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Point Set Embeddings

point set embedding . . . drawing of T , vertices drawn as
points of P

T . . . tree on n vertices
P . . . set of m points
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Point Set Embeddings

point set embedding . . . drawing of T , vertices drawn as
points of P

orthogeodesic . . . edges drawn as unions of axis parallel
line segments, minimal L1-length

L-shaped . . . orthogeodesic, one bend per edge

T . . . tree on n vertices
P . . . set of m points
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Point Set Embeddings

point set embedding . . . drawing of T , vertices drawn as
points of P

orthogeodesic . . . edges drawn as unions of axis parallel
line segments, minimal L1-length

L-shaped . . . orthogeodesic, one bend per edge

T . . . tree on n vertices
P . . . set of m points

Assumptions:

• P = {(1, π1), . . . , (m,πm)}
• distinct x- and y-coordinates
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Point Set Embeddings

f(T ) . . . minimum number m s.t. tree T admits a planar
L-shaped embedding in any set of m points

fd(n) := max
T : tree on n vertices
max. deg. ∆(T ) ≤ d

f(T )

3



Point Set Embeddings

f(T ) . . . minimum number m s.t. tree T admits a planar
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• f4(n) ≤ n2 [Di Giacomo, Frati, Fulek, Grilli, Krug ’13]
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Point Set Embeddings

f(T ) . . . minimum number m s.t. tree T admits a planar
L-shaped embedding in any set of m points

fd(n) := max
T : tree on n vertices
max. deg. ∆(T ) ≤ d

f(T )

• f4(n) ≤ O(n1.58) [S.’15, Aichholzer-Hackl-S.’16]

• f4(n) ≤ n2 [Di Giacomo, Frati, Fulek, Grilli, Krug ’13]

• f3(n) ≤ O(n1.22), f4(n) ≤ O(n1.55)

[Biedl, Chan, Derka, Jain, Lubiw ’17]
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Point Set Embeddings

f(T ) . . . minimum number m s.t. tree T admits a planar
L-shaped embedding in any set of m points

fd(n) := max
T : tree on n vertices
max. deg. ∆(T ) ≤ d

f(T )

• f4(n) ≤ O(n1.58) [S.’15, Aichholzer-Hackl-S.’16]

• f3(n) ≤ O(n1.22), f4(n) ≤ O(n1.55) [Biedl et al.’17]

• no non-trivial lower bound

• f4(n) ≤ n2 [Di Giacomo, Frati, Fulek, Grilli, Krug ’13]
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Embedding Ordered Trees

• Lower bound in a more restrictive setting:
∃ example which does not always admit an L-shaped
embedding if cyclic order around each vertex is fixed
[Biedl, Chan, Derka, Jain, Lubiw ’17]:

ordered tree on 14 vertices set of 14 points
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New Lower Bound

Theorem (Computer-assisted): f4(n) = n for n ≤ 11.

Theorem: T13 has no L-shaped embedding in P13, hence,
f4(13) ≥ 14.

T13 P13
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New Lower Bound

Theorem (Computer-assisted): f4(n) = n for n ≤ 11.

Theorem: T13 has no L-shaped embedding in P13, hence,
f4(13) ≥ 14.

• Further examples for n ∈ {13, 14, 16, 17, 18, 19, 20}
(thus f4(n) ≥ n+ 1
for those values)

16

16

14 1713

highly symmetric
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New Lower Bound

Theorem (Computer-assisted): f4(n) = n for n ≤ 11.

Theorem: T13 has no L-shaped embedding in P13, hence,
f4(13) ≥ 14.

• Further examples for n ∈ {13, 14, 16, 17, 18, 19, 20}
(thus f4(n) ≥ n+ 1
for those values)

16

16

14 17

18

20

1913
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Computer-assisted Proof

• T . . . tree on vertices {v1, . . . , vn}

• formulate Boolean satisfiability instance:
∃ solution iff. T admits an L-shaped embedding in P

• P . . . point set {P1, . . . , Pn}
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Computer-assisted Proof

• T . . . tree on vertices {v1, . . . , vn}

• formulate Boolean satisfiability instance:
∃ solution iff. T admits an L-shaped embedding in P

• P . . . point set {P1, . . . , Pn}

• use SAT solver (Picosat, MiniSat, Glucose, . . . )

• test all pairs of trees and point sets

Θ(cn) Θ(n!)
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SAT Model: Variables

• Mi,j . . . vertex vi is mapped to point Pj

• Ha,b . . . edge ab is connected horizontally to a
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SAT Model: Clauses

• Injective mapping V to P
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SAT Model: Clauses

• Injective mapping V to P

• L-shaped edges:
ab connects either vertically or horizontally to a (and b)

a

b
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SAT Model: Clauses

• Injective mapping V to P

• L-shaped edges:
ab connects either vertically or horizontally to a (and b)

• No overlapping edges
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SAT Model: Clauses

• Injective mapping V to P

• L-shaped edges:
ab connects either vertically or horizontally to a (and b)

• No overlapping edges

• No crossing edges

Theorem (Computer-assisted): f4(n) = n for n ≤ 11.

100+ cpu days
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Proof of Theorem 2

• Assume T13 admits an L-shaped embedding in P13
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Proof of Theorem 2

B−3

B−2

B−1

B0
B1

B2

B3

Y
X1

X3

X2

• Assume T13 admits an L-shaped embedding in P13

• T13 and P13 have symmetries
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Proof of Theorem 2

B−3

B−2

B−1

B0
B1

B2

B3

Y
X1

X3

X2

• neither of X1, X2, X3, Y is mapped to B±3

degree 4 vertices boundary points
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Proof of Theorem 2

B−3

B−2

B−1

B0
B1

B2

B3

• neither of X1, X2, X3, Y is mapped to B±3

• each Xi is mapped to a distinct block

Xi

Xj

Y
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Proof of Theorem 2

B−3

B−2

B−1

B0
B1

B2

B3

• neither of X1, X2, X3, Y is mapped to B±3

• each Xi is mapped to a distinct block

• not all three X1, X2, X3 lie on the same side of Y
(above, below, left, or right)

X3

Y

X1, X2
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Proof of Theorem 2

B−3

B−2

B−1

B0
B1

B2

B3

• neither of X1, X2, X3, Y is mapped to B±3

• each Xi is mapped to a distinct block

• not all three X1, X2, X3 lie on the same side of Y
(above, below, left, or right)

• ⇒ Y , X1, X3 on distinct blocks
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Proof of Theorem 2

B−3

B−2

B−1

B0
B1

B2

B3

• neither of X1, X2, X3, Y is mapped to B±3

• each Xi is mapped to a distinct block

• not all three X1, X2, X3 lie on the same side of Y
(above, below, left, or right)

• X1, X2, X3 from left to right
(w.l.o.g.)

• ⇒ Y , X1, X3 on distinct blocks
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Proof of Theorem 2

B−3

B−2

B−1

B0
B1

B2

B3

• neither of X1, X2, X3, Y is mapped to B±3

• each Xi is mapped to a distinct block

• not all three X1, X2, X3 lie on the same side of Y
(above, below, left, or right)

• Case 1: Y and X2 mapped
to same block

• X1, X2, X3 from left to right

• By symmetry, we may assume
they are mapped to B1

• ⇒ Y , X1, X3 on distinct blocks
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Proof of Theorem 2

• neither of X1, X2, X3, Y is mapped to B±3

• each Xi is mapped to a distinct block

• not all three X1, X2, X3 lie on the same side of Y
(above, below, left, or right)

• Case 1: Y and X2 mapped
to same block

Y
X2

X3

L

B1

B2

B3

• X1, X2, X3 from left to right

• By symmetry, we may assume
they are mapped to B1

• ⇒ Y , X1, X3 on distinct blocks
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Proof of Theorem 2

• neither of X1, X2, X3, Y is mapped to B±3

• each Xi is mapped to a distinct block

• not all three X1, X2, X3 lie on the same side of Y
(above, below, left, or right)

• Case 2: Y and X2 mapped
to distinct blocks

Y

X2

X1

L

• X1, X2, X3 from left to right

q.e.d.

• ⇒ Y , X1, X3 on distinct blocks
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Discussion

• n ≤ 11: 3

• n = 12: ???

• n = 13, 14, 16, 17, 18, 19, 20: 7
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Discussion

• n ≤ 11: 3

• n = 12: ???

• n = 13, 14, 16, 17, 18, 19, 20: 7

• Q: Is there an infinite family?
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Discussion

• n points suffice for paths (pathwidth 0)

• known examples are lobsters (pathwidth 2)

• Q: Do n points suffice for caterpillars (pathwidth 1)?
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Discussion

• n points suffice for paths (pathwidth 0)

• known examples are lobsters (pathwidth 2)

• Q: Do n points suffice for caterpillars (pathwidth 1)?

• Q: what about trees with maximum degree ∆ = 3?
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Discussion

• Q: What about orthogeodesic embeddings?

Y

X1

X3

X2
Y

X1

X3

X2
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Lower Bound: Ordered Trees (Full Version)

Theorem: ∃ infinite family of ordered trees which do not
always admit an L-shaped embedding.

. . .

r
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Lower Bound: Ordered Trees (Full Version)

Theorem: ∃ infinite family of ordered trees which do not
always admit an L-shaped embedding.

This answers question a from Biedl, Chan, Derka, Jain, and Lubiw’17
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Lower Bound: Ordered Trees (Full Version)

Theorem: ∃ infinite family of ordered trees which do not
always admit an L-shaped embedding.

Conjecture: Also non-embedable in the original setting.

This answers question a from Biedl, Chan, Derka, Jain, and Lubiw’17
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