Network Alignment by Discrete Ollivier-Ricci Flow

Chien-Chun Ni 1,3 Yu-Yao Lin 2,3 Jie Gao 3 Xianfeng Gu 3

Speaker: Kin Sum Liu³

September 28th 2018.

¹Yahoo! Research

²Intel Inc.

³Stony Brook University

Consider the same group of people who participate in two social network platforms:

• Private network: identities not revealed, e.g., Facebook .

Consider the same group of people who participate in two social network platforms:

- Private network: identities not revealed, e.g., Facebook .
- Public network: identities shown in public, e.g., LinkedIn.

Consider the same group of people who participate in two social network platforms:

- Private network: identities not revealed, e.g., Facebook .
- Public network: identities shown in public, e.g., LinkedIn.

Assume these two networks have **almost the same** topology.

Consider the same group of people who participate in two social network platforms:

- Private network: identities not revealed, e.g., Facebook .
- Public network: identities shown in public, e.g., LinkedIn.

Assume these two networks have almost the same topology.

Goal: align the two networks by vertex correspondences, hence reveals the identifies of the private network.

Given a pair of graphs G_1 , G_2 , find a one-to-one correspondence of the vertices in G_1 to vertices in G_2 such that (u, v) is an edge in G_1 if and only if their corresponding nodes f(u), f(v) are connected in G_2 ¹.

¹credit: wikipedia

Given a pair of graphs G_1 , G_2 , find a one-to-one correspondence of the vertices in G_1 to vertices in G_2 such that (u, v) is an edge in G_1 if and only if their corresponding nodes f(u), f(v) are connected in G_2 ¹.

¹credit: wikipedia

One of the most fundamental problems in theoretical computer science.

• In NP.

- In NP.
- Nov 2015/Jan 2017, László Babai claimed quasi-polynomial time algorithm: $O(\exp(\log^{O(1)} n))$.

- In NP.
- Nov 2015/Jan 2017, László Babai claimed quasi-polynomial time algorithm: $O(\exp(\log^{O(1)} n))$.
- Many practical algorithms: e.g., NAUTY.

- In NP.
- Nov 2015/Jan 2017, László Babai claimed quasi-polynomial time algorithm: $O(\exp(\log^{O(1)} n))$.
- Many practical algorithms: e.g., NAUTY.
- Subgraph isomorphism is NP-complete.

- In NP.
- Nov 2015/Jan 2017, László Babai claimed quasi-polynomial time algorithm: $O(\exp(\log^{O(1)} n))$.
- Many practical algorithms: e.g., NAUTY.
- Subgraph isomorphism is NP-complete.
- Approximate graph isomorphism: find the best correspondence between vertices in G_1 and G_2 s.t. if u, v are connected in G_1 their corresponding nodes are likely connected in G_2 .

Our Solution: A Geometric Embedding Approach

How to align two sets of points in some embedding plane, assuming that some landmarks ℓ_i are already aligned?

Our Solution: A Geometric Embedding Approach

How to align two sets of points in some embedding plane, assuming that some landmarks ℓ_i are already aligned?

- Any point p can be represented by the barycentric coordinates (d_1, d_2, d_3) , d_i is distance to ℓ_i .
- If the barycentric coordinates of p and p' are similar, we match p and p'.

In a social network there are often nodes that can be easily identified as *landmarks*. Define the position of a node wrt landmarks.

In a social network there are often nodes that can be easily identified as *landmarks*. Define the position of a node wrt landmarks.

Q: What distance to use?

In a social network there are often nodes that can be easily identified as *landmarks*. Define the position of a node wrt landmarks.

Q: What distance to use?

• Tie strength – Trouble: not easy to measure.

In a social network there are often nodes that can be easily identified as *landmarks*. Define the position of a node wrt landmarks.

Q: What distance to use?

- Tie strength Trouble: not easy to measure.
- Count # hops to these landmarks Trouble: small world property;

In a social network there are often nodes that can be easily identified as *landmarks*. Define the position of a node wrt landmarks.

Q: What distance to use?

- Tie strength Trouble: not easy to measure.
- Count # hops to these landmarks Trouble: small world property;
- Distances from some geometric embedding (spectral embedding, Tutte embedding).

In a social network there are often nodes that can be easily identified as *landmarks*. Define the position of a node wrt landmarks.

Q: What distance to use?

- Tie strength Trouble: not easy to measure.
- Count # hops to these landmarks Trouble: small world property;
- Distances from some geometric embedding (spectral embedding, Tutte embedding).

Q: Robust to noises (edge insertion/deletion)?

Robustness: Remove Two Edges

Left: Spectral embedding; Right: Tutte/Spring embedding.

Robustness: Remove Two Edges

Left: Hop count; Right: our metric.

Robustness: Remove Two Edges

Left: Hop count; Right: our metric.

Q: How is our metric defined?

Discrete Ricci Curvature & Ricci Flow

Curvature in Geometry

- Sphere: positive curvature;
- Plane: zero curvature;
- Hyperbolic plane: negatie curvature.

Sectional Curvature

Consider a tangent vector v = xy. Take another tangent vector w_x and transport it along v to be a tangent vector w_y at y.

If |x'y'| < |xy| the sectional curvature is positive.

Sectional Curvature

Consider a tangent vector v = xy. Take another tangent vector w_x and transport it along v to be a tangent vector w_y at y.

If |x'y'| < |xy| the sectional curvature is positive.

• Ricci Curvature: averaging over all direction w.

Take the analog: for an edge xy, consider the distances from x's **neighbors** to y's **neighbors** and compare it with the length of xy.

Take the analog: for an edge xy, consider the distances from x's **neighbors** to y's **neighbors** and compare it with the length of xy.

• Issue: how to match x's neighbors to y's neighbors?

Take the analog: for an edge xy, consider the distances from x's **neighbors** to y's **neighbors** and compare it with the length of xy.

- Issue: how to match x's neighbors to y's neighbors?
- Assign uniform distribution μ_1 , μ_2 on x' and y's neighbors.
- Use optimal transportation distance (earth-mover distance) from μ_1 to μ_2 : the matching that minimize the total transport distance.

Definition (Ollivier)

Let (X, d) be a metric space and let m_1, m_2 be two probability measures on X. For any two distinct points $x, y \in X$, the (Ollivier-) Ricci curvature along xy is defined as

$$\kappa(x,y):=1-\frac{W_1(m_x,m_y)}{d(x,y)},$$

where m_x (m_y) is a probability distribution defined on x (y) and its neighbors, $W_1(\mu_1, \mu_2)$ is the L_1 optimal transportation distance between two probability measure μ_1 and μ_2 on X:

$$W_1(\mu_1, \mu_2) := \inf_{\psi \in \Pi(\mu_1, \mu_2)} \int_{(u, v)} d(u, v) d\psi(u, v)$$

For a node w with k neighbors, we define $m_w(w) = \alpha$; $m_w(v) = (1 - \alpha)/k$. We choose $\alpha = 1/2$.

Examples

Zero curvature: 2D grid.

Examples

Negative curvature: tree: $\kappa(x,y) = 1/d_x + 1/d_y - 1$, d_x is degree of x.

Examples

Positive curvature: complete graph.

Example: Ricci Curvature

Negatively curved edges are like "backbones", maintaining the connectivity of clusters, in which edges are mostly positively curved.

Curvature Distribution

Left: Negative curvature edges. Right: Positive curvature edges.²

²ForceAtlas layout by Gephi

Edge Weights Generated by Ricci flow

Given a graph G in which d(x,y) is the weight of the edge xy and $\kappa(x,y)$ is the discrete Ricci curvature, we run

$$d_{i+1}(x,y) = (d_i(x,y) - \varepsilon \cdot \kappa_i(x,y) \cdot d_i(x,y)) \cdot N$$

Until convergence, where N is to rescale to make sure total edge weights remain the same.

At the limit, W(x,y)/d(x,y) is the same for all edges.

Ricci Flow Metric

Intuition: flatten the network – shrink an edge if it is within a well connected community; stretch an edge if otherwise, s.t., the network curvature is uniform everywhere.³

³Karate Club by Gephi ForceAtlas layout

Ricci Flow Metric on Semantic Wordnet

As similarity metric: On wordnet, edges between similar words are shrank s.t. similar words are closer with Ricci Flow Metric.

Ricci Flow Metric on Semantic Wordnet

Table 1: Node similarity: Word distance by RF-Metric and hop count

Word	RF-Metric	Нор	Word	RF-Metric	Нор
air	0	0	heaven	0	0
gaseity	1.084512	1	hell	0.476738	1
bubble	1.233986	1	pleasure	0.673406	1
water	1.241377	1	pleasurableness	0.786310	1
wind	1.560098	1	hope	0.920200	1
vaporization	1.854184	2	pain	1.104767	2
semitransparency	1.900589	2	cheerfulness	1.253568	2
opacity	1.993095	2	content	1.254039	2
fluidity	2.032685	2	restoration	1.391618	1
transparency	2.077700	3	sweetness	1.432170	2
dimness	2.084738	2	physical pleasure	1.450673	2
moisture	2.204766	2	feeling	1.471766	2

Evaluation on Resilience

Randomly remove 10 edges in a random regular graph.

Evaluation on Matching Performance

 Randomly remove one node in a random regular graph w/ degree 12.

Evaluation on Matching Performance

• Randomly remove 10 edges in a protein protein network.

Evaluation on Matching Performance

• Random Regular Graph - remove Nodes

Conclusions

Ricci flow metric on graph:

- A geometric metric that is robust to noises.
- Only require topology information to compute.
- Highly related to node similarity.

Ricci Curvature & Ricci Flow Source code Available: https://github.com/saibalmars/GraphRicciCurvature

Contact: Chien-Chun Ni(chien-chun.ni@oath.com)