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T ...tree on n vertices
P ...set of m points

point set embedding ...drawing of T', vertices drawn as
points of P

orthogeodesic .. .edges drawn as unions of axis parallel
line segments, minimal L!-length

[-shaped ...orthogeodesic, one bend per edge

@
Assumptions: o
e distinct z- and y-coordinates ? {
o P={(1,m1),...,(m,mm)} ¢
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Point Set Embeddings

f(T) ...minimum number m s.t. tree T" admits a planar
L-shaped embedding in any set of m points

fan)i=_ max (T

T’ : tree on n vertices
max. deg. A(T) < d

o f4(n) <n? [Di Giacomo, Frati, Fulek, Grilli, Krug '13]

° fa(n)
o f3(n) <O(M'?%), fi(n) <O(N'>°) [Biedl et al.’17]

O(n'°%)  [S.'15, Aichholzer-HackI-S.'16]

VAN

e no non-trivial lower bound



Embedding Ordered Trees

e Lower bound in a more restrictive setting:
3 example which does not always admit an L-shaped

embedding if cyclic order around each vertex is fixed
[Biedl, Chan, Derka, Jain, Lubiw "17]:

ordered tree on 14 vertices set of 14 points



New Lower Bound

Theorem (Computer-assisted): f,(n) =n for n < 11.

Theorem: 173 has no L-shaped embedding in P;3, hence,
f4(13) > 14.
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Computer-assisted Proof

T ...tree on vertices {vy,...,v,}
P ...pointset {P,...,P,}

formulate Boolean satisfiability instance:
3 solution iff. T" admits an L-shaped embedding in P

use SAT solver (Picosat, MiniSat, Glucose, ...)

test all pairs of trees and point sets

f \

O(c") O(n!)



SAT Model: Variables

o M; ; ...vertex v; is mapped to point P;

o H, ...edge ab is connected horizontally to a
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SAT Model: Clauses

e Injective mapping V' to P

e L-shaped edges:
ab connects either vertically or horizontally to a (and b)

e No overlapping edges

e No crossing edges
100+ cpu days

s

Theorem (Computer-assisted): f,(n) =n for n < 11.
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Proof of Theorem 2

e Assume 773 admits an L-shaped embedding in P;3

e T3 and P;3 have symmetries
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e neither of X7, X9, X3,Y is mapped to Bis
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Proof of Theorem 2

e neither of X7, X5, X3,Y is mapped to Bis
e each X; is mapped to a distinct block

e not all three X, X5, X3 lie on the same side of Y
(above, below, left, or right)

- B fh

e =Y, Xy, X3 ondistinct blocks . 1
o X, X9, X3 from left to right EYXQ' ‘L
o Case 1: Y and X5 mapped { """" 'Bg

to same block E 5

EXST_ 5
e By symmetry, we may assume b B,
i o .

they are mapped to By



Proof of Theorem 2

e neither of X7, X5, X3,Y is mapped to Bis
e each X; is mapped to a distinct block

e not all three X, X5, X3 lie on the same side of Y
(above, below, left, or right)

e = Y, Xy, X35 on distinct blocks ‘X’_11 -

o X4, X5, X3 from left to right !

e Case 2: Y and X5 mapped A X2
to distinct blocks R AR ¢ :

g.e.d.

~ -—



Discussion

o n=13,14,16,17,18,19,20: X
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Q: Is there an infinite family?
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e n points suffice for paths (pathwidth 0)

e known examples are lobsters (pathwidth 2)

e Q: Do n points suffice for caterpillars (pathwidth 1)7?

10



Discussion

e n points suffice for paths (pathwidth 0)

e known examples are lobsters (pathwidth 2)

e Q: Do n points suffice for caterpillars (pathwidth 1)7?

e Q: what about trees with maximum degree A = 37
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Discussion

e Q: What about orthogeodesic embeddings?
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Theorem: d infinite family of ordered trees which do not
always admit an L-shaped embedding.
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Lower Bound: Ordered Trees (Full Version)

Theorem: d infinite family of ordered trees which do not
always admit an L-shaped embedding.

This answers question a from Biedl, Chan, Derka, Jain, and Lubiw'17

Conjecture: Also non-embedable in the original setting.
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