

or

On Extending a Drawing of a Connected Subgraph

Tamara Mchedlidze Karlsruhe Institute of Technology

> Jérôme Urhausen Utrecht University

Given a plane graph G=(V,E) and a drawing of a face H, can the drawing be extended using straight lines?

Given a plane graph G = (V, E) and a drawing of a face H, can the drawing be extended using straight lines?

H is outer face H is inner face

convex star-shaped yes [T63], [CEGL12]

Given a plane graph G = (V, E) and a drawing of a face H, can the drawing be extended using straight lines?

H is outer face H is inner face

convex star-shaped yes [T63], [CEGL12] yes [HN08]

Given a plane graph G=(V,E) and a drawing of a face H, can the drawing be extended using straight lines?

	\boldsymbol{H} is outer face	H is inner face
convex star-shaped	yes [T63], [CEGL12] yes [HN08]	∃ easy test [MNR16]

Given a plane graph G=(V,E) and a drawing of a face H, can the drawing be extended using straight lines?

	H is outer face	H is inner face
convex	yes [T63], [CEGL12]	∃ easy test [MNR16]
star-shaped	yes [HN08]	indication of complexity

	# of bends per edge
$H = (V, \emptyset)$	120 V [PW01]

	# of bends per edge
$H = (V, \emptyset)$	3 V +2 [BGL08]

	# of bends per edge
$H = (V, \emptyset)$	3 V +2 [BGL08] $72 H $ [CFGLMS15]

	# of bends per edge
$H = (V, \emptyset)$	3 V +2 [BGL08]
-	72 H [CFGLMS15]
H connected	tight algorithm

Theorem

Theorem

Theorem

Theorem

Theorem

Can each drawing of an outer (inner) face as a β -(outer)-star be extended with at most $\beta+1$ bends per edge?

1. remove avoidable intersections

1. remove avoidable intersections

1. remove avoidable intersections

- 1. remove avoidable intersections
- 2. find two curves that intersect each other first

- 1. remove avoidable intersections
- 2. find two curves that intersect each other first

- 1. remove avoidable intersections
- 2. find two curves that intersect each other first
- 3. reroute the curve with less bends

- 1. remove avoidable intersections
- 2. find two curves that intersect each other first
- 3. reroute the curve with less bends

Theorem

Each instance (G, Γ_H) where H is an induced connected subgraph of G allows a $\min\{|H|/2, \beta + \log_2(|H|) + 1\}$ -bend-extension, where β is the maximum (outer) star complexity of a face in Γ_H . This bound is tight up to an additive constant.

Theorem

Each instance (G, Γ_H) where H is a connected subgraph of G, allows a $\min\{|H|+1, 2\beta+2\log_2(|H|)+3\}$ -bend-extension, where β is the maximum star complexity of a face in Γ_H . This bound is tight up to an additive constant.

Conclusion

Given a plane graph G=(V,E), a drawing of a subgraph H, extend the drawing using as few bends per edge as possible.

Conclusion

Given a plane graph G=(V,E), a drawing of a subgraph H, extend the drawing using as few bends per edge as possible.

	outer face	inner face
convex	$0^{[T63],[CEGL12]}$	0-1 & easy test $^{[MNR16]}$
star-shaped	$0^{[HN08]}$	0-1 & ind. of complexity

Conclusion

Given a plane graph G=(V,E), a drawing of a subgraph H, extend the drawing using as few bends per edge as possible.

	outer face	inner face
convex	$0^{[T63],[CEGL12]}$	0-1 & easy test $^{[MNR16]}$
star-shaped	$0^{[HN08]}$	0-1 & ind. of complexity

$$H=(V,\emptyset) \qquad \qquad 3|V|+2 \quad \stackrel{[PW01]}{1} \\ -2|H| \quad \stackrel{[CFGLMS15]}{1} \\ H \text{ induced and connected} \qquad \min\{|H|/2,\beta+\log_2(|H|)+1\}$$