ON CONTACT GRAPHS OF PATHS ON A GRID

Z. Deniz¹, E. Galby², A. Munaro³, B. Ries²

¹Duzce University ²University of Fribourg ³University of West Virginia

G = (V, E) is a contact graph of paths on a grid (CPG) if there exists a collection of interiorly disjoint paths on a grid in one-to-one correspondence with V such that two vertices are adjacent if and only if the corresponding paths have at least one grid-point in common.

G = (V, E) is a contact graph of paths on a grid (CPG) if there exists a collection of **interiorly disjoint** paths on a grid in one-to-one correspondence with V such that two vertices are adjacent if and only if the corresponding paths have at least one grid-point in common.

FIGURE: Types of contact between two paths.

G=(V,E) is a contact graph of paths on a grid (CPG) if there exists a collection of interiorly disjoint paths on a grid in one-to-one correspondence with V such that two vertices are adjacent if and only if the corresponding paths have at least one grid-point in common.

If every path has at most k bends, then G is B_k -CPG.

G=(V,E) is a contact graph of paths on a grid (CPG) if there exists a collection of interiorly disjoint paths on a grid in one-to-one correspondence with V such that two vertices are adjacent if and only if the corresponding paths have at least one grid-point in common.

If every path has at most k bends, then G is B_k -CPG.

FIGURE: A 2-bend CPG representation of K_6 .

STRUCTURAL PROPERTIES

LEMMA

A CPG graph is either 6-regular or has a vertex a degree at most 5.

STRUCTURAL PROPERTIES

LEMMA

A CPG graph is either 6-regular or has a vertex a degree at most 5.

• There exists an infinite family of 6-regular CPG graphs.

STRUCTURAL PROPERTIES

LEMMA

A CPG graph is either 6-regular or has a vertex a degree at most 5.

• There exists an infinite family of 6-regular CPG graphs.

PROPOSITION

Every B_1 -CPG graph has a vertex of degree at most 5.

MAXIMUM CLIQUES

THEOREM

 $CPG\ graphs\ are\ K_7$ -free.

MAXIMUM CLIQUES

THEOREM

CPG graphs are K_7 -free.

PROPOSITION

 K_6 is in B_2 - $CPG \setminus B_1$ -CPG.

MAXIMUM CLIQUES

THEOREM

CPG graphs are K_7 -free.

	maximum clique
B_0 -CPG	≤ 4
B_1 -CPG	≤ 5
B_k -CPG, $k \ge 2$	≤ 6

RECOGNITION

THEOREM

Recognition is NP-complete for B_0 -CPG graphs.

RECOGNITION

THEOREM

RECOGNITION is NP-complete for B_0 -CPG graphs.

• G is rectilinear planar if and only if L(G) is B_0 -CPG.

RECOGNITION

THEOREM

RECOGNITION is NP-complete for B_0 -CPG graphs.

• G is rectilinear planar if and only if L(G) is B_0 -CPG.

• Recognition is NP-complete for rectilinear planar graphs.

LEMMA

If G is a CPG graph for which there exists a CPG representation containing no grid-point of type I or II.a, then G is planar. In particular, if G is a triangle-free CPG graph, then G is planar.

• It follows that CPG graphs are $K_{3,3}$ -free.

- It follows that CPG graphs are $K_{3,3}$ -free.
- However, for any $k \geq 0$, B_k -CPG $\not\subset$ PLANAR.

FIGURE: A B_0 -CPG graph containing $K_{3,3}$ as a minor (contract e).

LEMMA

If G is a planar CPG graph, then G has at most 4n - 2f + 4 vertices of degree at most 3. In particular, if G is maximally planar, then G has at most 12 vertices of degree at most 3.

LEMMA

If G is a planar CPG graph, then G has at most 4n - 2f + 4 vertices of degree at most 3. In particular, if G is maximally planar, then G has at most 12 vertices of degree at most 3.

FIGURE: A non CPG maximally planar graph.

VERTEX COLORING

THEOREM

 $CPG\ graphs\ are\ 6 ext{-}colorable.$

VERTEX COLORING

THEOREM

CPG graphs are 6-colorable.

• Bound tight for B_k -CPG graphs with $k \geq 2$ since $K_6 \in B_2$ -CPG.

Vertex Coloring

THEOREM

CPG graphs are 6-colorable.

• Bound tight for B_k -CPG graphs with $k \geq 2$ since $K_6 \in B_2$ -CPG.

THEOREM

 B_0 -CPG graphs are 4-colorable.

VERTEX COLORING

THEOREM

CPG graphs are 6-colorable.

• Bound tight for B_k -CPG graphs with $k \geq 2$ since $K_6 \in B_2$ -CPG.

THEOREM

 B_0 -CPG graphs are 4-colorable.

• Bound tight since $K_4 \in B_0$ -CPG.

Vertex Coloring

THEOREM

CPG graphs are 6-colorable.

• Bound tight for B_k -CPG graphs with $k \geq 2$ since $K_6 \in B_2$ -CPG.

THEOREM

 B_0 -CPG graphs are 4-colorable.

- Bound tight since $K_4 \in B_0$ -CPG.
- Open: tight bound for B_1 -CPG graphs.

• 3-COLORABILITY is NP-complete in CPG (Hlinĕný 1998).

• 3-COLORABILITY is NP-complete in CPG (Hliněný 1998).

THEOREM

3-Colorability is NP-complete in B_0 -CPG.

• 3-COLORABILITY is NP-complete in CPG (Hliněný 1998).

THEOREM

3-Colorability is NP-complete in B_0 -CPG.

• Reduce from 3-COLORABILITY restricted to planar graphs of maximum degree 4 (Garey et al. 1976).

• 3-COLORABILITY is NP-complete in CPG (Hliněný 1998).

THEOREM

3-COLORABILITY is NP-complete in B_0 -CPG.

• Given an instance G = (V, E), we construct a B_0 -CPG graph G' s.t. G is 3-colorable if and only if G' is 3-colorable, as follows. Consider a grid embedding of G (Tamassia and Tollis 1989).

• Associate with each vertex $u \in V$ a vertical path P_u containing (x_u, y_u) , and consider every interior vertical segment of an edge as a vertical path.

- Associate with each vertex $u \in V$ a vertical path P_u containing (x_u, y_u) , and consider every interior vertical segment of an edge as a vertical path.
- Add between two consecutive vertical paths a sequence of gadgets H and H', where H' is $H[\{b, c, 4, 5, 6, 7, 8, 9, 10\}]$.

FIGURE: H (left) and a 0-bend CPG representation of H (right).

FIGURE: The transformations for u.

OPEN QUESTIONS

- Can we characterize those planar graphs which are CPG?
- Is Recognition NP-complete for B_1 -CPG graphs?
- Are B_1 -CPG graphs 5-colorable?