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Given a plane graph G = (V,E) and a drawing of a face H,
can the drawing be extended using straight lines?

Results



H is outer face H is inner face

convex yes [T63], [CEGL12]

star-shaped

[CEGL12] Chambers, E.W., Eppstein, D., Goodrich, M.T., Löffler, M.: Drawing graphs in the plane with a prescribed outer face and polynomial area;
[HN08] Hong, S.H., Nagamochi, H.: Convex drawings of graphs with non-convex boundary constraints;
[MNR16] Mchedlidze, T., Nöllenburg, M., Rutter, I.: Extending convex partial drawings of graphs;
[T63] Tutte, W.T.: How to Draw a Graph.
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Given a plane graph G = (V,E), a drawing of a subgraph H,
extend the drawing using as few bends per edge as possible.

Results



# of bends per edge

H = (V, ∅) 120|V | [PW01]

Given a plane graph G = (V,E), a drawing of a subgraph H,
extend the drawing using as few bends per edge as possible.

[BGL08] Badent, M., Giacomo, E.D., Liotta, G.: Drawing colored graphs on colored points;
[CFGLMS15] Chan, T.M., Frati, F., Gutwenger, C., Lubiw, A., Mutzel, P., Schaefer, M.: Drawing partially embedded and simultaneously planar graphs;
[PW01] Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations.
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Given a plane graph G = (V,E), a drawing of a subgraph H,
extend the drawing using as few bends per edge as possible.

[BGL08] Badent, M., Giacomo, E.D., Liotta, G.: Drawing colored graphs on colored points;
[CFGLMS15] Chan, T.M., Frati, F., Gutwenger, C., Lubiw, A., Mutzel, P., Schaefer, M.: Drawing partially embedded and simultaneously planar graphs;
[PW01] Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations.

# of bends per edge

H = (V, ∅) 3|V |+ 2 [BGL08]

- 72|H| [CFGLMS15]

H connected tight algorithm

Results
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Theorem
There is an instance (G,ΓH) where ΓH is a star-shaped
inner face, such that the feasibility area of some vertex
v ∈ G is partially bounded by a curve whose implicit
representation is a polynomial of degree 2Ω(|V |).
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Can each drawing of an outer (inner) face as a β-star be
extended with at most β + 1 bends per edge?

β-stars



β-stars



β-stars



β-stars



5-outer-star
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5-outer-star

Can each drawing of an outer (inner) face as a β-(outer)-star
be extended with at most β + 1 bends per edge?
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1-outer-star, but 3 bends are needed.
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2-outer-star, but 6 bends are needed.
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2-outer-star, but 6 bends are needed.

How to get rid of the intersections while adding a minimal
number of bends?

Yes!

β-stars

Can each drawing of an outer (inner) face as a β-(outer)-star
be extended with at most β + log2(|F |) + 1 bends per edge?



Create a set of non-intersecting piecewise-linear curves from
each vertex of the face to the kernel / infinity.
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+1 bend

+2 bends
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+2 bends

+1 bend

+2 bends
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Gr3

β-stars



+2 bends

+1 bend

+2 bends

Lemma: #aGr ≤ log2(|Gr|)

}
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Theorem
Each instance (G,ΓH) where H is an induced
connected subgraph of G allows a
min{|H|/2, β + log2(|H|) + 1}-bend-extension, where
β is the maximum (outer) star complexity of a face in
ΓH . This bound is tight up to an additive constant.

β-stars



Theorem
Each instance (G,ΓH) where H is a connected
subgraph of G, allows a
min{|H|+ 1, 2β + 2 log2(|H|) + 3}-bend-extension,
where β is the maximum star complexity of a face in
ΓH . This bound is tight up to an additive constant.

β-stars



Given a plane graph G = (V,E), a drawing of a subgraph H,
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# of bends per edge

H = (V, ∅) 3|V |+ 2 [PW01]

- 72|H| [CFGLMS15]

H induced and connected min{|H|/2, β + log2(|H|) + 1}
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