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Monotone Drawings

A path P = {p0, p1, . . . , pn} is monotone if
there exists a line l such that the
projections of the vertices of P appear on l
in the same order as on P.
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A straight-line drawing Γ of a graph G is
monotone, if a monotone path connects
every pair of vertices.
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Monotone Drawings

A monotone drawing Γ of a tree T rooted
at r is near-convex monotone, if for any
pair of consecutive edges incident to a
vertex, with the exception of a single pair
of consecutive edges incident to r , form a
convex angle.
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What we Know so Far For Planar Monotone Drawings

3-connected planar graphs on (2n − 5)× (2n − 5)

Schnyder drawing
[He and He - ESA 2015]

Optimal drawings for trees on 12n × 12n.

There exists a tree that requires at least n
9 ×

n
9

[He and He - SIDMA 31(3)]

Planar graphs on O
(
n2
)
× O (n).

It changes the embedding of the graph.
[Hossain and Rahman - TCS 607]

Trees on n × n.

[Oikonomou and Symvonis - GD 2017]
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What we Know so Far For Planar Monotone Drawings

Trees on
⌊
3
4 (n + 2)

⌋
×
⌊
3
4 (n + 2)

⌋
.

It changes the embedding and layout of the tree
[Oikonomou and Symvonis - arXiv]
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Class of k-Inner Planar Graphs

Bridges the gap between Outerplanar and Planar graphs.

Definition (k-Inner Planar Graphs)

A k-inner planar graph is a planar graph that has a plane drawing with at
most k internal vertices i.e., vertices that do not lie on the boundary of
the outer face of its drawing.

Outerplanar graphs are 0-inner planar graphs.

0-inner planar graph 2-inner planar graph
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Our Results

k-inner planar graphs on 2(k + 1)n × 2(k + 1)n

outerplanar graphs on n × n
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Intuition Behind the Algorithm

We have a planar graph G and we want a planar monotone drawing of G :

Draw a monotone drawing of a spanning tree T of G . We use Good
ST.

Insert the remaining non-tree edges so that the drawing remain planar.
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Good Spanning Trees

A spanning tree T is called a good spanning tree of a graph G if:

1 There is no non-tree edge (u, v) where both u and v lie in the same
path from the root to a leaf.

2 The edges incident to a vertex v , excluding the vertex of v to its
father p can be divided into three sets Xu, Yu and Zu that appear
clockwise in this order after edge (p, u) where:

A Xv is a set of non-tree edges that terminate ”left” of v .
B Yv is a set of tree edges that are children of v .
C Zv is a set of non-tree edges that terminate ”right” of v .

v
Xv Zv

Yv

r
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Good Spanning Trees

Theorem (Hossain and Rahman)

Let G be a connected planar graph of n vertices. Then G has a planar
embedding Gφ that contains a good spanning tree.

Good spanning trees can lead to monotone drawings.
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Intuition Behind the Algorithm

There are two important things we have to note:

If we keep the drawing near-convex monotone, then some non-tree
edges are untroublesome.

If we insert the non-tree edges in a proper order, the size of the
drawing can be kept small.
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Modified Tree Drawing Algorithm

Theorem (Oikonomou and Symvonis)

We can produce a monotone drawing of a rooted n-vertex tree T where:

I the root r is drawn at (0, 0),

II the drawing is near-convex monotone,

III the drawing is contained in the second octant,

IV it fits in a 2n × 2n grid.
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Some Terminology

Consider an embedded plane graph G and a good spanning tree T .

Definition

We say that a non-tree edge e of G covers vertex u if u lies in the inner
face delimited by the simple cycle formed by tree-edges of T and e.

e

u
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Some Terminology

Definition

A non-tree edge e is called a leader edge if:

e covers at least one vertex

There does not exist another non-tree edge e ′ that:

Covers the same set of vertices as e
e′ is inside the simple cycle induced by T and e
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Some Terminology

Lemma

Given a k-inner planar graph G, we can get an embedding Gφ with a good
spanning tree T where there exist at most k leader edges.

Follows from the construction of GST given by Hossain and Rahman.
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Planarity of the Drawing

Consider an k-inner planar graph G with a good spanning tree T .

Lemma

Let ΓT a non-strictly slope-disjoint and near-convex monotone drawing of
T . We consider two drawings:

ΓL the drawing produced if we add all leader edges to T to ΓT

Γ the drawing produced if we add all non-tree edges to ΓT .

ΓL is planar iff Γ is planar.
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Examination of Leader Edges

We wish to deal with each distinct leader edge only once.

Two problematic cases.
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Examination Order of Leader Edges

Lemma

There exists an ordering of the leader edges, such that if they are inserted
into the drawings in that order they need to be examined exactly once.

How:

We create a DAG with the leader edges as nodes

Dependencies between them are the directed edges

In each step we visit a leader edge with no dependencies.
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Monotone Graph Drawing Algorithms

Input: A k-Inner Planar Graph G
Output: A planar monotone drawing of G on 2(k + 1)n × 2(k + 1)n

Calculate an embedding Gφ that contains a good spanning tree T

Draw T according to the modified Monotone Tree Drawing Algorithm

Calculate the dependencies DAG GL between leader edges of Gφ

While GL is not empty do
Find a leader edge e in GL with no dependencies
Elongate the appropriate edges so that the drawing is planar after
inserting e
Remove e from GL
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Our Results

k-inner planar graphs on 2(k + 1)n × 2(k + 1)n

outerplanar graphs on n × n
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Conclusion

We introduced the class of k-Inner Planar Graphs and provided an
algorithm that incorporate k into its output quality.

Can we apply to other graph Drawing Problems?

Thank You for Your Attention
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