On L-shaped Point Set Embeddings of Trees First Non-embeddable Examples

Torsten Mütze and Manfred Scheucher

Point Set Embeddings

$T \ldots$...tree on n vertices
$P \ldots$ set of m points
point set embedding . . . drawing of T, vertices drawn as points of P

Point Set Embeddings

$T \ldots$...tree on n vertices
$P \ldots$ set of m points
point set embedding . . drawing of T, vertices drawn as points of P
orthogeodesic ...edges drawn as unions of axis parallel line segments, minimal L^{1}-length

Point Set Embeddings

$T \ldots$...tree on n vertices
$P \ldots$ set of m points
point set embedding . . drawing of T, vertices drawn as points of P
orthogeodesic ...edges drawn as unions of axis parallel line segments, minimal L^{1}-length
L-shaped ... orthogeodesic, one bend per edge

Point Set Embeddings

$T \ldots$...tree on n vertices
$P \ldots$ set of m points
point set embedding . . drawing of T, vertices drawn as points of P
orthogeodesic ...edges drawn as unions of axis parallel line segments, minimal L^{1}-length

L-shaped ... orthogeodesic, one bend per edge

Assumptions:

- distinct x - and y-coordinates
- $P=\left\{\left(1, \pi_{1}\right), \ldots,\left(m, \pi_{m}\right)\right\}$

Point Set Embeddings

$f(T)$... minimum number m s.t. tree T admits a planar L-shaped embedding in any set of m points

$$
f_{d}(n):=\max _{\substack{T: \text { tree on } n \text { vertices } \\ \text { max. deg. } \Delta(T) \leq d}} f(T)
$$

Point Set Embeddings

$f(T)$... minimum number m s.t. tree T admits a planar L-shaped embedding in any set of m points

$$
f_{d}(n):=\max _{\substack{T: \text { tree on } n \text { vertices } \\ \text { max. deg. } \Delta(T) \leq d}} f(T)
$$

- $f_{4}(n) \leq n^{2} \quad$ [Di Giacomo, Frati, Fulek, Grilli, Krug '13]

Point Set Embeddings

$f(T)$... minimum number m s.t. tree T admits a planar L-shaped embedding in any set of m points

$$
f_{d}(n):=\max _{\substack{T: \text { tree on } \\ \text { max. deg. } \Delta(T) \leq d}} f(T)
$$

- $f_{4}(n) \leq n^{2} \quad$ [Di Giacomo, Frati, Fulek, Grilli, Krug '13]
- $f_{4}(n) \leq O\left(n^{1.58}\right) \quad[\mathrm{S} . ' 15$, Aichholzer-Hackl-S.'16]

Point Set Embeddings

$f(T)$... minimum number m s.t. tree T admits a planar L-shaped embedding in any set of m points

$$
f_{d}(n):=\max _{\substack{T: \text { tree on } n \text { vertices } \\ \text { max. deg. } \Delta(T) \leq d}} f(T)
$$

- $f_{4}(n) \leq n^{2} \quad$ [Di Giacomo, Frati, Fulek, Grilli, Krug '13]
- $f_{4}(n) \leq O\left(n^{1.58}\right) \quad[\mathrm{S} . ' 15$, Aichholzer-Hackl-S.'16]
- $f_{3}(n) \leq O\left(n^{1.22}\right), f_{4}(n) \leq O\left(n^{1.55}\right)$
[Biedl, Chan, Derka, Jain, Lubiw '17]

Point Set Embeddings

$f(T)$... minimum number m s.t. tree T admits a planar L-shaped embedding in any set of m points

$$
f_{d}(n):=\max _{\substack{T: \text { tree on } n \text { vertices } \\ \text { max. deg. } \Delta(T) \leq d}} f(T)
$$

- $f_{4}(n) \leq n^{2} \quad$ [Di Giacomo, Frati, Fulek, Grilli, Krug '13]
- $f_{4}(n) \leq O\left(n^{1.58}\right) \quad$ [S.'15, Aichholzer-Hackl-S.'16]
- $f_{3}(n) \leq O\left(n^{1.22}\right), f_{4}(n) \leq O\left(n^{1.55}\right) \quad$ [Biedl et al.'17]
- no non-trivial lower bound

Embedding Ordered Trees

- Lower bound in a more restrictive setting: \exists example which does not always admit an L-shaped embedding if cyclic order around each vertex is fixed [Biedl, Chan, Derka, Jain, Lubiw '17]:

ordered tree on 14 vertices

set of 14 points

New Lower Bound

Theorem (Computer-assisted): $f_{4}(n)=n$ for $n \leq 11$.
Theorem: T_{13} has no L-shaped embedding in P_{13}, hence, $f_{4}(13) \geq 14$.

New Lower Bound

Theorem (Computer-assisted): $f_{4}(n)=n$ for $n \leq 11$.
Theorem: T_{13} has no L-shaped embedding in P_{13}, hence, $f_{4}(13) \geq 14$.

- Further examples for $n \in\{13,14,16,17,18,19,20\}$ (thus $f_{4}(n) \geq n+1$ for those values)

New Lower Bound

Theorem (Computer-assisted): $f_{4}(n)=n$ for $n \leq 11$.
Theorem: T_{13} has no L-shaped embedding in P_{13}, hence, $f_{4}(13) \geq 14$.

- Further examples for $n \in\{13,14,16,17,18,19,20\}$ (thus $f_{4}(n) \geq n+1$ for those values)

New Lower Bound

Theorem (Computer-assisted): $f_{4}(n)=n$ for $n \leq 11$.
Theorem: T_{13} has no L-shaped embedding in P_{13}, hence, $f_{4}(13) \geq 14$.

- Further examples for $n \in\{13,14,16,17,18,19,20\}$ (thus $f_{4}(n) \geq n+1$ for those values)

New Lower Bound

Theorem (Computer-assisted): $f_{4}(n)=n$ for $n \leq 11$.
Theorem: T_{13} has no L-shaped embedding in P_{13}, hence, $f_{4}(13) \geq 14$.

- Further examples for $n \in\{13,14,16,17,18,19,20\}$ (thus $f_{4}(n) \geq n+1$ for those values)

New Lower Bound

Theorem (Computer-assisted): $f_{4}(n)=n$ for $n \leq 11$.
Theorem: T_{13} has no L-shaped embedding in P_{13}, hence, $f_{4}(13) \geq 14$.

- Further examples for $n \in\{13,14,16,17,18,19,20\}$ (thus $f_{4}(n) \geq n+1$ for those values)

Computer-assisted Proof

- $T \ldots$ tree on vertices $\left\{v_{1}, \ldots, v_{n}\right\}$
- P... point set $\left\{P_{1}, \ldots, P_{n}\right\}$
- formulate Boolean satisfiability instance:
\exists solution iff. T admits an L-shaped embedding in P

Computer-assisted Proof

- $T \ldots$ tree on vertices $\left\{v_{1}, \ldots, v_{n}\right\}$
- P... point set $\left\{P_{1}, \ldots, P_{n}\right\}$
- formulate Boolean satisfiability instance:
\exists solution iff. T admits an L-shaped embedding in P
- use SAT solver (Picosat, MiniSat, Glucose, ...)
- test all pairs of trees and point sets

$$
\bigoplus_{\Theta\left(c^{n}\right)}^{4} \quad \uparrow \quad \Theta(n!)
$$

SAT Model: Variables

- $M_{i, j} \ldots$ vertex v_{i} is mapped to point P_{j}
- $H_{a, b}$...edge $a b$ is connected horizontally to a

SAT Model: Clauses

- Injective mapping V to P

SAT Model: Clauses

- Injective mapping V to P
- L-shaped edges:
$a b$ connects either vertically or horizontally to a (and b)

SAT Model: Clauses

- Injective mapping V to P
- L-shaped edges:
$a b$ connects either vertically or horizontally to a (and b)
- No overlapping edges

SAT Model: Clauses

- Injective mapping V to P
- L-shaped edges:
$a b$ connects either vertically or horizontally to a (and b)
- No overlapping edges
- No crossing edges

SAT Model: Clauses

- Injective mapping V to P
- L-shaped edges:
$a b$ connects either vertically or horizontally to a (and b)
- No overlapping edges
- No crossing edges

$$
100+\text { cpu days }
$$

Theorem (Computer-assisted): $f_{4}(n)=n$ for $n \leq 11$.

Proof of Theorem 2

- Assume T_{13} admits an L-shaped embedding in P_{13}

Proof of Theorem 2

- Assume T_{13} admits an L-shaped embedding in P_{13}
- T_{13} and P_{13} have symmetries

Proof of Theorem 2

- neither of X_{1}, X_{2}, X_{3}, Y is mapped to $B_{ \pm 3}$

degree 4 vertices
boundary points

Proof of Theorem 2

- neither of X_{1}, X_{2}, X_{3}, Y is mapped to $B_{ \pm 3}$
- each X_{i} is mapped to a distinct block

Proof of Theorem 2

- neither of X_{1}, X_{2}, X_{3}, Y is mapped to $B_{ \pm 3}$
- each X_{i} is mapped to a distinct block
- not all three X_{1}, X_{2}, X_{3} lie on the same side of Y (above, below, left, or right)

Proof of Theorem 2

- neither of X_{1}, X_{2}, X_{3}, Y is mapped to $B_{ \pm 3}$
- each X_{i} is mapped to a distinct block
- not all three X_{1}, X_{2}, X_{3} lie on the same side of Y
(above, below, left, or right)

Proof of Theorem 2

- neither of X_{1}, X_{2}, X_{3}, Y is mapped to $B_{ \pm 3}$
- each X_{i} is mapped to a distinct block
- not all three X_{1}, X_{2}, X_{3} lie on the same side of Y (above, below, left, or right)
- $\Rightarrow Y, X_{1}, X_{3}$ on distinct blocks
- X_{1}, X_{2}, X_{3} from left to right (w.l.o.g.)

Proof of Theorem 2

- neither of X_{1}, X_{2}, X_{3}, Y is mapped to $B_{ \pm 3}$
- each X_{i} is mapped to a distinct block
- not all three X_{1}, X_{2}, X_{3} lie on the same side of Y (above, below, left, or right)
- $\Rightarrow Y, X_{1}, X_{3}$ on distinct blocks
- X_{1}, X_{2}, X_{3} from left to right
- Case 1: Y and X_{2} mapped to same block
- By symmetry, we may assume they are mapped to B_{1}

Proof of Theorem 2

- neither of X_{1}, X_{2}, X_{3}, Y is mapped to $B_{ \pm 3}$
- each X_{i} is mapped to a distinct block
- not all three X_{1}, X_{2}, X_{3} lie on the same side of Y (above, below, left, or right)
- $\Rightarrow Y, X_{1}, X_{3}$ on distinct blocks
- X_{1}, X_{2}, X_{3} from left to right
- Case 1: Y and X_{2} mapped to same block
- By symmetry, we may assume they are mapped to B_{1}

Proof of Theorem 2

- neither of X_{1}, X_{2}, X_{3}, Y is mapped to $B_{ \pm 3}$
- each X_{i} is mapped to a distinct block
- not all three X_{1}, X_{2}, X_{3} lie on the same side of Y (above, below, left, or right)
- $\Rightarrow Y, X_{1}, X_{3}$ on distinct blocks
- X_{1}, X_{2}, X_{3} from left to right
- Case 2: Y and X_{2} mapped to distinct blocks
q.e.d.

Discussion

- $n \leq 11$:
- $n=12:$???
- $n=13,14,16,17,18,19,20: ~ x$

Discussion

- $n \leq 11$:
- $n=12:$???
- $n=13,14,16,17,18,19,20: ~ x$
- Q: Is there an infinite family?

Discussion

- n points suffice for paths (pathwidth 0)
- known examples are lobsters (pathwidth 2)
- Q: Do n points suffice for caterpillars (pathwidth 1)?

Discussion

- n points suffice for paths (pathwidth 0)
- known examples are lobsters (pathwidth 2)
- Q: Do n points suffice for caterpillars (pathwidth 1)?
- Q: what about trees with maximum degree $\Delta=3$?

Discussion

- Q: What about orthogeodesic embeddings?

Lower Bound: Ordered Trees (Full Version)

Theorem: \exists infinite family of ordered trees which do not always admit an L-shaped embedding.

Lower Bound: Ordered Trees (Full Version)

Theorem: \exists infinite family of ordered trees which do not always admit an L-shaped embedding.

Lower Bound: Ordered Trees (Full Version)

Theorem: \exists infinite family of ordered trees which do not always admit an L-shaped embedding.

Lower Bound: Ordered Trees (Full Version)

Theorem: \exists infinite family of ordered trees which do not always admit an L-shaped embedding.

Lower Bound: Ordered Trees (Full Version)

Theorem: \exists infinite family of ordered trees which do not always admit an L-shaped embedding.

This answers question a from Biedl, Chan, Derka, Jain, and Lubiw'17

Lower Bound: Ordered Trees (Full Version)

Theorem: \exists infinite family of ordered trees which do not always admit an L-shaped embedding.

This answers question a from Biedl, Chan, Derka, Jain, and Lubiw'17

Conjecture: Also non-embedable in the original setting.

