Recognition and Drawing of Stick Graphs

<u>F. De Luca¹</u>, I. Hossain¹, S. Kobourov¹, A. Lubiw², D. Mondal³

¹University of Arizona, USA

²University of Waterloo, Canada

³University of Saskatchewan, Canada

Graph Drawing, 2018

Outline

- Introduction to Intersection Graphs
- Stick Graphs
- Related Work
- Our Contribution
 - Studied Cases
 - Fixed As and Bs
 - Fixed As
 - Stick
- 5 Conclusion and Open Problems

Context: Intersection Graphs **Vertices**: Shapes in the plane **Edges**: Intersection of shapes

Graph

Context: Intersection Graphs Vertices: Shapes in the plane Edges: Intersection of shapes

Context: Intersection Graphs **Vertices**: Shapes in the plane **Edges**: Intersection of shapes

Context: Intersection Graphs Vertices: Shapes in the plane Edges: Intersection of shapes

Context: Intersection Graphs **Vertices**: Shapes in the plane **Edges**: Intersection of shapes

Examples

Edge

Examples

Path

Examples

Cycle

Examples

Complete bipartite graph

Examples

Not a Stick Graph

Related Work

Grid Intersection Graphs

Grid Intersection Graphs Recognition

GIG **NP-Complete** (Kratochvil 1994)

Related Work

Grid Intersection Graphs

Grid Intersection Graphs Recognition

(Kratochvil 1994) (Cogis 1982)

Grid Intersection Graphs Recognition

Grid Intersection Graphs Recognition

Related Work

Grid Intersection Graphs

Grid Intersection Graphs Fobidden Matrices

GIG 2DOR
$$\gamma_1$$
 γ_2, γ_3 (Hartman 1991) (Shrestha 2010)

$$\gamma_2, \gamma_3$$
 (Shrestha 2010)

$$\frac{\gamma_4}{\text{(Chaplick 2014)}}$$

SegRay

$$\gamma_1 = \begin{bmatrix} * & 1 & * \\ 1 & 0 & 1 \\ * & 1 & * \end{bmatrix} \quad \gamma_2 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \quad \gamma_3 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \gamma_4 = \begin{bmatrix} 1 & 0 & 1 \\ * & 1 & * \end{bmatrix}$$

$$\gamma_2 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

$$\gamma_3 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\gamma_4 = \begin{bmatrix} 1 & 0 & 1 \\ * & 1 & * \end{bmatrix}$$

Naive algorithm

Naive algorithm

Complexity

• |A|! ordering for As vertices (σ_A)

Naive algorithm

- |A|! ordering for As vertices (σ_A)
- |B|! ordering for Bs vertices (σ_B)

Naive algorithm

- |A|! ordering for As vertices (σ_A)
- |B|! ordering for Bs vertices (σ_B)
- $\binom{|A|+|B|}{|B|}$ merging ordered As and Bs (σ)
- $\rightarrow |A|!|B|!\binom{|A|+|B|}{|B|}$

Naive algorithm

- |A|! ordering for As vertices
- |B|! ordering for Bs vertices (σ_B)
- $\binom{|A|+|B|}{|B|}$ merging ordered As and Bs (σ)

$$\rightarrow |B|!(|A|+|B|)$$

Naive algorithm

- |A|! ordering for As vertices
- |B|! ordering for Bs vertices
- $\binom{|A|+|B|}{|B|}$ merging ordered As and Bs (σ)

$$\rightarrow \binom{|A|+|B|}{|B|}$$

Studied Cases

Studied Cases

Studied Cases

Fixed As Bs

Statement

Problem: Stick REPRESENTATION WITH FIXED As AND Bs (Stick_{AB}) **Input:** A bipartite graph $G = (A \cup B, E)$, an ordering σ_A of the vertices in A, and an ordering σ_B of the vertices in B.

Question: Does G admit a *Stick* representation such that the ith horizontal segment on the ground line corresponds to the ith vertex of σ_A and the jth vertical segment on the line corresponds to the jth vertex of σ_B ?

$$a_1 \ a_2 \ a_3 \ a_4 \ a_5$$

$$b_1$$
 b_2 b_3 b_4 b_5

 σ_A and σ_B given

Fixed As Bs

Ordering constraints

Input: M; σ_A ; σ_B ;

Constraints for the ordering on the ground line

Ordering constraints

Input: M; σ_A ; σ_B ;

Constraints for the ordering on the ground line

• $(a_{i-1} \prec a_i)$ according to σ_A and $(b_{i-1} \prec b_i)$ according to σ_B

Ordering constraints

Input: M; σ_A ; σ_B ;

Constraints for the ordering on the ground line

- $(a_{i-1} \prec a_i)$ according to σ_A and $(b_{i-1} \prec b_i)$ according to σ_B
- $(a_i \prec b_j)$ for each $m_{i,j} = 1$

matrix entry

Ordering constraints

Input: M; σ_{Δ} ; σ_{R} ;

Constraints for the ordering on the ground line

- $(a_{i-1} \prec a_i)$ according to σ_A and $(b_{i-1} \prec b_i)$ according to σ_B
- $(a_i \prec b_j)$ for each $m_{i,j} = 1$
- $(b_p \prec a_j)$ for each configuration $a_i = \begin{bmatrix} b_p & b_q \\ b_q & 1 \end{bmatrix}$

 $(a_i \prec b_p)$ wrong ordering

Ordering constraints

Input: M; σ_{Δ} ; σ_{R} ;

Constraints for the ordering on the ground line

- $(a_{i-1} \prec a_i)$ according to σ_A and $(b_{i-1} \prec b_i)$ according to σ_B
- $(a_i \prec b_i)$ for each $m_{i,j} = 1$
- $(b_p \prec a_j)$ for each configuration $a_i = \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix}$

$$(a_j \prec b_p)$$
 wrong ordering

$$(b_p \prec a_j)$$
 correct ordering

Testing algorithm

Transform the constraints into edges to build a testing algorithm.

Given a matrix representation M

Create a graph H

Add edges following these constraints (edges indicate precedence):

- (a_{i-1}, a_i) according to σ_A
- (b_{i-1}, b_i) according to σ_B
- (a_i, b_i) for each $m_{i,i} = 1$
- (a_i, b_j) for each configuration $a_i = \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix}$

$$egin{aligned} & b_p & b_q \ a_i & egin{bmatrix} 1 & * \ 0 & 1 \end{aligned}$$

Testing algorithm

Lemma

A given graph admits a Stick representation respecting σ_A and σ_B if and only if H is acyclic, i.e., the constraints are consistent.

Testing algorithm

Testing algorithm

Testing algorithm

Testing algorithm

contribution

Lemma

A given graph admits a Stick representation respecting σ_A and σ_B if and only if H is acyclic, i.e., the constraints are consistent.

Testing complexity

Theorem

There is an O(|A||B|)-time algorithm to decide the Stick_{AB} problem, and construct a Stick representation if one exists.

Contribution

Lemma

A given graph admits a Stick representation respecting σ_A and σ_B if and only if H is acyclic, i.e., the constraints are consistent.

Characterization

Theorem

An instance of Stick_{AB} with graph $G = (A \cup B, E)$ has a solution if and only if G's ordered adjacency matrix M has no ordered submatrix of the following form:

$$egin{array}{cccc} & b_p & b_q \ a_i & \begin{bmatrix} 1 & * \ 0 & 1 \ 1 & * \end{bmatrix} \ a_k & \begin{bmatrix} 1 & * \ 0 & 1 \ 1 & * \end{bmatrix} \ ,$$

$$* = \{0, 1\}$$

$$\begin{array}{cccc} b_p & b_q & b_r \\ a_i & * & 1 & * \\ a_j & * & 0 & 1 \\ a_k & 1 & * & * \end{array}$$

$$\begin{array}{ccc} & b_p & b_q \\ a_i & \begin{bmatrix} 1 & * \\ 0 & 1 \\ 1 & * \end{bmatrix} \end{array}$$

$$b_p$$
 b_q b_r
 b_j $\begin{bmatrix} * & 1 & * \\ 1 & 0 & 1 \end{bmatrix}$

$$*=\{0,1\}$$

$$\begin{array}{ccc} & b_p & b_q \\ a_i & \begin{bmatrix} 1 & * \\ 0 & 1 \\ 1 & * \end{bmatrix} \end{array}$$

$$*=\{0,1\}$$

$$\begin{array}{ccc} & b_p & b_q \\ a_i & \begin{bmatrix} 1 & * \\ 0 & 1 \\ 1 & * \end{bmatrix} \end{array}$$

$$*=\{0,1\}$$

$$\begin{array}{ccc} & b_p & b_q \\ a_i & \begin{bmatrix} 1 & * \\ 0 & 1 \\ 1 & * \end{bmatrix} \end{array}$$

$$*=\{0,1\}$$

$$\begin{array}{ccc} & b_p & b_q \\ a_i & \begin{bmatrix} 1 & * \\ 0 & 1 \\ 1 & * \end{bmatrix} \end{array}$$

$$*=\{0,1\}$$

$$\begin{array}{ccc} & b_p & b_q \\ a_i & \begin{bmatrix} 1 & * \\ 0 & 1 \\ 1 & * \end{bmatrix} \end{array}$$

$$*=\{0,1\}$$

$$\begin{array}{ccc} & b_p & b_q \\ a_i & \begin{bmatrix} 1 & * \\ 0 & 1 \\ 1 & * \end{bmatrix} \end{array}$$

$$*=\{0,1\}$$

$$\begin{array}{ccc} & b_p & b_q \\ a_i & \begin{bmatrix} 1 & * \\ 0 & 1 \\ 1 & * \end{bmatrix} \end{array}$$

Characterization

Theorem

An instance of Stick_{AB} with graph $G = (A \cup B, E)$ has a solution if and only if G's ordered adjacency matrix M has no ordered submatrix of the following form:

$$\begin{array}{cccc} & b_p & b_q & b_r \\ a_i & \left[\begin{array}{ccc} * & 1 & * \\ * & 0 & 1 \\ 1 & * & * \end{array} \right] \end{array}$$

$$\begin{array}{ccc} & b_p & b_q \\ a_i & \begin{bmatrix} 1 & * \\ 0 & 1 \\ 1 & * \end{bmatrix} \end{array}$$

$$\begin{array}{cccc} & b_p & b_q & b_r \\ a_i & \left[\begin{array}{ccc} * & 1 & * \\ 1 & 0 & 1 \end{array} \right] \end{array}$$

Fixed As Free Bs

Statement

Problem: Stick Representation with Fixed As $(Stick_A)$

Input: A bipartite graph $G = (A \cup B, E)$, and a vertex-ordering σ_A of A.

Question: Does *G* admit a *Stick* representation such that the *i*th

horizontal segment on the ground line corresponds to the *i*th vertex of σ_A ?

Fixed As Free Bs

Ingredients

Previous H graph model doesn't work since (b_{i-1}, b_i) is missing

$$egin{array}{c|ccccc} b_1 & b_2 & b_3 & b_4 \\ a_1 & 1 & 0 & 1 & 1 \\ a_2 & 0 & 0 & 1 & 0 \\ a_3 & 0 & 1 & 1 & 1 \\ \hline & \mathcal{M} & & & & \end{array}$$

E(H):

- (a_{i-1}, a_i) according to σ_A
- (b_{i-1}, b_i) according to σ_B
- (a_i, b_j) for each $m_{i,j} = 1$ b_p b_q (b_p, a_j) for each configuration a_i $\begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix}$

$$egin{aligned} & b_p & b_q \ a_i & \left[egin{aligned} 1 & * \ 0 & 1 \end{aligned}
ight] \end{aligned}$$

Fixed As Free Bs

Ingredients

Previous H graph model doesn't work since (b_{i-1}, b_i) is missing

$$egin{array}{c|ccccc} b_1 & b_2 & b_3 & b_4 \\ a_1 & 1 & 0 & 1 & 1 \\ a_2 & 0 & 0 & 1 & 0 \\ a_3 & 0 & 1 & 1 & 1 \\ \hline & \mathcal{M} & & & & \end{array}$$

E(H):

- (a_{i-1}, a_i) according to σ_A
- (b_{i-1}, b_i) according to σ_B
- (a_i, b_j) for each $m_{i,j} = 1$ b_p b_q (b_p, a_j) for each configuration a_i $\begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix}$

$$egin{aligned} & b_p & b_q \ a_i & \left[egin{aligned} 1 & * \ 0 & 1 \end{aligned}
ight] \end{aligned}$$

Fixed As and Free Bs

Ingredients

In Fixed As and Free Bs case we can rearrange the columns of forbidden matrices.

Fixed As and Free Bs

Ingredients

In Fixed As and Free Bs case we can rearrange the columns of forbidden matrices.

$$* = 0, 1$$

$$\begin{array}{ccc}
b_p & b_q \\
a_i & 1 & * \\
a_j & 0 & 1 \\
a_k & 1 & *
\end{array}$$

Fixed As and Free Bs

Ingredients

In Fixed As and Free Bs case we can rearrange the columns of forbidden matrices.

$$* = 0, 1$$

$$\begin{array}{ccc}
b_p & b_q \\
a_i & 1 & * \\
a_j & 0 & 1 \\
a_k & 1 & *
\end{array}$$

$$\begin{array}{ccc}
b_q & b_p \\
a_i & \begin{bmatrix} * & 1 \\ 1 & 0 \\ * & 1 \end{bmatrix}
\end{array}$$

Fixed As and Free Bs _{2-SAT}

Ingredients:

- As ordering based on σ_A
- Ordering A-B based on entries 1 on M ($m_{i,j} = 1$ as shown before)
- Arrangement of Bs to avoid forbidden matrices

Idea:

Express the ordering between any pair of vertices as variables: v, w of G add $p_{v \prec w}$ and $p_{w \prec v}$

Since only one can be true we can use a truth *clause*:

$$(\neg p_{v \prec w} \vee \neg p_{w \prec v}) \wedge (p_{v \prec w} \vee p_{w \prec v})$$

 \rightarrow 2-SAT formula

Fixed As and Free Bs _{2-SAT}

- Variables: $\forall (v, w) \in V(G)$ add $p_{v \prec w}$ and $p_{w \prec v}$
- Clauses: $(\neg p_{v \prec w} \lor \neg p_{w \prec v}) \land (p_{v \prec w} \lor p_{w \prec v})$
- As truth: $\forall (a_{i-1}, a_i) \in V(A)$ add $p_{a_{i-1} \prec a_i} = true$ based on σ_A
- Adj truth: $\forall (a_i, b_j) \in V(G)$ add $p_{a_i \prec b_i j} : m_{i,j} = 1$ based on σ_A
- Additional clauses: order columns to avoid the three submatrices

$$\bullet \quad \overset{a_i}{\underset{a_k}{\circ}} \left[\begin{smallmatrix} * & 1 & b_r \\ * & 1 & * \\ * & 0 & 1 \\ 1 & * & * \end{smallmatrix} \right] \text{ add } \left(\neg p_{b_q \prec b_r} \lor p_{b_q \prec b_\rho} \right) \text{ and } \left(\neg p_{b_p \prec b_q} \lor p_{b_r \prec b_q} \right)$$

- $\bullet \quad \overset{a_i}{\underset{a_j}{\bullet}} \quad \begin{bmatrix} \begin{smallmatrix} b_p & b_q & b_r \\ * & 1 & * \\ 1 & 0 & 1 \end{bmatrix} \quad \mathsf{add} \ (\neg p_{b_q \prec b_r} \lor p_{b_q \prec b_p}) \ \mathsf{and} \ (\neg p_{b_p \prec b_q} \lor p_{b_r \prec b_q})$

Fixed As 2SAT

The time complexity of the algorithm is dominated by the time to construct the 2-SAT formula, which is $O(|A|^3|B|^3)$.

Theorem

There is an algorithm with run-time $O(|A|^3|B|^3)$ to decide the $Stick_A$ problem, and construct a Stick representation if one exists.

Statement

Problem: Stick REPRESENTATION

Input: A bipartite graph $G = (A \cup B, E)$.

Question: Does G admit a Stick representation such that the vertices in

A and B correspond to horizontal and vertical segments, respectively?

Stick

Statement

Problem: Stick Representation

Input: A bipartite graph $G = (A \cup B, E)$.

Question: Does G admit a Stick representation such that the vertices in

A and B correspond to horizontal and vertical segments, respectively?

Stick

Recognition in polynomial time still open.

Positive results

Positive result 1

Let $G=(A\cup B,E)$ be a bipartite graph and let M be its adjacency matrix, where the rows and columns correspond to As and Bs, respectively. If M has the simultaneous consecutive ones property, then G admits a Stick representation, which can be computed in O(|A||B|) time.

Positive results

Positive result 1

Let $G=(A\cup B,E)$ be a bipartite graph and let M be its adjacency matrix, where the rows and columns correspond to As and Bs, respectively. If M has the simultaneous consecutive ones property, then G admits a Stick representation, which can be computed in O(|A||B|) time.

Positive results

Positive result 2

Let $G = (A \cup B, E)$ be an *n*-vertex bipartite graph that admits a *one-sided* planar drawing. Then G is a Stick graph, and its Stick representation can be computed in $O(n^2)$ time.

Negative results

Negative result 1

Let H be the graph obtained by deleting a perfect matching from a complete bipartite graph $K_{4,4}$. Any graph $G=(A\cup B,E)$ containing H as an induced subgraph does not admit a Stick representation. Since H is a planar graph, not all planar bipartite graphs are Stick graphs.

Conclusion and Open Problems

Stick Graphs

Characterization (forbidden submatrices for Stick representation)

$$\begin{bmatrix} & b_p & b_q & b_r \\ a_j & \begin{bmatrix} * & 1 & * \\ * & 0 & 1 \\ 1 & * & * \end{bmatrix} & \begin{bmatrix} b_p & b_q \\ a_j & \begin{bmatrix} 1 & * \\ 0 & 1 \\ 1 & * \end{bmatrix} \\ a_k & \begin{bmatrix} 1 & * \\ 1 & * \end{bmatrix} & \begin{bmatrix} b_p & b_q & b_r \\ a_j & \begin{bmatrix} * & 1 & * \\ 1 & 0 & 1 \end{bmatrix} \\ \end{bmatrix} .$$

Setting	Test
Fixed As and Bs	O(A B)-time
Fixed As	$O(A ^3 B ^3)$ -time
Stick	Open

Open Problems

- What is the complexity of recognizing the Stick graphs?
- Can we improve the time complexity of the recognition algorithm for graphs with fixed *As*?

Conclusion and Open Problems

Stick Graphs

Characterization (forbidden submatrices for Stick representation)

$$\begin{bmatrix} & b_p & b_q & b_r \\ a_i & \begin{bmatrix} * & 1 & * \\ * & 0 & 1 \\ a_k & \begin{bmatrix} * & 1 & * \\ * & 0 & 1 \\ 1 & * & * \end{bmatrix} \end{bmatrix} \begin{bmatrix} & b_p & b_q \\ a_i & \begin{bmatrix} 1 & * \\ 0 & 1 \\ 1 & * \end{bmatrix} \end{bmatrix} \begin{bmatrix} b_p & b_q & b_r \\ a_i & \begin{bmatrix} * & 1 & * \\ 1 & 0 & 1 \end{bmatrix} \end{bmatrix}$$

Open Problems

- What is the complexity of recognizing the Stick graphs?
- Can we improve the time complexity of the recognition algorithm for graphs with fixed As?

Thank you!

Felice De Luca

felicedeluca@email.arizona.edu