# Perception of Symmetries in Drawings of Graphs

F. De Luca<sup>1</sup> S. Kobourov<sup>1</sup> H. Purchase<sup>2</sup>

<sup>1</sup>University of Arizona, USA

<sup>2</sup>University of Glasgow, UK

Graph Drawing, 2018

## Outline

- Symmetries
- Related work
- Perception of symmetries
  - Experimental study
  - Experimental setup
  - Experimental methodology
  - Data analysis
  - Discussion
- Conclusion and future work



# **Symmetries**

in nature

A symmetric layout shows the repetition of a pattern along one or more axes.













## **Symmetries**

#### ... types of symmetry

A symmetric layout shows the repetition of a pattern along one or more axes.

- Vertical: Reflection across a vertical axis (mirror symmetry)
- Horizontal: Reflection across an horizontal axis
- Translational: A pattern is repeated and shifted in the space
- Rotational: Repetition across radial axes with a given angle









## **Symmetries**

#### ... types of symmetry

A symmetric layout shows the repetition of a pattern along one or more axes.

- Vertical: Reflection across a vertical axis (mirror symmetry)
- Horizontal: Reflection across an horizontal axis
- Translational: A pattern is repeated and shifted in the space
- Rotational: Repetition across radial axes with a given angle



## Related work

... psychology

## **Gestalt Principles**









Closure

Proximity

Symmetry

## **Psychology**



Vertical sym activates a specific brain region (preattentively) [Cattaneo 2017]

## Related work

... graph drawing

## **Graph Drawing**





Readability [Purchase 1997]





P 0.397 K 0.615 P 1 K 0.077

Klapaukh [2014] and Purchase [2002] metrics

# Perception of symmetry

Experimental study

Rank how symmetries in drawings of graphs are perceived.

- reflective (vertical and horizontal) symmetry
- translational symmetry
- rotational symmetry

### Objective:

- Rank reflective and translational symmetries
- Rank rotational symmetries based on the number of axes

# Perception of symmetry

Experimental setup

**Layout generation:** Symmetric graph drawings by duplicating a graph with 10 vertices and 11 edges drawn with a random layout.

# Perception of symmetry

Experimental setup

**Layout generation:** Symmetric graph drawings by duplicating a graph with 10 vertices and 11 edges drawn with a random layout.



### Reflective and translational symmetric versions:

• Horizontal (H)



- Horizontal (H)
- Horizontal with rotation (Hr)





- Horizontal (H)
- Horizontal with rotation (Hr)
- Vertical (V)





- Horizontal (H)
- Horizontal with rotation (Hr)
- Vertical (V)
- Vertical with rotation (Vr)





- Horizontal (H)
- Horizontal with rotation (Hr)
- Vertical (V)
- Vertical with rotation (Vr)
- Translational (T)







- Horizontal (H)
- Horizontal with rotation (Hr)
- Vertical (V)
- Vertical with rotation (Vr)
- Translational (T)
- Translational with rotation (Tr)







- Horizontal (H)
- Horizontal with rotation (Hr)
- Vertical (V)
- Vertical with rotation (Vr)
- Translational (T)
- Translational with rotation (Tr)
- Non symmetric version (NS)









# What is the impact of the number of axes (order) for rotational symmetry?

Two types of rotational layouts to take into account the number of vertices.

- Rotational with fixed component
- Rotational with fixed vertices (maximum 50 vertices)



# Rotational with fixed component

Rotational Stimuli



#### Rotational Stimuli



# Experimental methodology

#### Tool

- Participants gathering: Reddit; Personal Communication
- Methodology: 'two-alternative forced choice'
- Task: Select the layout that looks more symmetric.
- Presented layouts per task (per participant): 210 in random order



# Experimental methodology

**Tasks** 

We conducted three separate experiments:

- 1 Which type of symmetry among *H*, *V*, *T*, *Hr*, *Vr*, *Tr* is most recognizable as symmetry?
- 2a How many rotations is most recognizable as rotational symmetry, using the *fixed-component* generation method?
- 2b How many rotations is most recognizable as rotational symmetry, using the *fixed-vertices* generation method?

## **Participants**

## Gathered participants:

Total participants: 97

• Incomplete tasks: 39

Removed participants: 2

• high number of non symmetric choices

same votes to all conditions in RFV



## Results

#### Conditions per task:

• 7 symmetric versions

### Votes per participants per task:

210

### Analysis:

- ANOVA
- Adjusted post-hoc pair-wise

Significance level 0.05

### Which conditions are:

favored over the others

Results



**Avg votes**: Significant difference (F = 240.5, df = 6,  $\underline{p < 0.001}$ ).

Results



Avg votes: Significant difference ( $F=240.5,\ df=6$  ,  $\underline{p<0.001}$  ).

#### Results





#### Results





H ≻ T

# Rotational with fixed components

Results



**Avg votes**: Significant difference (F = 12.2, df = 6, p < 0.001).





# Rotational with fixed components

Results







# Rotational with fixed components

Results





Two pairwise comparisons (at adjusted p = 0.025):

RC4 
$$\neq$$
 RC5 ( $p = 0.050$ )

Results



**Avg votes**: Significant difference (F = 10.9, df = 6,  $\underline{p < 0.001}$ ).











Results







#### Results





Two pairwise comparisons (at adjusted p = 0.025):

$$RV6 \succ RV5$$

RV4 
$$\neq$$
 RV5  $(p = 0.63)$ 

## **Findings**

#### Reflective and Translational

- 1: Which type of symmetry among H, V, T, Hr, Vr, Tr is most recognizable as symmetry?
- A: Statistically significant effects confirm that **mirror symmetry** is more recognizable as symmetry followed by horizontal and translational.



## **Findings**

#### Rotational

- 2a: How many rotations is most recognizable as rotational symmetry, using the fixed-component generation method?
- 2b: How many rotations is most recognizable as rotational symmetry, using the fixed-vertices generation method?
  - A: Evidence of a greater symmetry recognition for **high number of rotation axes** with the exception *RC4* that is considered more symmetric than *RC5* which goes against the general trend.



## Conclusion and future work

Can these findings can help guide algorithms that identify features to be displayed using these types of symmetries?

- show vertical symetry to call attention to isomorphic pairs of subgraphs
- layout cycles as *n*-gons with rotational symmetry to highlight them

#### **Future Research:**

- Is rotational 4 axes more recognizable than 5 axes because it is perceived as a combination of H and V?
- Ranking among rotational and the reflective symmetries



## Conclusion and future work

#### Future Research:

- Is rotational 4 axes more recognizable than 5 axes because it is perceived as a combination of H and V?
- Ranking among rotational and the reflective symmetries



Thank You! felicedeluca@email.arizona.edu