

On L-shaped Point Set Embeddings of Trees First Non-embeddable Examples

Torsten Mütze and Manfred Scheucher

 $T \dots$ tree on n vertices $P \dots$ set of m points

point set embedding . . . drawing of $T, \ {\rm vertices} \ {\rm drawn} \ {\rm as}$ points of P

 $T \dots$ tree on n vertices $P \dots$ set of m points

point set embedding ... drawing of T, vertices drawn as points of ${\cal P}$

orthogeodesic . . . edges drawn as unions of axis parallel line segments, minimal L^1 -length

 $T \dots$ tree on n vertices $P \dots$ set of m points

point set embedding ... drawing of T, vertices drawn as points of ${\cal P}$

orthogeodesic . . . edges drawn as unions of axis parallel line segments, minimal L^1 -length

L-shaped ... orthogeodesic, one bend per edge

 $T \dots$ tree on n vertices $P \dots$ set of m points

point set embedding ... drawing of $T, \mbox{ vertices drawn as points of } P$

orthogeodesic . . . edges drawn as unions of axis parallel line segments, minimal L^1 -length

L-shaped ... orthogeodesic, one bend per edge

Assumptions:

- distinct x- and y-coordinates
- $P = \{(1, \pi_1), \dots, (m, \pi_m)\}$

$$f_d(n) := \max_{\substack{T : \text{ tree on } n \text{ vertices} \\ \max. \text{ deg. } \Delta(T) \leq d}} f(T)$$

f(T) ... minimum number m s.t. tree T admits a planar L-shaped embedding in any set of m points

$$f_d(n) := \max_{\substack{T : \text{ tree on } n \text{ vertices} \\ \max. \text{ deg. } \Delta(T) \leq d}} f(T)$$

• $f_4(n) \leq n^2$ [Di Giacomo, Frati, Fulek, Grilli, Krug '13]

$$f_d(n) := \max_{\substack{T : \text{ tree on } n \text{ vertices} \\ \max. \text{ deg. } \Delta(T) \leq d}} f(T)$$

- $f_4(n) \leq n^2$ [Di Giacomo, Frati, Fulek, Grilli, Krug '13]
- $f_4(n) \le O(n^{1.58})$ [S.'15, Aichholzer-Hackl-S.'16]

$$f_d(n) := \max_{\substack{T : \text{ tree on } n \text{ vertices} \\ \max. \text{ deg. } \Delta(T) \leq d}} f(T)$$

- $f_4(n) \leq n^2$ [Di Giacomo, Frati, Fulek, Grilli, Krug '13]
- $f_4(n) \le O(n^{1.58})$ [S.'15, Aichholzer-Hackl-S.'16]
- $f_3(n) \leq O(n^{1.22}), f_4(n) \leq O(n^{1.55})$ [Biedl, Chan, Derka, Jain, Lubiw '17]

$$f_d(n) := \max_{\substack{T : \text{ tree on } n \text{ vertices} \\ \max. \text{ deg. } \Delta(T) \leq d}} f(T)$$

- $f_4(n) \leq n^2$ [Di Giacomo, Frati, Fulek, Grilli, Krug '13]
- $f_4(n) \le O(n^{1.58})$ [S.'15, Aichholzer-Hackl-S.'16]
- $f_3(n) \leq O(n^{1.22})$, $f_4(n) \leq O(n^{1.55})$ [Biedl et al.'17]
- no non-trivial lower bound

Embedding Ordered Trees

Lower bound in a more restrictive setting:
 ∃ example which does not always admit an L-shaped embedding if cyclic order around each vertex is fixed [Biedl, Chan, Derka, Jain, Lubiw '17]:

Theorem (Computer-assisted): $f_4(n) = n$ for $n \le 11$.

Theorem: T_{13} has no L-shaped embedding in P_{13} , hence, $f_4(13) \ge 14$.

Theorem (Computer-assisted): $f_4(n) = n$ for $n \leq 11$.

Theorem: T_{13} has no L-shaped embedding in P_{13} , hence, $f_4(13) \ge 14$.

• Further examples for $n \in \{13, 14, 16, 17, 18, 19, 20\}$ (thus $f_4(n) \ge n+1$ for those values) 13

Theorem (Computer-assisted): $f_4(n) = n$ for $n \leq 11$.

Theorem: T_{13} has no L-shaped embedding in P_{13} , hence, $f_4(13) \ge 14$.

• Further examples for $n \in \{13, 14, 16, 17, 18, 19, 20\}$ (thus $f_4(n) \ge n+1$ for those values) 13 14

Theorem (Computer-assisted): $f_4(n) = n$ for $n \leq 11$.

Theorem: T_{13} has no L-shaped embedding in P_{13} , hence, $f_4(13) \ge 14$.

• Further examples for $n \in \{13, 14, 16, 17, 18, 19, 20\}$ (thus $f_4(n) \ge n+1$ for those values) 10 13 14

Theorem (Computer-assisted): $f_4(n) = n$ for $n \leq 11$.

Theorem: T_{13} has no L-shaped embedding in P_{13} , hence, $f_4(13) \ge 14$.

Theorem (Computer-assisted): $f_4(n) = n$ for $n \leq 11$.

Theorem: T_{13} has no L-shaped embedding in P_{13} , hence, $f_4(13) \ge 14$.

Computer-assisted Proof

- T ... tree on vertices $\{v_1, \ldots, v_n\}$
- $P \dots \text{point set } \{P_1, \dots, P_n\}$
- formulate Boolean satisfiability instance: \exists solution iff. T admits an L-shaped embedding in P

Computer-assisted Proof

- T ... tree on vertices $\{v_1, \ldots, v_n\}$
- $P \dots \text{point set } \{P_1, \dots, P_n\}$
- formulate Boolean satisfiability instance: \exists solution iff. T admits an L-shaped embedding in P
- use SAT solver (Picosat, MiniSat, Glucose, ...)

 $\Theta(c^n)$ $\Theta(n!)$

• test all pairs of trees and point sets

SAT Model: Variables

- $M_{i,j}$... vertex v_i is mapped to point P_j
- $H_{a,b}$... edge ab is connected horizontally to a

• Injective mapping V to P

- Injective mapping V to ${\cal P}$
- L-shaped edges:

ab connects either vertically or horizontally to a (and b)

- Injective mapping V to P
- L-shaped edges: *ab* connects either vertically or horizontally to *a* (and *b*)
- No overlapping edges

- Injective mapping V to P
- L-shaped edges:
 ab connects either vertically or horizontally to a (and b)
- No overlapping edges
- No crossing edges

- Injective mapping V to ${\cal P}$
- L-shaped edges:
 ab connects either vertically or horizontally to a (and b)
- No overlapping edges
- No crossing edges

100+ cpu days

Theorem (Computer-assisted): $f_4(n) = n$ for $n \leq 11$.

• Assume T_{13} admits an L-shaped embedding in P_{13}

- Assume T_{13} admits an L-shaped embedding in P_{13}
- T_{13} and P_{13} have symmetries

• neither of X_1, X_2, X_3, Y is mapped to $B_{\pm 3}$

- neither of X_1, X_2, X_3, Y is mapped to $B_{\pm 3}$
- each X_i is mapped to a distinct block

- neither of X_1, X_2, X_3, Y is mapped to $B_{\pm 3}$
- each X_i is mapped to a distinct block
- not all three X_1, X_2, X_3 lie on the same side of Y(above, below, left, or right) B_{-3}

- neither of X_1, X_2, X_3, Y is mapped to $B_{\pm 3}$
- each X_i is mapped to a distinct block
- not all three X_1, X_2, X_3 lie on the same side of Y(above, below, left, or right) B_{-3}
- \Rightarrow Y, X_1 , X_3 on distinct blocks

- neither of X_1, X_2, X_3, Y is mapped to $B_{\pm 3}$
- each X_i is mapped to a distinct block
- not all three X_1, X_2, X_3 lie on the same side of Y(above, below, left, or right) B_{-3}
- \Rightarrow Y, X_1 , X_3 on distinct blocks
- X_1, X_2, X_3 from left to right (w.l.o.g.)

- neither of X_1, X_2, X_3, Y is mapped to $B_{\pm 3}$
- each X_i is mapped to a distinct block
- not all three X_1, X_2, X_3 lie on the same side of Y(above, below, left, or right) B_{-3}
- \Rightarrow Y, X_1 , X_3 on distinct blocks
- X_1, X_2, X_3 from left to right
- Case 1: Y and X_2 mapped to same block
- By symmetry, we may assume they are mapped to B_1

- neither of X_1, X_2, X_3, Y is mapped to $B_{\pm 3}$
- each X_i is mapped to a distinct block
- not all three X_1, X_2, X_3 lie on the same side of Y (above, below, left, or right)
- \Rightarrow Y, X_1 , X_3 on distinct blocks
- X_1, X_2, X_3 from left to right
- Case 1: Y and X₂ mapped to same block
- By symmetry, we may assume they are mapped to B_1

- neither of X_1, X_2, X_3, Y is mapped to $B_{\pm 3}$
- each X_i is mapped to a distinct block
- not all three X_1, X_2, X_3 lie on the same side of Y (above, below, left, or right)
- \Rightarrow Y, X_1 , X_3 on distinct blocks
- X_1, X_2, X_3 from left to right
- Case 2: Y and X₂ mapped to distinct blocks

q

- $n \leq 11$: \checkmark
- n = 12: ???
- n = 13, 14, 16, 17, 18, 19, 20: X

- $n \leq 11$: \checkmark
- n = 12: ???
- n = 13, 14, 16, 17, 18, 19, 20: X

• Q: Is there an infinite family?

- n points suffice for paths (pathwidth 0)
- known examples are lobsters (pathwidth 2)

• Q: Do n points suffice for caterpillars (pathwidth 1)?

- *n* points suffice for paths (pathwidth 0)
- known examples are lobsters (pathwidth 2)

- Q: Do n points suffice for caterpillars (pathwidth 1)?
- Q: what about trees with maximum degree $\Delta = 3?$

• Q: What about orthogeodesic embeddings?

Theorem: ∃ infinite family of **ordered** trees which do not always admit an L-shaped embedding.

Theorem: \exists infinite family of **ordered** trees which do not always admit an L-shaped embedding.

Theorem: \exists infinite family of **ordered** trees which do not always admit an L-shaped embedding.

Theorem: ∃ infinite family of **ordered** trees which do not always admit an L-shaped embedding.

Theorem: \exists infinite family of **ordered** trees which do not always admit an L-shaped embedding.

This answers question a from Biedl, Chan, Derka, Jain, and Lubiw'17

Theorem: \exists infinite family of **ordered** trees which do not always admit an L-shaped embedding.

This answers question a from Biedl, Chan, Derka, Jain, and Lubiw'17

Conjecture: Also non-embedable in the original setting.

