ON THE

Area-Universality

of Triangulations

Linda Kleist

Planar Graphs and Face Areas

Cartogram

Planar Graphs and Face Areas

Cartogram

- Germany
- population

Planar Graphs and Face Areas

plane graph G

- straight-line drawing

Planar Graphs and Face Areas

plane graph G area assignment \mathcal{A}

- straight-line drawing
- weights on the inner faces

Planar Graphs and Face Areas

plane graph G area assignment \mathcal{A}

- straight-line drawing
- weights on the inner faces
$\rightarrow \exists$ realizing drawing?

Planar Graphs and Face Areas

plane graph G area assignment \mathcal{A}

- straight-line drawing
- weights on the inner faces
$\rightarrow \exists$ realizing drawing?

Planar Graphs and Face Areas

plane graph G area assignment \mathcal{A}

- straight-line drawing
- weights on the inner faces
$\rightarrow \exists$ realizing drawing? 'yes' $\forall \mathcal{A} \Rightarrow G$ is area-universal

Area-Universality - Results

positive area-universal graphs:

- plane 3-trees [Biedl \& Velázquez 2013]

Area-Universality - Results

positive area-universal graphs:

- plane 3-trees [Biedl \& Velázquez 2013]

Area-Universality - Results

positive area-universal graphs:

- plane 3-trees [Biedl \& Velázquez 2013]

Area-Universality - Results

positive area-universal graphs:

- plane 3-trees [Biedl \& Velázquez 2013]

Area-Universality - Results

positive area-universal graphs:

- plane 3-trees [Biedl \& Velázquez 2013]

Area-Universality - Results

positive area-universal graphs:

- plane 3-trees [Biedl \& Velázquez 2013]

Area-Universality - Results

positive area-universal graphs:

- plane 3-trees [Biedl \& Velázquez 2013]

Area-Universality - Results

positive area-universal graphs:

- plane 3-trees [Biedl \& Velázquez 2013]

Area-Universality - Results

positive area-universal graphs:

- plane 3-trees [Biedl \& Velázquez 2013]

Area-Universality - Results

positive area-universal graphs:

- plane 3-trees [Biedl \& Velázquez 2013]

Area-Universality - Results

positive area-universal graphs:

- plane 3-trees [Biedl \& Velázquez 2013]
- plane cubic graphs [Thomassen, 1992]

Area-Universality - Results

positive area-universal graphs:

- plane 3-trees [Biedl \& Velázquez 2013]
- plane cubic graphs [Thomassen, 1992]
- 1-subdivisions of plane graphs [LK, 2016]

Area-Universality - Results

positive area-universal graphs:

- plane 3-trees [Biedl \& Velázquez 2013]
- plane cubic graphs [Thomassen, 1992]
- 1-subdivisions of plane graphs [LK, 2016]
negative not area-universal graphs

Area-Universality - Results

positive area-universal graphs:

- plane 3-trees [Biedl \& Velázquez 2013]
- plane cubic graphs [Thomassen, 1992]
- 1-subdivisions of plane graphs [LK, 2016]
negative not area-universal graphs
- octahedron graph [Ringel, 1990]

Area-Universality - Results

positive area-universal graphs:

- plane 3-trees [Biedl \& Velázquez 2013]
- plane cubic graphs [Thomassen, 1992]
- 1-subdivisions of plane graphs [LK, 2016]
negative not area-universal graphs
- octahedron graph [Ringel, 1990]
- Eulerian triangulations [LK, 2016]
- small graphs

Area-Universality - Resulty

- plane 3-trees [Biedl \& Velázquez 2013]
- plane cubic graphs [Thomassen, 1992]
- 1-subdivisions of plane graphs [LK, 2016]
negative not area-universal graphs
- octahedron graph [Ringel, 1990]
- Eulerian triangulations [LK, 2016]
- small graphs

Proving Area-Universality

- Area-Universality is maintained by taking subgraphs. \Longrightarrow triangulations

Proving Area-Universality

T plane triangulation, \mathcal{A} area assignment

Proving Area-Universality

T plane triangulation, \mathcal{A} area assignment

- T area-universal \Longleftrightarrow all 4-connected subgraphs of T are area-universal

Proving Area-Universality

T plane triangulation, \mathcal{A} area assignment

- T area-universal \Longleftrightarrow all 4-connected subgraphs of T are area-universal
- \mathcal{A} realizable $\Longleftrightarrow \exists$ realizable \mathcal{A}^{\prime} in every ngbh. of \mathcal{A}

Proving Area-Universality

T plane triangulation, \mathcal{A} area assignment

- T area-universal \Longleftrightarrow all 4-connected subgraphs of T are area-universal
- \mathcal{A} realizable $\Longleftrightarrow \exists$ realizable \mathcal{A}^{\prime} in every ngbh. of \mathcal{A}
- \mathcal{A} realizable $\Longleftrightarrow \operatorname{AEQ}(T, \mathcal{A})$ has real solution

Proving Area-Universality

T plane triangulation, \mathcal{A} area assignment

- T area-universal \Longleftrightarrow all 4-connected subgraphs of T are area-universal
- \mathcal{A} realizable $\Longleftrightarrow \exists$ realizable \mathcal{A}^{\prime} in every ngbh. of \mathcal{A}
- \mathcal{A} realizable $\Longleftrightarrow \operatorname{AEQ}(T, \mathcal{A})$ has real solution

$$
2 \cdot \operatorname{AREA}\left(v_{1}, v_{2}, v_{3}\right)=\operatorname{det}\left(\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3} \\
1 & 1 & 1
\end{array}\right)
$$

Proving Area-Universality

T plane triangulation, \mathcal{A} area assignment
\mathcal{A} realizable $\Longleftrightarrow \operatorname{AEQ}(T, \mathcal{A})$ has real solution

Proving Area-Universality

T plane triangulation, \mathcal{A} area assignment
\mathcal{A} realizable $\Longleftrightarrow \operatorname{AEQ}(T, \mathcal{A})$ has real solution

Proving Area-Universality

T plane triangulation, \mathcal{A} area assignment
\mathcal{A} realizable $\Longleftrightarrow \operatorname{AEQ}(T, \mathcal{A})$ has real solution

Proving Area-Universality

T plane triangulation, \mathcal{A} area assignment
\mathcal{A} realizable $\Longleftrightarrow \operatorname{AEQ}(T, \mathcal{A})$ has real solution

Proving Area-Universality

T plane triangulation, \mathcal{A} area assignment
\mathcal{A} realizable $\Longleftrightarrow \operatorname{AEQ}(T, \mathcal{A})$ has real solution

Proving Area-Universality

T plane triangulation, \mathcal{A} area assignment
\mathcal{A} realizable $\Longleftrightarrow \operatorname{AEQ}(T, \mathcal{A})$ has real solution

Proving Area-Universality

T plane triangulation, \mathcal{A} area assignment

\mathcal{A} realizable $\Longleftrightarrow \operatorname{AEQ}(T, \mathcal{A})$ has real solution

Proving Area-Universality

T plane triangulation, \mathcal{A} area assignment

\mathcal{A} realizable $\Longleftrightarrow \operatorname{AEQ}(T, \mathcal{A})$ has real solution

p-order
$\begin{aligned} \text { - } \operatorname{pred}\left(v_{i}\right) & \subset\left\{v_{1}, v_{2}, \ldots, v_{i-1}\right\}, \\ -\operatorname{pred}\left(v_{1}\right) & =\emptyset, \\ \operatorname{pred}\left(v_{2}\right) & =\left\{v_{1}\right\}, \\ -\operatorname{frer}\left(v_{3}\right) & =\operatorname{pred}\left(v_{4}\right)=\left\{v_{1}, v_{2}\right\} \\ - & 4:\left|\operatorname{pred}\left(v_{i}\right)\right|=3 .\end{aligned}$

Proving Area-Universality

T plane triangulation, \mathcal{A} area assignment
\mathcal{A} realizable $\Longleftrightarrow \operatorname{AEQ}(T, \mathcal{A})$ has real solution

T plane triangulation with p-order.
If \mathfrak{f} is nice for a dense $\mathbb{A}^{\prime} \subset \mathbb{A}$, then T is area-universal.

Proving Area-Universality

T plane triangulation, \mathcal{A} area assignment
\mathcal{A} realizable $\Longleftrightarrow \operatorname{AEQ}(T, \mathcal{A})$ has real solution

T plane triangulation with p-order.
If \mathfrak{f} is nice (almost surjective) for a dense $\mathbb{A}^{\prime} \subset \mathbb{A}$, then T is area-universal.

Proving Area-Universality

T plane triangulation, \mathcal{A} area assignment
\mathcal{A} realizable $\Longleftrightarrow \operatorname{AEQ}(T, \mathcal{A})$ has real solution

T plane triangulation with p-order.
If \mathfrak{f} is super nice for generic \mathcal{A}, then every $G \in[T]$ is area-universal.

Proving Area-Universality

T plane triangulation, \mathcal{A} area assignment
\mathcal{A} realizable $\Longleftrightarrow \operatorname{AEQ}(T, \mathcal{A})$ has real solution

T plane triangulation with p-order.
If \mathfrak{f} is super nice (crr-free, odd max-degree) for generic \mathcal{A}, then every $G \in[T]$ is area-universal.

Proving Area-Universality

T plane triangulation, \mathcal{A} area assignment
\mathcal{A} realizable $\Longleftrightarrow \operatorname{AEQ}(T, \mathcal{A})$ has real solution
last face function $\mathfrak{f}\left(x_{4}\right)=\frac{p\left(x_{4}\right)}{q\left(x_{4}\right)}$
T plane triangulation with p-order.
If \mathfrak{f} is super nice (crr-free, odd max-degree) for generic \mathcal{A}, then every $G \in[T]$ is area-universal.

Application

Accordion graphs \mathcal{K}_{ℓ}

Application

Accordion graphs \mathcal{K}_{ℓ}

Application

Accordion graphs \mathcal{K}_{ℓ}

Application

Accordion graphs \mathcal{K}_{ℓ}

Application

Accordion graphs \mathcal{K}_{ℓ}

- even accordions are not area-universal (Eulerian)

Application

Accordion graphs \mathcal{K}_{ℓ}

- even accordions are not area-universal (Eulerian)
- odd accordions are area-universal

Application

T plane triangulation with p-order.
If \mathfrak{f} is super nice (crr-free, odd max-degree) for generic \mathcal{A}, then every $G \in[T]$ is area-universal.

Application

T plane triangulation with p-order.
If \mathfrak{f} is super nice (crr-free, odd max-degree) for generic \mathcal{A}, then every $G \in[T]$ is area-universal.

Application

T plane triangulation with p-order.
If \mathfrak{f} is super nice (crr-free, odd max-degree) for generic \mathcal{A}, then every $G \in[T]$ is area-universal.

Application

T plane triangulation with p-order.
If \mathfrak{f} is super nice (crr-free, odd max-degree) for generic \mathcal{A}, then every $G \in[T]$ is area-universal.

Application

T plane triangulation with p-order.
If \mathfrak{f} is super nice (crr-free, odd max-degree) for generic \mathcal{A}, then every $G \in[T]$ is area-universal.

Application

T plane triangulation with p-order.
If \mathfrak{f} is super nice (crr-free, odd max-degree) for generic \mathcal{A}, then every $G \in[T]$ is area-universal.

Application

T plane triangulation with p-order.
If \mathfrak{f} is super nice (crr-free, odd max-degree) for generic \mathcal{A}, then every $G \in[T]$ is area-universal.

p-Order \checkmark

Application

T plane triangulation with p-order.
If \mathfrak{f} is super nice (crr-free, odd max-degree) for generic \mathcal{A}, then every $G \in[T]$ is area-universal.

p-Order \checkmark
ℓ odd $\Longrightarrow \mathfrak{f}$ super nice

Application

T plane triangulation with p-order.
If \mathfrak{f} is super nice (crr-free, odd max-degree) for generic \mathcal{A}, then every $G \in[T]$ is area-universal.

p-Order \checkmark
ℓ odd $\Longrightarrow \mathfrak{f}$ super nice

Summary \& Open Problems

- Sufficient criterion for area-universality of triangulations with p-Order

- analysis of one area assignment
- shows area-universality for all embeddings
- Is area-universality a property of plane or planar graphs?
- \exists characterization by local properties?

Open Problems II

- Area-universal graph classes?
- bipartite?

- Are 4-connected triangulations equiareal?

- Optimal bend drawings
- How many bends are always sufficient and sometimes necessary?
- Computational complexity
- $\forall \exists \mathbb{R}$-complete?

