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An Example

Consider the same group of people who participate in two social

network platforms:

• Private network: identities not revealed, e.g., Facebook .

• Public network: identities shown in public, e.g., LinkedIn.

Assume these two networks have almost the same topology.

Goal: align the two networks by vertex correspondences, hence

reveals the identifies of the private network.
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Graph Isomorphism

Given a pair of graphs G1,G2, find a one-to-one correspondence of

the vertices in G1 to vertices in G2 such that (u, v) is an edge in

G1 if and only if their corresponding nodes f (u), f (v) are

connected in G2
1 .
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Graph Isomorphism

One of the most fundamental problems in theoretical computer

science.

• In NP.

• Nov 2015/Jan 2017, László Babai claimed quasi-polynomial

time algorithm: O(exp(logO(1) n)).

• Many practical algorithms: e.g., NAUTY.

• Subgraph isomorphism is NP-complete.

• Approximate graph isomorphism: find the best correspondence

between vertices in G1 and G2 s.t. if u, v are connected in G1

their corresponding nodes are likely connected in G2.
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Our Solution: A Geometric Embedding Approach

How to align two sets of points in some embedding plane,

assuming that some landmarks `i are already aligned?

`1

`2

`3

d1 d2

d3
p = (d1, d2, d3)

`1

`2

`3

d′1 d′2

d′3
p′ = (d′1, d

′
2, d

′
3)

• Any point p can be represented by the barycentric coordinates

(d1, d2, d3), di is distance to `i .

• If the barycentric coordinates of p and p′ are similar, we

match p and p′.
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Quantify the ‘Position’ of a Node in a Network

In a social network there are often nodes that can be easily

identified as landmarks. Define the position of a node wrt

landmarks.

Q: What distance to use?

• Tie strength – Trouble: not easy to measure.

• Count # hops to these landmarks – Trouble: small world

property;

• Distances from some geometric embedding (spectral

embedding, Tutte embedding).

Q: Robust to noises (edge insertion/deletion)?
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Robustness: Remove Two Edges

Left: Spectral embedding; Right: Tutte/Spring embedding.
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Robustness: Remove Two Edges

Left: Hop count; Right: our metric.

+4.3%

+3.4%
+3.1%

+3.1%

-3.3%

Q: How is our metric defined?

8



Robustness: Remove Two Edges

Left: Hop count; Right: our metric.

+4.3%

+3.4%
+3.1%

+3.1%

-3.3%

Q: How is our metric defined?

8



Discrete Ricci Curvature & Ricci Flow



Curvature in Geometry

• Sphere: positive curvature;

• Plane: zero curvature;

• Hyperbolic plane: negatie curvature.

10



Sectional Curvature

Consider a tangent vector v = xy . Take another tangent vector wx

and transport it along v to be a tangent vector wy at y .

If |x ′y ′| < |xy | the sectional curvature is positive.

x

y

v

wx

wy

y′

x′

• Ricci Curvature: averaging over all direction w .
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Discrete Ricci Curvature

Take the analog: for an edge xy , consider the distances from x’s

neighbors to y ’s neighbors and compare it with the length of xy .

• Issue: how to match x ’s neighbors to y ’s neighbors?

• Assign uniform distribution µ1, µ2 on x ’ and y ’s neighbors.

• Use optimal transportation distance (earth-mover distance)

from µ1 to µ2: the matching that minimize the total

transport distance.
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Discrete Ricci Curvature

Definition (Ollivier)
Let (X , d) be a metric space and let m1,m2 be two probability

measures on X . For any two distinct points x , y ∈ X , the

(Ollivier-) Ricci curvature along xy is defined as

κ(x , y) := 1− W1(mx ,my )

d(x , y)
,

where mx (my ) is a probability distribution defined on x (y) and

its neighbors, W1(µ1, µ2) is the L1 optimal transportation

distance between two probability measure µ1 and µ2 on X :

W1(µ1, µ2) := inf
ψ∈Π(µ1,µ2)

∫
(u,v)

d(u, v)dψ(u, v)

For a node w with k neighbors, we define

mw (w) = α;mw (v) = (1− α)/k . We choose α = 1/2. 13



Examples

Zero curvature: 2D grid.
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Examples

Negative curvature: tree: κ(x , y) = 1/dx + 1/dy − 1, dx is degree

of x .
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Examples

Positive curvature: complete graph.
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Example: Ricci Curvature

Negatively curved edges are like “backbones”, maintaining the

connectivity of clusters, in which edges are mostly positively

curved.

Ricci Curvature

(a)

(a): Zoom in
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Curvature Distribution

Left: Negative curvature edges. Right: Positive curvature edges.2

2ForceAtlas layout by Gephi
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Edge Weights Generated by Ricci flow

Given a graph G in which d(x , y) is the weight of the edge xy and

κ(x , y) is the discrete Ricci curvature, we run

di+1(x , y) = (di (x , y)− ε · κi (x , y) · di (x , y)) · N

Until convergence, where N is to rescale to make sure total edge

weights remain the same.

At the limit, W (x , y)/d(x , y) is the same for all edges.

19



Ricci Flow Metric

Intuition: flatten the network – shrink an edge if it is within a well

connected community; stretch an edge if otherwise, s.t., the

network curvature is uniform everywhere.3
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Ricci Flow Metric on Semantic Wordnet

As similarity metric: On wordnet, edges between similar words

are shrank s.t. similar words are closer with Ricci Flow Metric.

measurement

wind

plunge

river

invisibility

bubble

water
airmoisture

stream

fluidity

gaseity

liquefaction

vaporization

semitransparency

insertion

transparency

opacity
darkness

dimness
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Ricci Flow Metric on Semantic Wordnet

Table 1: Node similarity: Word distance by RF-Metric and hop count

Word RF-Metric Hop Word RF-Metric Hop

air 0 0 heaven 0 0

gaseity 1.084512 1 hell 0.476738 1

bubble 1.233986 1 pleasure 0.673406 1

water 1.241377 1 pleasurableness 0.786310 1

wind 1.560098 1 hope 0.920200 1

vaporization 1.854184 2 pain 1.104767 2

semitransparency 1.900589 2 cheerfulness 1.253568 2

opacity 1.993095 2 content 1.254039 2

fluidity 2.032685 2 restoration 1.391618 1

transparency 2.077700 3 sweetness 1.432170 2

dimness 2.084738 2 physical pleasure 1.450673 2

moisture 2.204766 2 feeling 1.471766 2
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Evaluation on Resilience

Randomly remove 10 edges in a random regular graph.

Histogram of RF Metric with ATD

Histogram of Hop Count
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Evaluation on Matching Performance

• Randomly remove one node in a random regular graph w/

degree 12.
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Evaluation on Matching Performance

• Randomly remove 10 edges in a protein protein network.
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Evaluation on Matching Performance

• Random Regular Graph - remove Nodes
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Conclusions

Ricci flow metric on graph:

• A geometric metric that is robust to noises.

• Only require topology information to compute.

• Highly related to node similarity.

Ricci Curvature & Ricci Flow Source code Available:

https://github.com/saibalmars/GraphRicciCurvature

Contact: Chien-Chun Ni(chien-chun.ni@oath.com)
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