorphic) graphs grows very quickly:
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Correlations between Graph Properties

Can we trust the numbers from the previous table?

Let’s look at the set of all (non-isomorphic) graphs on 100 vertices and compute
the correlations again

Good idea, but the number of (non-isomorphic) graphs grows very quickly:

For|V|=1,2...9the numbers are 1, 2, 4, 11, 34, 156, 1044, 12346, 274668,
and for |V| = 16 we have 6 x 10?2
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Correlations between Graph Properties

GCC 1.00 0.86 EORSUECESREINAE 0.92 0.92 0.99 0.99 0.9

ACC . 019 0.92 0.99 0.99
SYele] 020 0.86 - 0.10 .05 0.13 -0.12 0.6
APL -0.80 -0.80 [0 - LRI -0.43 -0.64 -0.76 0.76
¢ -0.41 -0.41 0.29 -0.37 0.37 o3

diam 10.35 -0.38 -0.54 -0.54 0.0
den 0.35 0.93 0.99 0.99

Rt 0.05 -0.64 0.29 -0.38 -0.3

Cv 10.13 -0.76 0.37 -0.54 o

Ce 012 -0.76 -0.37 -0.54

g
5288 8

4950 graphs with 100 vertices from
EuroVis’17 experiment

GOC 0.89 0.55 EULIREIRKE] 0.71 0.86 0.24 0.24
ACC 74 IEE] 0.66 0.78 0.30 0.32 28
Yelo] 0.55 0.53 -0.45 -0.09 -0.26 [ETRYIR L
APL -0.59 -0.57 -0.45 501 MOEEN -0.86 -0.74 -0.58 -0.57 04
r -0.19 -0.06 -0.09 0.06 0.06 0.08 0.08
diam -0.35 -0.39 -0.26 -0.64 -0.52 -0.55 -0.55 0.0
PN 0.71 0.66 0.54 [N 0.06 EXH 0.91 0.70 0.69
Rt PEORCIOE 0.74 [0/ -0.52 ~04
oY 0.24 0.30 0.15 FE 0.08 FELS
oy 0.24 0.32 0.15 ¥4 0.08 EOEE 08
32 8% &

ground truth for |V|=9 and the results
are different...
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Ground Truth Data for Small |V]|

Ground Truth V
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Ground Truth Data for Small |V]|

0.0
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Ground TruthV = 8
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Ground Truth V
Ground Truth V
Ground TruthV =7
Ground Truth V
Ground Truth V

Same Stats, Different Graphs
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Ground Truth Data for Small |V]|

Let’s look at one of these more carefully

As |V| grows the correlation changes!

Ground Truth V = 10 0.0
Ground TruthV =9
Ground TruthV =8
Ground Truth V =7

Ground TruthV =6
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Graph Generators to the Rescue

We cannot explore the ground data for large values of |V|, so let’s use generators

Erdos-Renyi
Watts-Strogatz
Barabasi-Albert
geometric

But which generator does a good job in this context?

What do we want from a graph generator?
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Desirable Generator Properties

Does the graph generator:

e represent the ground truth data well, i.e., does the generator yield a sample
that with similar properties as those in the ground truth?
e cover the complete range of values for the properties found in the ground

truth data?
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Graph Generator Representativeness

We measure how representative a graph generator is by comparing pairwise
correlations in the sample and in the ground truth.
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Graph Generator Representativeness

We measure how representative a graph generator is by comparing pairwise
correlations in the sample and in the ground truth.
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Graph Generator Representativeness

We measure how representative a graph generator is by comparing pairwise
correlations in the sample and in the ground truth.
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Graph Generator Coverage

We measure how well a graph generator covers the range of values in the ground
truth data by comparing the volumes of the generated data and the ground truth

For example, we can compare the ratios of the 10D bounding boxes of the two
datasets (generator, ground truth)

WSmodel BAmodel ERmodelp=0.5 ER model p~Uniform  ER model p~Population  Geometric model
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Graph Generator Performance?

No graph generator is good at representing the ground truth and covering it well

( 1
APL

APL

WSmodel BAmodel ERmodelp=0.5 ER model p~Uniform  ER model p~Population  Geometric modgl I

Why?

It seems the answer is that all generators sample the space of isomorphic graphs
whereas we are considering the space of non-isomorphic graphs
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Same Stats, Different Graphs

We can generate graphs with fixed set of statistics that vary in another statistic:

.
" ’ " +1

V| =9, SCC € (0.75, 0.85), ACC € (0.75, 0.8), r € (-0.3, -0.2), Rt € (0.35,
0.45), and we can find graphs in 6 out of 8 buckets for connectivity
for small sizes we can simply look in the ground truth data

for large sizes we must use generators
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Open Problems

1.  Some drawing algorithms may not allow us to see differences in statistics
between two graphs purely from their drawings; how can we address this?

2. Efficiently generate graphs of the “same stats, different graphs” type?

What are the correlations between different graph properties/statistics?

4. Generator that represents and covers the space of non-isomorphic graphs?

w

Circular

MDS
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