Network Alignment by
 Discrete Ollivier-Ricci Flow

Chien-Chun $\mathrm{Ni}^{1,3}$ Yu-Yao Lin ${ }^{2,3}$ Jie Gao ${ }^{3}$ Xianfeng Gu ${ }^{3}$ Speaker: Kin Sum Liu ${ }^{3}$

September 28th 2018.
${ }^{1}$ Yahoo! Research
${ }^{2}$ Intel Inc.
${ }^{3}$ Stony Brook University

An Example

Consider the same group of people who participate in two social network platforms:

- Private network: identities not revealed, e.g., Facebook .

An Example

Consider the same group of people who participate in two social network platforms:

- Private network: identities not revealed, e.g., Facebook .
- Public network: identities shown in public, e.g., Linkedln.

An Example

Consider the same group of people who participate in two social network platforms:

- Private network: identities not revealed, e.g., Facebook .
- Public network: identities shown in public, e.g., Linkedln.

Assume these two networks have almost the same topology.

An Example

Consider the same group of people who participate in two social network platforms:

- Private network: identities not revealed, e.g., Facebook .
- Public network: identities shown in public, e.g., Linkedln.

Assume these two networks have almost the same topology.

Goal: align the two networks by vertex correspondences, hence reveals the identifies of the private network.

Graph Isomorphism

Given a pair of graphs G_{1}, G_{2}, find a one-to-one correspondence of the vertices in G_{1} to vertices in G_{2} such that (u, v) is an edge in G_{1} if and only if their corresponding nodes $f(u), f(v)$ are connected in $G_{2}{ }^{1}$.

[^0]
Graph Isomorphism

Given a pair of graphs G_{1}, G_{2}, find a one-to-one correspondence of the vertices in G_{1} to vertices in G_{2} such that (u, v) is an edge in G_{1} if and only if their corresponding nodes $f(u), f(v)$ are connected in $G_{2}{ }^{1}$.

[^1]
Graph Isomorphism

One of the most fundamental problems in theoretical computer science.

- In NP.

Graph Isomorphism

One of the most fundamental problems in theoretical computer science.

- In NP.
- Nov 2015/Jan 2017, László Babai claimed quasi-polynomial time algorithm: $O\left(\exp \left(\log ^{O(1)} n\right)\right)$.

Graph Isomorphism

One of the most fundamental problems in theoretical computer science.

- In NP.
- Nov 2015/Jan 2017, László Babai claimed quasi-polynomial time algorithm: $O\left(\exp \left(\log ^{O(1)} n\right)\right)$.
- Many practical algorithms: e.g., NAUTY.

Graph Isomorphism

One of the most fundamental problems in theoretical computer science.

- In NP.
- Nov 2015/Jan 2017, László Babai claimed quasi-polynomial time algorithm: $O\left(\exp \left(\log ^{O(1)} n\right)\right)$.
- Many practical algorithms: e.g., NAUTY.
- Subgraph isomorphism is NP-complete.

Graph Isomorphism

One of the most fundamental problems in theoretical computer science.

- In NP.
- Nov 2015/Jan 2017, László Babai claimed quasi-polynomial time algorithm: $O\left(\exp \left(\log ^{O(1)} n\right)\right)$.
- Many practical algorithms: e.g., NAUTY.
- Subgraph isomorphism is NP-complete.
- Approximate graph isomorphism: find the best correspondence between vertices in G_{1} and G_{2} s.t. if u, v are connected in G_{1} their corresponding nodes are likely connected in G_{2}.

Our Solution: A Geometric Embedding Approach

How to align two sets of points in some embedding plane, assuming that some landmarks ℓ_{i} are already aligned?

Our Solution: A Geometric Embedding Approach

How to align two sets of points in some embedding plane, assuming that some landmarks ℓ_{i} are already aligned?

- Any point p can be represented by the barycentric coordinates $\left(d_{1}, d_{2}, d_{3}\right), d_{i}$ is distance to ℓ_{i}.
- If the barycentric coordinates of p and p^{\prime} are similar, we match p and p^{\prime}.

Quantify the 'Position' of a Node in a Network

In a social network there are often nodes that can be easily identified as landmarks. Define the position of a node wrt landmarks.

Quantify the 'Position' of a Node in a Network

In a social network there are often nodes that can be easily identified as landmarks. Define the position of a node wrt landmarks.

Q: What distance to use?

Quantify the 'Position' of a Node in a Network

In a social network there are often nodes that can be easily identified as landmarks. Define the position of a node wrt landmarks.

Q: What distance to use?

- Tie strength - Trouble: not easy to measure.

Quantify the 'Position' of a Node in a Network

In a social network there are often nodes that can be easily identified as landmarks. Define the position of a node wrt landmarks.

Q: What distance to use?

- Tie strength - Trouble: not easy to measure.
- Count \# hops to these landmarks - Trouble: small world property;

Quantify the 'Position' of a Node in a Network

In a social network there are often nodes that can be easily identified as landmarks. Define the position of a node wrt landmarks.

Q: What distance to use?

- Tie strength - Trouble: not easy to measure.
- Count \# hops to these landmarks - Trouble: small world property;
- Distances from some geometric embedding (spectral embedding, Tutte embedding).

Quantify the 'Position' of a Node in a Network

In a social network there are often nodes that can be easily identified as landmarks. Define the position of a node wrt landmarks.

Q: What distance to use?

- Tie strength - Trouble: not easy to measure.
- Count \# hops to these landmarks - Trouble: small world property;
- Distances from some geometric embedding (spectral embedding, Tutte embedding).

Q: Robust to noises (edge insertion/deletion)?

Robustness: Remove Two Edges

Left: Spectral embedding; Right: Tutte/Spring embedding.

Robustness: Remove Two Edges

Left: Hop count; Right: our metric.

Robustness: Remove Two Edges

Left: Hop count; Right: our metric.

Q: How is our metric defined?

Discrete Ricci Curvature \& Ricci Flow

Curvature in Geometry

- Sphere: positive curvature;
- Plane: zero curvature;
- Hyperbolic plane: negatie curvature.

Sectional Curvature

Consider a tangent vector $v=x y$. Take another tangent vector w_{x} and transport it along v to be a tangent vector w_{y} at y.

If $\left|x^{\prime} y^{\prime}\right|<|x y|$ the sectional curvature is positive.

Sectional Curvature

Consider a tangent vector $v=x y$. Take another tangent vector w_{x} and transport it along v to be a tangent vector w_{y} at y.

If $\left|x^{\prime} y^{\prime}\right|<|x y|$ the sectional curvature is positive.

- Ricci Curvature: averaging over all direction w.

Discrete Ricci Curvature

Take the analog: for an edge $x y$, consider the distances from x 's neighbors to y 's neighbors and compare it with the length of $x y$.

Discrete Ricci Curvature

Take the analog: for an edge $x y$, consider the distances from x 's neighbors to y 's neighbors and compare it with the length of $x y$.

- Issue: how to match x 's neighbors to y 's neighbors?

Discrete Ricci Curvature

Take the analog: for an edge $x y$, consider the distances from x 's neighbors to y 's neighbors and compare it with the length of $x y$.

- Issue: how to match x 's neighbors to y 's neighbors?
- Assign uniform distribution μ_{1}, μ_{2} on x^{\prime} and y 's neighbors.
- Use optimal transportation distance (earth-mover distance) from μ_{1} to μ_{2} : the matching that minimize the total transport distance.

Discrete Ricci Curvature

Definition (Ollivier)

Let (X, d) be a metric space and let m_{1}, m_{2} be two probability measures on X. For any two distinct points $x, y \in X$, the (Ollivier-) Ricci curvature along $x y$ is defined as

$$
\kappa(x, y):=1-\frac{W_{1}\left(m_{x}, m_{y}\right)}{d(x, y)}
$$

where $m_{x}\left(m_{y}\right)$ is a probability distribution defined on $x(y)$ and its neighbors, $W_{1}\left(\mu_{1}, \mu_{2}\right)$ is the L_{1} optimal transportation distance between two probability measure μ_{1} and μ_{2} on X :

$$
W_{1}\left(\mu_{1}, \mu_{2}\right):=\inf _{\psi \in \Pi\left(\mu_{1}, \mu_{2}\right)} \int_{(u, v)} d(u, v) d \psi(u, v)
$$

For a node w with k neighbors, we define $m_{w}(w)=\alpha ; m_{w}(v)=(1-\alpha) / k$. We choose $\alpha=1 / 2$.

Examples

Zero curvature: 2D grid.

Examples

Negative curvature: tree: $\kappa(x, y)=1 / d_{x}+1 / d_{y}-1, d_{x}$ is degree of x.

Examples

Positive curvature: complete graph.

Example: Ricci Curvature

Negatively curved edges are like "backbones", maintaining the connectivity of clusters, in which edges are mostly positively curved.

Curvature Distribution

Left: Negative curvature edges. Right: Positive curvature edges. ${ }^{2}$

[^2]
Edge Weights Generated by Ricci flow

Given a graph G in which $d(x, y)$ is the weight of the edge $x y$ and $\kappa(x, y)$ is the discrete Ricci curvature, we run

$$
d_{i+1}(x, y)=\left(d_{i}(x, y)-\varepsilon \cdot \kappa_{i}(x, y) \cdot d_{i}(x, y)\right) \cdot N
$$

Until convergence, where N is to rescale to make sure total edge weights remain the same.

At the limit, $W(x, y) / d(x, y)$ is the same for all edges.

Ricci Flow Metric

Intuition: flatten the network - shrink an edge if it is within a well connected community; stretch an edge if otherwise, s.t., the network curvature is uniform everywhere. ${ }^{3}$

${ }^{3}$ Karate Club by Gephi ForceAtlas layout

Ricci Flow Metric on Semantic Wordnet

As similarity metric: On wordnet, edges between similar words are shrank s.t. similar words are closer with Ricci Flow Metric.
liquefaction
vaporization

Ricci Flow Metric on Semantic Wordnet

Table 1: Node similarity: Word distance by RF-Metric and hop count

Word	RF-Metric	Hop		Word	RF-Metric	Hop
air	0	0		heaven	0	0
gaseity	1.084512	1		hell	0.476738	1
bubble	1.233986	1		pleasure	0.673406	1
water	1.241377	1		pleasurableness	0.786310	1
wind	1.560098	1		hope	0.920200	1
vaporization	1.854184	2		pain	1.104767	2
semitransparency	1.900589	2		cheerfulness	1.253568	2
opacity	1.993095	2		content	1.254039	2
fluidity	2.032685	2		restoration	1.391618	1
transparency	2.077700	3		sweetness	1.432170	2
dimness	2.084738	2		physical pleasure	1.450673	2
moisture	2.204766	2		feeling	1.471766	2

Evaluation on Resilience

Randomly remove 10 edges in a random regular graph.

Evaluation on Matching Performance

- Randomly remove one node in a random regular graph w/ degree 12.

Evaluation on Matching Performance

- Randomly remove 10 edges in a protein protein network.

Evaluation on Matching Performance

- Random Regular Graph - remove Nodes

Conclusions

Ricci flow metric on graph:

- A geometric metric that is robust to noises.
- Only require topology information to compute.
- Highly related to node similarity.

Ricci Curvature \& Ricci Flow Source code Available: https://github.com/saibalmars/GraphRicciCurvature

Contact: Chien-Chun Ni(chien-chun.ni@oath.com)

[^0]: ${ }^{1}$ credit: wikipedia

[^1]: ${ }^{1}$ credit: wikipedia

[^2]: ${ }^{2}$ ForceAtlas layout by Gephi

