

ON THE AREA-UNIVERSALITY OF TRIANGULATIONS

Linda Kleist

Cartogram

Cartogram

- Germany
- population

source: Stoepel, C. (2010), licensed under 'CC BY-SA 3.0'

plane graph G

- straight-line drawing

plane graph G area assignment \mathcal{A}

- straight-line drawing
- weights on the inner faces

- plane graph G area assignment \mathcal{A}
- $\rightarrow \exists$ realizing drawing?

- straight-line drawing
- weights on the inner faces

- plane graph G area assignment \mathcal{A}
- $\rightarrow \exists$ realizing drawing?

- straight-line drawing
- weights on the inner faces

plane graph G area assignment ${\cal A}$

- straight-line drawing
- weights on the inner faces

 $\rightarrow \exists$ realizing drawing? 'yes' $\forall A \Rightarrow G$ is area-universal

positive area-universal graphs:

positive area-universal graphs:

positive area-universal graphs:

positive area-universal graphs:

positive area-universal graphs:

positive area-universal graphs:

positive area-universal graphs:

positive area-universal graphs:

positive area-universal graphs:

positive area-universal graphs:

positive area-universal graphs:

- ▶ plane 3-trees [Biedl & Velázquez 2013]
- ▶ plane cubic graphs [Thomassen, 1992]

positive area-universal graphs:

- ▶ plane 3-trees [Biedl & Velázquez 2013]
- plane cubic graphs [Thomassen, 1992]
- ▶ 1-subdivisions of plane graphs [LK, 2016]

positive area-universal graphs:

- ▶ plane 3-trees [Biedl & Velázquez 2013]
- plane cubic graphs [Thomassen, 1992]
- ▶ 1-subdivisions of plane graphs [LK, 2016]

negative not area-universal graphs

positive area-universal graphs:

- ▶ plane 3-trees [Biedl & Velázquez 2013]
- plane cubic graphs [Thomassen, 1992]
- ▶ 1-subdivisions of plane graphs [LK, 2016]

negative not area-universal graphs

► octahedron graph [Ringel, 1990]

positive area-universal graphs:

- ▶ plane 3-trees [Biedl & Velázquez 2013]
- plane cubic graphs [Thomassen, 1992]
- ▶ 1-subdivisions of plane graphs [LK, 2016]

negative not area-universal graphs

- ► octahedron graph [Ringel, 1990]
- ► Eulerian triangulations [LK, 2016]
- ► small graphs

Area-Universality - Results How to prove area-universality?

positive area-universal graphs:

- ▶ plane 3-trees [Biedl & Velázquez 2013]
- ▶ plane cubic graphs [Thomassen, 1992]
- ▶ 1-subdivisions of plane graphs [LK, 2016]

negative not area-universal graphs

- ▶ octahedron graph [Ringel, 1990]
- ► Eulerian triangulations [LK, 2016]
- ► small graphs

- Area-Universality is maintained by taking subgraphs.
 - ⇒ triangulations

T plane triangulation, $\mathcal A$ area assignment

T plane triangulation, $\mathcal A$ area assignment

T area-universal \iff all 4-connected subgraphs of T are area-universal

T plane triangulation, $\mathcal A$ area assignment

T area-universal \iff all 4-connected subgraphs of T are area-universal

lacktriangledown eta realizable \mathcal{A}' in every ngbh. of \mathcal{A}

T plane triangulation, $\mathcal A$ area assignment

T area-universal \iff all 4-connected subgraphs of T are area-universal

- lack \mathcal{A} realizable $\iff \exists$ realizable \mathcal{A}' in every ngbh. of \mathcal{A}
- $ightharpoonup \mathcal{A}$ realizable \iff AEQ(T, \mathcal{A}) has real solution

T plane triangulation, $\mathcal A$ area assignment

- T area-universal \iff all 4-connected subgraphs of T are area-universal
- lacktriangledown eta realizable \mathcal{A}' in every ngbh. of \mathcal{A}
- $ightharpoonup \mathcal{A}$ realizable \iff AEQ(T, \mathcal{A}) has real solution

$$2 \cdot AREA(v_1, v_2, v_3) = det \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ 1 & 1 & 1 \end{pmatrix}$$

T plane triangulation, $\mathcal A$ area assignment

T plane triangulation, $\mathcal A$ area assignment

T plane triangulation, $\mathcal A$ area assignment

T plane triangulation, $\mathcal A$ area assignment

T plane triangulation, $\mathcal A$ area assignment

T plane triangulation, $\mathcal A$ area assignment

T plane triangulation, $\mathcal A$ area assignment

 \mathcal{A} realizable \iff AEQ(\mathcal{T}, \mathcal{A}) has real solution

T plane triangulation, $\mathcal A$ area assignment

 \mathcal{A} realizable \iff AEQ(\mathcal{T},\mathcal{A}) has real solution

p-order - pred $(v_i) \subset \{v_1, v_2, \dots, v_{i-1}\},$ - pred $(v_1) = \emptyset$, pred $(v_2) = \{v_1\},$ pred $(v_3) = \text{pred}(v_4) = \{v_1, v_2\},$ - for all i > 4: $|\text{pred}(v_i)| = 3$.

T plane triangulation, $\mathcal A$ area assignment

 \mathcal{A} realizable \iff AEQ(\mathcal{T}, \mathcal{A}) has real solution

T plane triangulation with p-order. If \mathfrak{f} is nice for a dense $\mathbb{A}'\subset\mathbb{A}$, then T is area-universal.

T plane triangulation, $\mathcal A$ area assignment

 \mathcal{A} realizable \iff AEQ(\mathcal{T},\mathcal{A}) has real solution

T plane triangulation with p-order. If \mathfrak{f} is nice (almost surjective) for a dense $\mathbb{A}' \subset \mathbb{A}$, then T is area-universal.

T plane triangulation, $\mathcal A$ area assignment

 \mathcal{A} realizable \iff AEQ(\mathcal{T},\mathcal{A}) has real solution

T plane triangulation with p-order. If f is super nice then every $G \in [T]$ is area-universal.

for generic A,

T plane triangulation, $\mathcal A$ area assignment

 \mathcal{A} realizable \iff AEQ(\mathcal{T},\mathcal{A}) has real solution

T plane triangulation with p-order.

T plane triangulation, A area assignment

 \mathcal{A} realizable \iff AEQ(T, \mathcal{A}) has real solution

T plane triangulation with p-order.

Accordion graphs \mathcal{K}_ℓ

even accordions are not area-universal (Eulerian)

- even accordions are not area-universal (Eulerian)
- odd accordions are area-universal

T plane triangulation with p-order. If \mathfrak{f} is super nice (crr-free, odd max-degree) for generic \mathcal{A} ,

then every $G \in [T]$ is area-universal.

T plane triangulation with p-order.

p-Order ✓

T plane triangulation with p-order.

If f is super nice (crr-free, odd max-degree) for generic A, then every $G \in [T]$ is area-universal.

p-Order ✓

 ℓ odd \Longrightarrow f super nice

T plane triangulation with p-order.

If f is super nice (crr-free, odd max-degree) for generic A, then every $G \in [T]$ is area-universal.

p-Order ✓

 ℓ odd \Longrightarrow f super nice

Summary & Open Problems

Sufficient criterion for area-universality of triangulations with p-Order

- analysis of one area assignment
- shows area-universality for all embeddings
- ▶ Is area-universality a property of *plane or planar* graphs?
- ▶ ∃ characterization by *local* properties?

Open Problems II

- ► Area-universal graph classes?
 - bipartite?

► Are 4-connected triangulations equiareal?

- ► Optimal bend drawings
 - How many bends are always sufficient and sometimes necessary?

- \forall ∃ \mathbb{R} -complete?

