ON CONTACT GRAPHS OF PATHS ON A GRID Z. Deniz¹, E. Galby², A. Munaro³, B. Ries² ¹Duzce University ²University of Fribourg ³University of West Virginia G = (V, E) is a contact graph of paths on a grid (CPG) if there exists a collection of interiorly disjoint paths on a grid in one-to-one correspondence with V such that two vertices are adjacent if and only if the corresponding paths have at least one grid-point in common. G = (V, E) is a contact graph of paths on a grid (CPG) if there exists a collection of **interiorly disjoint** paths on a grid in one-to-one correspondence with V such that two vertices are adjacent if and only if the corresponding paths have at least one grid-point in common. FIGURE: Types of contact between two paths. G=(V,E) is a contact graph of paths on a grid (CPG) if there exists a collection of interiorly disjoint paths on a grid in one-to-one correspondence with V such that two vertices are adjacent if and only if the corresponding paths have at least one grid-point in common. If every path has at most k bends, then G is B_k -CPG. G=(V,E) is a contact graph of paths on a grid (CPG) if there exists a collection of interiorly disjoint paths on a grid in one-to-one correspondence with V such that two vertices are adjacent if and only if the corresponding paths have at least one grid-point in common. If every path has at most k bends, then G is B_k -CPG. FIGURE: A 2-bend CPG representation of K_6 . # STRUCTURAL PROPERTIES ### LEMMA A CPG graph is either 6-regular or has a vertex a degree at most 5. # STRUCTURAL PROPERTIES ### LEMMA A CPG graph is either 6-regular or has a vertex a degree at most 5. • There exists an infinite family of 6-regular CPG graphs. # STRUCTURAL PROPERTIES #### LEMMA A CPG graph is either 6-regular or has a vertex a degree at most 5. • There exists an infinite family of 6-regular CPG graphs. ### PROPOSITION Every B_1 -CPG graph has a vertex of degree at most 5. # MAXIMUM CLIQUES # THEOREM $CPG\ graphs\ are\ K_7$ -free. # MAXIMUM CLIQUES ## THEOREM CPG graphs are K_7 -free. ### PROPOSITION K_6 is in B_2 - $CPG \setminus B_1$ -CPG. # MAXIMUM CLIQUES ## THEOREM CPG graphs are K_7 -free. | | maximum clique | |-----------------------|----------------| | B_0 -CPG | ≤ 4 | | B_1 -CPG | ≤ 5 | | B_k -CPG, $k \ge 2$ | ≤ 6 | # RECOGNITION ## THEOREM Recognition is NP-complete for B_0 -CPG graphs. ### RECOGNITION ### THEOREM RECOGNITION is NP-complete for B_0 -CPG graphs. • G is rectilinear planar if and only if L(G) is B_0 -CPG. ### RECOGNITION ### THEOREM RECOGNITION is NP-complete for B_0 -CPG graphs. • G is rectilinear planar if and only if L(G) is B_0 -CPG. • Recognition is NP-complete for rectilinear planar graphs. #### LEMMA If G is a CPG graph for which there exists a CPG representation containing no grid-point of type I or II.a, then G is planar. In particular, if G is a triangle-free CPG graph, then G is planar. • It follows that CPG graphs are $K_{3,3}$ -free. - It follows that CPG graphs are $K_{3,3}$ -free. - However, for any $k \geq 0$, B_k -CPG $\not\subset$ PLANAR. FIGURE: A B_0 -CPG graph containing $K_{3,3}$ as a minor (contract e). ### LEMMA If G is a planar CPG graph, then G has at most 4n - 2f + 4 vertices of degree at most 3. In particular, if G is maximally planar, then G has at most 12 vertices of degree at most 3. #### LEMMA If G is a planar CPG graph, then G has at most 4n - 2f + 4 vertices of degree at most 3. In particular, if G is maximally planar, then G has at most 12 vertices of degree at most 3. FIGURE: A non CPG maximally planar graph. # VERTEX COLORING # THEOREM $CPG\ graphs\ are\ 6 ext{-}colorable.$ # VERTEX COLORING ### THEOREM CPG graphs are 6-colorable. • Bound tight for B_k -CPG graphs with $k \geq 2$ since $K_6 \in B_2$ -CPG. # Vertex Coloring ### THEOREM CPG graphs are 6-colorable. • Bound tight for B_k -CPG graphs with $k \geq 2$ since $K_6 \in B_2$ -CPG. ### THEOREM B_0 -CPG graphs are 4-colorable. # VERTEX COLORING ### THEOREM CPG graphs are 6-colorable. • Bound tight for B_k -CPG graphs with $k \geq 2$ since $K_6 \in B_2$ -CPG. #### THEOREM B_0 -CPG graphs are 4-colorable. • Bound tight since $K_4 \in B_0$ -CPG. # Vertex Coloring ### THEOREM CPG graphs are 6-colorable. • Bound tight for B_k -CPG graphs with $k \geq 2$ since $K_6 \in B_2$ -CPG. #### THEOREM B_0 -CPG graphs are 4-colorable. - Bound tight since $K_4 \in B_0$ -CPG. - Open: tight bound for B_1 -CPG graphs. • 3-COLORABILITY is NP-complete in CPG (Hlinĕný 1998). • 3-COLORABILITY is NP-complete in CPG (Hliněný 1998). ### THEOREM 3-Colorability is NP-complete in B_0 -CPG. • 3-COLORABILITY is NP-complete in CPG (Hliněný 1998). ### THEOREM 3-Colorability is NP-complete in B_0 -CPG. • Reduce from 3-COLORABILITY restricted to planar graphs of maximum degree 4 (Garey et al. 1976). • 3-COLORABILITY is NP-complete in CPG (Hliněný 1998). #### THEOREM 3-COLORABILITY is NP-complete in B_0 -CPG. • Given an instance G = (V, E), we construct a B_0 -CPG graph G' s.t. G is 3-colorable if and only if G' is 3-colorable, as follows. Consider a grid embedding of G (Tamassia and Tollis 1989). • Associate with each vertex $u \in V$ a vertical path P_u containing (x_u, y_u) , and consider every interior vertical segment of an edge as a vertical path. - Associate with each vertex $u \in V$ a vertical path P_u containing (x_u, y_u) , and consider every interior vertical segment of an edge as a vertical path. - Add between two consecutive vertical paths a sequence of gadgets H and H', where H' is $H[\{b, c, 4, 5, 6, 7, 8, 9, 10\}]$. FIGURE: H (left) and a 0-bend CPG representation of H (right). FIGURE: The transformations for u. # OPEN QUESTIONS - Can we characterize those planar graphs which are CPG? - Is Recognition NP-complete for B_1 -CPG graphs? - Are B_1 -CPG graphs 5-colorable?