Perception of Symmetries in Drawings of Graphs

F. De Luca ${ }^{1} \quad$ S. Kobourov ${ }^{1}$ H. Purchase ${ }^{2}$

${ }^{1}$ University of Arizona, USA
${ }^{2}$ University of Glasgow, UK
Graph Drawing, 2018

Outline

(1) Symmetries
(2) Related work
(3) Perception of symmetries

- Experimental study
- Experimental setup
- Experimental methodology
- Data analysis
- Discussion

4 Conclusion and future work

Symmetries

in nature

A symmetric layout shows the repetition of a pattern along one or more axes.

Symmetries

```
... types of symmetry
```

A symmetric layout shows the repetition of a pattern along one or more axes.

- Vertical: Reflection across a vertical axis (mirror symmetry)
- Horizontal: Reflection across an horizontal axis
- Translational: A pattern is repeated and shifted in the space
- Rotational: Repetition across radial axes with a given angle

Symmetries

```
... types of symmetry
```

A symmetric layout shows the repetition of a pattern along one or more axes.

- Vertical: Reflection across a vertical axis (mirror symmetry)
- Horizontal: Reflection across an horizontal axis
- Translational: A pattern is repeated and shifted in the space
- Rotational: Repetition across radial axes with a given angle

Related work

psychology

Gestalt Principles

Psychology

Vertical sym activates a specific brain region (preattentively) [Cattaneo 2017]

Related work

... graph drawing

Graph Drawing

Readability [Purchase 1997]

$\begin{array}{ll}\mathrm{P} & 0.397 \\ \mathrm{~K} & 0.615\end{array}$
P 1
K 0.077
Klapaukh [2014] and Purchase [2002] metrics

Perception of symmetry
 Experimental study

Rank how symmetries in drawings of graphs are perceived.

- reflective (vertical and horizontal) symmetry
- translational symmetry
- rotational symmetry

Objective:
(1) Rank reflective and translational symmetries
(2) Rank rotational symmetries based on the number of axes

Perception of symmetry

Experimental setup

Layout generation: Symmetric graph drawings by duplicating a graph with 10 vertices and 11 edges drawn with a random layout.

Perception of symmetry

Experimental setup

Layout generation: Symmetric graph drawings by duplicating a graph with 10 vertices and 11 edges drawn with a random layout.

What is the relative ranking of reflective and translational symmetries for drawings of graphs?

Reflective and translational symmetric versions:

- Horizontal (H)

What is the relative ranking of reflective and translational symmetries for drawings of graphs?

Reflective and translational symmetric versions:

- Horizontal (H)
- Horizontal with rotation (Hr)

What is the relative ranking of reflective and translational

 symmetries for drawings of graphs?Reflective and translational symmetric versions:

- Horizontal (H)
- Horizontal with rotation (Hr)
- Vertical (V)

What is the relative ranking of reflective and translational symmetries for drawings of graphs?

Reflective and translational symmetric versions:

- Horizontal (H)
- Horizontal with rotation (Hr)

- Vertical (V)
- Vertical with rotation (Vr)

What is the relative ranking of reflective and translational

 symmetries for drawings of graphs?Reflective and translational symmetric versions:

- Horizontal (H)
- Horizontal with rotation (Hr)

- Vertical (V)
- Vertical with rotation (Vr)
- Translational (T)

What is the relative ranking of reflective and translational symmetries for drawings of graphs?

Reflective and translational symmetric versions:

- Horizontal (H)
- Horizontal with rotation (Hr)

- Vertical (V)
- Vertical with rotation (Vr)
- Translational (T)
- Translational with rotation (Tr)

What is the relative ranking of reflective and translational

 symmetries for drawings of graphs?Reflective and translational symmetric versions:

- Horizontal (H)
- Horizontal with rotation (Hr)

- Vertical (V)
- Vertical with rotation (Vr)
- Translational (T)
- Translational with rotation (Tr)
- Non symmetric version (NS)

What is the impact of the number of axes (order) for rotational symmetry?

Two types of rotational layouts to take into account the number of vertices.

- Rotational with fixed component
- Rotational with fixed vertices (maximum 50 vertices)

Rotational with fixed component

Rotational Stimuli

Rotational with fixed vertices

Rotational Stimuli

Experimental methodology
 Tool

- Participants gathering: Reddit; Personal Communication
- Methodology: 'two-alternative forced choice'
- Task: Select the layout that looks more symmetric.
- Presented layouts per task (per participant): 210 in random order

Click on the layout that looks more symmetric

Experimental methodology Tasks

We conducted three separate experiments:
1 Which type of symmetry among $H, V, T, H r, V r, T r$ is most recognizable as symmetry?
2a How many rotations is most recognizable as rotational symmetry, using the fixed-component generation method?
2b How many rotations is most recognizable as rotational symmetry, using the fixed-vertices generation method?

Participants

Gathered participants:

- Total participants: 97
- Incomplete tasks: 39
- Removed participants: 2
- high number of non symmetric choices
- same votes to all conditions in RFV

Results

Conditions per task:

- 7 symmetric versions

Votes per participants per task:

- 210

Analysis:

- ANOVA
- Adjusted post-hoc pair-wise

Significance level 0.05
Which conditions are:

- favored over the others

Reflective and Translational

Results

Avg votes: Significant difference $(F=240.5, d f=6, \underline{p}<0.001)$.

Reflective and Translational

Results

Avg votes: Significant difference $(F=240.5, d f=6, \underline{p}<0.001)$.

Reflective and Translational

Results

$\mathrm{H} \succ \mathrm{Hr}$

$\mathrm{V} \succ \mathrm{Vr}$

$\mathrm{T} \succ \mathrm{Tr}$

Reflective and Translational

Results

Rotational with fixed components

Results

Avg votes: Significant difference $(F=12.2, d f=6, \underline{p}<0.001)$.

Rotational with fixed components

Results

Rotational with fixed components

Results

Two pairwise comparisons (at adjusted $p=0.025$):

$$
\mathrm{RC} 6 \succ \mathrm{RC} 5
$$

$$
\begin{aligned}
& \mathrm{RC} 4 \nsucc \mathrm{RC} 5 \\
& (p=0.050)
\end{aligned}
$$

Rotational with fixed vertices

Results

Avg votes: Significant difference ($F=10.9, d f=6, \underline{p<0.001})$.

Rotational with fixed vertices

Results

Rotational with fixed vertices

Results

Two pairwise comparisons (at adjusted $p=0.025$):

$$
\mathrm{RV} 6 \succ \mathrm{RV} 5
$$

$$
\mathrm{RV} 4 \nsucc \mathrm{RV} 5
$$

$$
(p=0.63)
$$

Findings

Reflective and Translational

1: Which type of symmetry among $H, V, T, H r, V r, \operatorname{Tr}$ is most recognizable as symmetry?
A: Statistically significant effects confirm that mirror symmetry is more recognizable as symmetry followed by horizontal and translational.

Findings

Rotational

2a: How many rotations is most recognizable as rotational symmetry, using the fixed-component generation method?
2b: How many rotations is most recognizable as rotational symmetry, using the fixed-vertices generation method?
A: Evidence of a greater symmetry recognition for high number of rotation axes with the exception $R C 4$ that is considered more symmetric than $R C 5$ which goes against the general trend.

Conclusion and future work

Can these findings can help guide algorithms that identify features to be displayed using these types of symmetries?

- show vertical symetry to call attention to isomorphic pairs of subgraphs
- layout cycles as n-gons with rotational symmetry to highlight them

Future Research:

- Is rotational 4 axes more recognizable than 5 axes because it is perceived as a combination of H and V ?
- Ranking among rotational and the reflective symmetries

Conclusion and future work

Future Research:

- Is rotational 4 axes more recognizable than 5 axes because it is perceived as a combination of H and V ?
- Ranking among rotational and the reflective symmetries

> Thank You!
> felicedeluca@email.arizona.edu

