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Definition
G = (V,E) is a contact graph of paths on a grid (CPG) if there
exists a collection of interiorly disjoint paths on a grid in
one-to-one correspondence with V such that two vertices are
adjacent if and only if the corresponding paths have at least one
grid-point in common.

If every path has at most k bends, then G is Bk-CPG.

Figure: A 2-bend CPG representation of K6.
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Structural Properties

Lemma

A CPG graph is either 6-regular or has a vertex a degree at
most 5.

• There exists an infinite family of 6-regular CPG graphs.

Proposition

Every B1-CPG graph has a vertex of degree at most 5.
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Maximum Cliques

Theorem

CPG graphs are K7-free.

maximum clique

B0-CPG ≤ 4
B1-CPG ≤ 5
Bk-CPG, k ≥ 2 ≤ 6
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Recognition

Theorem

Recognition is NP-complete for B0-CPG graphs.

• G is rectilinear planar if and only if L(G) is B0-CPG.

⇐⇒

• Recognition is NP-complete for rectilinear planar graphs.
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Planarity and CPG graphs

Lemma

If G is a CPG graph for which there exists a CPG
representation containing no grid-point of type I or II.a, then G
is planar. In particular, if G is a triangle-free CPG graph, then
G is planar.

Type I Type II.a
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Planarity and CPG graphs

• It follows that CPG graphs are K3,3-free.

• However, for any k ≥ 0, Bk-CPG 6⊂ Planar.
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Figure: A B0-CPG graph containing K3,3 as a minor (contract e).
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Planarity and CPG graphs

Lemma

If G is a planar CPG graph, then G has at most 4n− 2f + 4
vertices of degree at most 3. In particular, if G is maximally
planar, then G has at most 12 vertices of degree at most 3.

Figure: A non CPG maximally planar graph.
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Vertex Coloring

Theorem

CPG graphs are 6-colorable.

• Bound tight for Bk-CPG graphs with k ≥ 2 since
K6 ∈ B2-CPG.

Theorem

B0-CPG graphs are 4-colorable.

• Bound tight since K4 ∈ B0-CPG.

• Open: tight bound for B1-CPG graphs.
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3-Colorability

• 3-colorability is NP-complete in CPG (Hlinĕný 1998).

Theorem

3-colorability is NP-complete in B0-CPG.

• Given an instance G = (V,E), we construct a B0-CPG
graph G′ s.t. G is 3-colorable if and only if G′ is
3-colorable, as follows. Consider a grid embedding of G
(Tamassia and Tollis 1989).
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3-Colorability
• Associate with each vertex u ∈ V a vertical path Pu

containing (xu, yu), and consider every interior vertical
segment of an edge as a vertical path.

u

Pu

• Add between two consecutive vertical paths a sequence of
gadgets H and H ′, where H ′ is H[{b, c, 4, 5, 6, 7, 8, 9, 10}].
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Figure: H (left) and a 0-bend CPG representation of H (right).
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3-Colorability

u

Figure: The transformations for u.
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Open questions

• Can we characterize those planar graphs which are CPG?

• Is Recognition NP-complete for B1-CPG graphs?

• Are B1-CPG graphs 5-colorable?
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