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An Example

Consider the same group of people who participate in two social
network platforms:

e Private network: identities not revealed, e.g., Facebook .

e Public network: identities shown in public, e.g., LinkedIn.

Assume these two networks have almost the same topology.

Goal: align the two networks by vertex correspondences, hence
reveals the identifies of the private network.
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G; if and only if their corresponding nodes f(u), f(v) are

connected in Gyt .
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Graph Isomorphism

One of the most fundamental problems in theoretical computer

science.

e In NP.

e Nov 2015/Jan 2017, L&szI6 Babai claimed quasi-polynomial
time algorithm: O(exp(log®™) n)).

e Many practical algorithms: e.g., NAUTY.

e Subgraph isomorphism is NP-complete.

e Approximate graph isomorphism: find the best correspondence
between vertices in Gy and G s.t. if u, v are connected in G

their corresponding nodes are likely connected in Go.
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Our Solution: A Geometric Embedding Approach

How to align two sets of points in some embedding plane,
assuming that some landmarks ¢; are already aligned?

p' = (dy, dy, dy)

e Any point p can be represented by the barycentric coordinates
(d1, da, d3), d; is distance to ;.

e If the barycentric coordinates of p and p’ are similar, we
match p and p’.
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Quantify the ‘Position’ of a Node in a Network

In a social network there are often nodes that can be easily
identified as landmarks. Define the position of a node wrt
landmarks.

Q: What distance to use?

e Tie strength — Trouble: not easy to measure.

e Count # hops to these landmarks — Trouble: small world
property;

e Distances from some geometric embedding (spectral
embedding, Tutte embedding).

Q: Robust to noises (edge insertion/deletion)?



Robustness: Remove Two Edges

Left: Spectral embedding; Right: Tutte/Spring embedding.
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Robustness: Remove Two Edges

Left: Hop count; Right: our metric.




Robustness: Remove Two Edges

Left: Hop count; Right: our metric.

Q: How is our metric defined?



Discrete Ricci Curvature & Ricci Flow



Curvature in Geometry

e Sphere: positive curvature;
e Plane: zero curvature;

e Hyperbolic plane: negatie curvature.
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Sectional Curvature

Consider a tangent vector v = xy. Take another tangent vector wy
and transport it along v to be a tangent vector w, at y.

If |xy’| < |xy| the sectional curvature is positive.
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Sectional Curvature

Consider a tangent vector v = xy. Take another tangent vector wy
and transport it along v to be a tangent vector w, at y.

If |xy’| < |xy| the sectional curvature is positive.

z w
N/
v
Yy Yy

Wy

e Ricci Curvature: averaging over all direction w.
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Discrete Ricci Curvature

Take the analog: for an edge xy, consider the distances from x’s
neighbors to y’'s neighbors and compare it with the length of xy.
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Discrete Ricci Curvature

Take the analog: for an edge xy, consider the distances from x’s
neighbors to y’'s neighbors and compare it with the length of xy.

e Issue: how to match x's neighbors to y's neighbors?

e Assign uniform distribution w1, p2 on x' and y's neighbors.

e Use optimal transportation distance (earth-mover distance)
from p1 to po: the matching that minimize the total

transport distance. 12



Discrete Ricci Curvature

Definition (Ollivier)
Let (X, d) be a metric space and let m;, my be two probability

measures on X. For any two distinct points x,y € X, the
(Ollivier-) Ricci curvature along xy is defined as
Wl(mx7 my)

dix,y)

where m, (m,) is a probability distribution defined on x (y) and

k(x,y)=1—

its neighbors, W4 (u1, pi2) is the L1 optimal transportation
distance between two probability measure 1 and po on X:

Wil ) = inf / d(u, v)dp(e, v)
YEM(p1,12) (u,v)

For a node w with k neighbors, we define
my(w) = «; my(v) = (1 — a)/k. We choose o = 1/2. 13



Zero curvature: 2D grid.
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Negative curvature: tree: k(x,y) =1/dy +1/d, — 1, dy is degree

of x.




Positive curvature: complete graph.
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Example: Ricci Curvature

Negatively curved edges are like “backbones”, maintaining the
connectivity of clusters, in which edges are mostly positively

curved.

Ricci Curvature
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Curvature Distribution

Left: Negative curvature edges. Right: Positive curvature edges.?

2ForceAtlas layout by Gephi
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Edge Weights Generated by Ricci flow

Given a graph G in which d(x, y) is the weight of the edge xy and
k(x, y) is the discrete Ricci curvature, we run

di+1(xay) = (di(Xay) —&- :‘i,‘(X,y) : C/,'(X,y)) -N

Until convergence, where N is to rescale to make sure total edge
weights remain the same.

At the limit, W(x,y)/d(x,y) is the same for all edges.
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Ricci Flow Metric

Intuition: flatten the network — shrink an edge if it is within a well
connected community; stretch an edge if otherwise, s.t., the

network curvature is uniform everywhere.3

3Karate Club by Gephi ForceAtlas layout
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Ricci Flow Metric on Semantic Wordnet

As similarity metric: On wordnet, edges between similar words
are shrank s.t. similar words are closer with Ricci Flow Metric.

liquefaction

vaporization

I ty dimpess invmi::mss
babble ..y

semitransparency
transparency

fluidity

~oiud 9

rizer.

noisture

w

inseption

plunge measurement

21



Ricci Flow Metric on Semantic Wordnet

Table 1: Node similarity: Word distance by RF-Metric and hop count

‘ Word ‘ RF-Metric ‘ Hop ‘ ‘ Word ‘ RF-Metric ‘ Hop ‘
air 0 0 heaven 0 0
gaseity 1.084512 1 hell 0.476738 1
bubble 1.233986 1 pleasure 0.673406 1
water 1.241377 1 pleasurableness 0.786310 1
wind 1.560098 1 hope 0.920200 1
vaporization 1.854184 2 pain 1.104767 2
semitransparency 1.900589 2 cheerfulness 1.253568 2
opacity 1.993095 2 content 1.254039 2
fluidity 2.032685 2 restoration 1.391618 1
transparency 2.077700 3 sweetness 1.432170 2
dimness 2.084738 2 physical pleasure 1.450673 2
moisture 2.204766 2 feeling 1.471766 2

22



Evaluation on Resilience

Randomly remove 10 edges in a random regular graph.

Random Regular (1000 nodes, 6000 edges) with 10 edges removed
Histogram of RF Metric with OTD‘
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Evaluation on Matching Performance

e Randomly remove one node in a random regular graph w/

degree 12.
Random Regular (1000 nodes, 6000 edges) v.s. (-1 Node, -12 edges)
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Evaluation on Matching Performance

e Randomly remove 10 edges in a protein protein network.

Protein-Protein Interaction (2217 Nodes, 6418 Edges) V.S. (-10 Edges)
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Evaluation on Matching Performance

e Random Regular Graph - remove Nodes

Random Regular (1000 Nodes, 6000 Edges) / Node removal
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Conclusions

Ricci flow metric on graph:

e A geometric metric that is robust to noises.
e Only require topology information to compute.

e Highly related to node similarity.

Ricci Curvature & Ricci Flow Source code Available:
https://github.com/saibalmars/GraphRicciCurvature

Contact: Chien-Chun Ni(chien-chun.ni@oath.com)
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