On Contact graphs of paths on a grid

Z. Deniz ${ }^{1}$, $\underline{\text { E. Galby }}^{2}$, A. Munaro ${ }^{3}$, B. Ries 2

${ }^{1}$ Duzce University
${ }^{2}$ University of Fribourg
${ }^{3}$ University of West Virginia

Definition

$G=(V, E)$ is a contact graph of paths on a grid $(C P G)$ if there exists a collection of interiorly disjoint paths on a grid in one-to-one correspondence with V such that two vertices are adjacent if and only if the corresponding paths have at least one grid-point in common.

Definition

$G=(V, E)$ is a contact graph of paths on a grid $(C P G)$ if there exists a collection of interiorly disjoint paths on a grid in one-to-one correspondence with V such that two vertices are adjacent if and only if the corresponding paths have at least one grid-point in common.

(A) Allowed contacts.
(B) Forbidden contacts.

Figure: Types of contact between two paths.

Definition

$G=(V, E)$ is a contact graph of paths on a grid $(C P G)$ if there exists a collection of interiorly disjoint paths on a grid in one-to-one correspondence with V such that two vertices are adjacent if and only if the corresponding paths have at least one grid-point in common.
If every path has at most k bends, then G is $B_{k}-C P G$.

Definition

$G=(V, E)$ is a contact graph of paths on a grid $(C P G)$ if there exists a collection of interiorly disjoint paths on a grid in one-to-one correspondence with V such that two vertices are adjacent if and only if the corresponding paths have at least one grid-point in common.
If every path has at most k bends, then G is $B_{k}-C P G$.

Figure: A 2-bend CPG representation of K_{6}.

Structural Properties

Lemma
A CPG graph is either 6 -regular or has a vertex a degree at most 5.

Structural Properties

LEMMA

A CPG graph is either 6 -regular or has a vertex a degree at most 5.

- There exists an infinite family of 6-regular CPG graphs.

Structural Properties

LEMMA

A CPG graph is either 6-regular or has a vertex a degree at most 5.

- There exists an infinite family of 6-regular CPG graphs.

Proposition

Every $B_{1}-C P G$ graph has a vertex of degree at most 5.

Maximum Cliques

Theorem
CPG graphs are K_{7}-free.

Maximum Cliques

Theorem
 CPG graphs are K_{7}-free.

Proposition

K_{6} is in $B_{2}-C P G \backslash B_{1}-C P G$.

Maximum Cliques

THEOREM

CPG graphs are K_{7}-free.

	maximum clique
$B_{0}-\mathrm{CPG}$	≤ 4
$B_{1}-\mathrm{CPG}$	≤ 5
B_{k} - $\mathrm{CPG}, k \geq 2$	≤ 6

RECOGNITION

Theorem
Recognition is NP-complete for $B_{0}-C P G$ graphs.

Recognition

Theorem

RECOGNITION is NP-complete for $B_{0}-C P G$ graphs.

- G is rectilinear planar if and only if $L(G)$ is B_{0}-CPG.

Recognition

Theorem

Recognition is NP-complete for $B_{0}-C P G$ graphs.

- G is rectilinear planar if and only if $L(G)$ is B_{0}-CPG.

- Recognition is NP-complete for rectilinear planar graphs.

Planarity and CPG graphs

Lemma

If G is a $C P G$ graph for which there exists a $C P G$ representation containing no grid-point of type I or II.a, then G is planar. In particular, if G is a triangle-free CPG graph, then G is planar.

Type I

Type II.a

Planarity and CPG graphs

- It follows that CPG graphs are $K_{3,3}$-free.

Planarity and CPG graphs

- It follows that CPG graphs are $K_{3,3}$-free.
- However, for any $k \geq 0, B_{k}$-CPG $\not \subset$ Planar.

Figure: A B_{0}-CPG graph containing $K_{3,3}$ as a minor (contract e).

Planarity and CPG graphs

Lemma

If G is a planar $C P G$ graph, then G has at most $4 n-2 f+4$ vertices of degree at most 3. In particular, if G is maximally planar, then G has at most 12 vertices of degree at most 3.

Planarity and CPG graphs

Lemma

If G is a planar $C P G$ graph, then G has at most $4 n-2 f+4$ vertices of degree at most 3. In particular, if G is maximally planar, then G has at most 12 vertices of degree at most 3.

Figure: A non CPG maximally planar graph.

Vertex Coloring

Theorem
CPG graphs are 6-colorable.

Vertex Coloring

Theorem
CPG graphs are 6 -colorable.

- Bound tight for B_{k}-CPG graphs with $k \geq 2$ since $K_{6} \in B_{2}$-CPG.

Vertex Coloring

Theorem

CPG graphs are 6-colorable.

- Bound tight for B_{k}-CPG graphs with $k \geq 2$ since $K_{6} \in B_{2}$-CPG.

Theorem
$B_{0}-C P G$ graphs are 4-colorable.

Vertex Coloring

Theorem

CPG graphs are 6-colorable.

- Bound tight for B_{k} - CPG graphs with $k \geq 2$ since $K_{6} \in B_{2}$-CPG.

Theorem
$B_{0}-C P G$ graphs are 4-colorable.

- Bound tight since $K_{4} \in B_{0}$-CPG.

Vertex Coloring

Theorem
 CPG graphs are 6 -colorable.

- Bound tight for B_{k}-CPG graphs with $k \geq 2$ since $K_{6} \in B_{2}$-CPG.

Theorem
$B_{0}-C P G$ graphs are 4-colorable.

- Bound tight since $K_{4} \in B_{0}$-CPG.
- Open: tight bound for B_{1}-CPG graphs.

3-Colorability

- 3-colorability is NP-complete in CPG (Hlinĕný 1998).

3-Colorability

- 3-colorability is NP-complete in CPG (Hlinĕný 1998).

Theorem

3-COLORABILITY is NP-complete in $B_{0}-C P G$.

3-Colorability

- 3-colorability is NP-complete in CPG (Hlinĕný 1998).

Theorem

3-COLORABILITY is NP-complete in $B_{0}-C P G$.

- Reduce from 3-colorability restricted to planar graphs of maximum degree 4 (Garey et al. 1976).

3-Colorability

- 3-colorability is NP-complete in CPG (Hlinĕný 1998).

Theorem
 3-COLORABILITY is NP-complete in $B_{0}-C P G$.

- Given an instance $G=(V, E)$, we construct a B_{0}-CPG graph G^{\prime} s.t. G is 3 -colorable if and only if G^{\prime} is 3-colorable, as follows. Consider a grid embedding of G (Tamassia and Tollis 1989).

3-Colorability

- Associate with each vertex $u \in V$ a vertical path P_{u} containing $\left(x_{u}, y_{u}\right)$, and consider every interior vertical segment of an edge as a vertical path.

3-Colorability

- Associate with each vertex $u \in V$ a vertical path P_{u} containing $\left(x_{u}, y_{u}\right)$, and consider every interior vertical segment of an edge as a vertical path.
- Add between two consecutive vertical paths a sequence of gadgets H and H^{\prime}, where H^{\prime} is $H[\{b, c, 4,5,6,7,8,9,10\}]$.

Figure: H (left) and a 0 -bend CPG representation of H (right).

3-Colorability

Figure: The transformations for u.

OPEN QUESTIONS

- Can we characterize those planar graphs which are CPG?
- Is Recognition NP-complete for B_{1} - CPG graphs?
- Are B_{1} - CPG graphs 5 -colorable?

