

A Greedy Heuristic for Crossing-Angle **Maximization**

Graph Drawing 2018

Almut

Dominik Tamara

Marcel

Lasse Wulff

Demel Dürrschnabel Mchedlidze Radermacher

Crossing-Angle Maximization

crossing angle $\operatorname{cr-}\angle(e,f)$

crossing angle $\operatorname{cr-}\angle(\Gamma)$ of a drawing: smallest crossing angle of two crossing edges

Crossing-Angle Maximization

Compute a straight-line drawing Γ of G that maximizes $\operatorname{cr-}\angle(\Gamma)$

A Lot of Theory
NP-Hardness
1, 2, 3 - bends per edge
Counting edges of RAC graphs
[Argyriou et al., Arikushi et al, Didimo et al,

Practice before GD'17 contest
2 force-directed algorithms
[Argyriou et al. '13, Huang et al.'10]

Crossing-Angle Maximization

crossing angle $\operatorname{cr-}\angle(e,f)$

crossing angle $\operatorname{cr-}\angle(\Gamma)$ of a drawing: smallest crossing angle of two crossing edges

Crossing-Angle Maximization

Compute a straight-line drawing Γ of G that maximizes $\operatorname{cr-}\angle(\Gamma)$

A Lot of Theory
NP-Hardness
1, 2, 3 - bends per edge
Counting edges of RAC graphs
[Argyriou et al., Arikushi et al, Didimo et al,

Practice before GD'17 contest 2 force-directed algorithms
[Argyriou et al. '13, Huang et al.'10]

Crossing-Angle Maximization

crossing angle $\operatorname{cr-}\angle(e,f)$

crossing angle $\operatorname{cr}-\angle(\Gamma)$ of a drawing:

smallest crossing angle of two crossing edges

Crossing-Angle Maximization

Compute a straight-line drawing Γ of G that maximizes $\operatorname{cr-}\angle(\Gamma)$

A Lot of Theory

NP-Hardness
1, 2, 3 - bends per edge
Counting edges of RAC graphs
[Argyriou et al., Arikushi et al, Didimo et al,

Djumović et al., ...]

Practice before GD'17 contest 2 force-directed algorithms

[Argyriou et al. '13, Huang et al.'10]

Motivation: Win Graph Drawing Contest

Motivation: Win Graph Drawing Contest

Challenge: No Restriction on Input

Motivation: Win Graph Drawing Contest

Challenge: No Restriction on Input

Our Heuristic

Design Goals

Fast

Generic

Easy to implement

Evaluation

Test Instances

100 randomly selected graphs per class

Research Questions

Q: What is good parametrization of our algorithm?

Q: What is a good choice for an initial drawing?

Q: Does our heuristic improve the crossing angle?

Research Questions

Q: What is good parametrization of our algorithm?

Q: What is a good choice for an initial drawing?

Q: Does our heuristic improve the crossing angle?

Initial Drawing Styles:

Random: random position per vertex

Fr+Cos: Force-Directed + Angle Max. Force [Huang et al. '14]

Stress: Stress Majorization [Gansner et al. '05, OGDF]

cr-small: Drawing with small number of crossings [R. et al.'18]

Observations

Random seems to be a bad choice Tendence towards Fr+Cos

Initial Drawing Styles:

Random: random position per vertex

Fr+Cos: Force-Directed + Angle Max. Force [Huang et al. '14]

Stress: Stress Majorization [Gansner et al. '05, OGDF]

cr-small: Drawing with small number of crossings [R. et al.'18]

Observations

Random seems to be a bad choice

Tendence towards Fr+Cos

Initial Drawing Styles:

Random: random position per vertex

Fr+Cos: Force-Directed + Angle Max. Force [Huang et al. '14]

Stress: Stress Majorization [Gansner et al. '05, OGDF]

cr-small: Drawing with small number of crossings [R. et al.'18]

Observations

Random seems to be a bad choice

Tendence towards Fr+Cos

Input: Ground set of Graphs $\mathcal{G} = \{G_1, G_2, \dots, G_n\}$

Two sets of drawings of \mathcal{G} $\{\Gamma[G_i] \mid G_i \in \mathcal{G}\}$ $\{\Pi[G_i] \mid G_i \in \mathcal{G}\}$

Input: Ground set of Graphs $\mathcal{G} = \{G_1, G_2, \dots, G_n\}$

Two sets of drawings of \mathcal{G} $\{\Gamma[G_i] \mid G_i \in \mathcal{G}\}$ $\{\Pi[G_i] \mid G_i \in \mathcal{G}\}$

Q: Do the drawings Γ have a larger crossing angle than Π ?

$$\operatorname{cr-}\angle(\Gamma[G_i]) > \operatorname{cr-}\angle(\Pi[G_i])$$

Input: Ground set of Graphs $\mathcal{G} = \{G_1, G_2, \dots, G_n\}$

Two sets of drawings of \mathcal{G} $\{\Gamma[G_i] \mid G_i \in \mathcal{G}\}$ $\{\Pi[G_i] \mid G_i \in \mathcal{G}\}$

A number $p \in [0, 1]$

Q: Do the drawings Γ have a larger crossing angle than Π ?

Is there: a subset $\mathcal{G}' \subseteq \mathcal{G}, |\mathcal{G}'| > p \cdot |\mathcal{G}|$ such that for all $G_i \in \mathcal{G}' : \operatorname{cr-}\angle(\Gamma[G_i]) > \operatorname{cr-}\angle(\Pi[G_i])$

Input: Ground set of Graphs $\mathcal{G} = \{G_1, G_2, \dots, G_n\}$

Two sets of drawings of \mathcal{G} $\{\Gamma[G_i] \mid G_i \in \mathcal{G}\}$ $\{\Pi[G_i] \mid G_i \in \mathcal{G}\}$

A number $p \in [0,1]$, $\Delta > 0$

Q: Do the drawings Γ have a larger crossing angle than Π ?

Is there: a subset $\mathcal{G}' \subseteq \mathcal{G}, |\mathcal{G}'| > p \cdot |\mathcal{G}|$ such that

for all $G_i \in \mathcal{G}' : \operatorname{cr-}\angle(\Gamma[G_i]) > \operatorname{cr-}\angle(\Pi[G_i]) + \Delta$

Tool to Compare Paired Drawings

Input: Ground set of Graphs $\mathcal{G} = \{G_1, G_2, \dots, G_n\}$

Two sets of drawings of \mathcal{G} $\{\Gamma[G_i] \mid G_i \in \mathcal{G}\}$ $\{\Pi[G_i] \mid G_i \in \mathcal{G}\}$

A number $p \in [0,1]$, $\Delta > 0$

Q: Do the drawings Γ have a larger crossing angle than Π ?

Is there: a subset $\mathcal{G}' \subseteq \mathcal{G}, |\mathcal{G}'| > p \cdot |\mathcal{G}|$ such that

for all
$$G_i \in \mathcal{G}' : \operatorname{cr-}\angle(\Gamma[G_i]) > \operatorname{cr-}\angle(\Pi[G_i]) + \Delta$$

Tool to Compare Paired Drawings

Input: Ground set of Graphs $\mathcal{G} = \{G_1, G_2, \dots, G_n\}$

Two sets of drawings of \mathcal{G} $\{\Gamma[G_i] \mid G_i \in \mathcal{G}\}$ $\{\Pi[G_i] \mid G_i \in \mathcal{G}\}$

A number $p \in [0,1]$, $\Delta > 0$

Q: Do the drawings Γ have a larger crossing angle than Π ?

Is there: a subset $\mathcal{G}' \subseteq \mathcal{G}, |\mathcal{G}'| > p \cdot |\mathcal{G}|$ such that

for all
$$G_i \in \mathcal{G}' : \operatorname{cr-}\angle(\Gamma[G_i]) > \operatorname{cr-}\angle(\Pi[G_i]) + \Delta$$

Good Initial Drawing

Q: Is Fr+Cos a good initial drawing?

Good Initial Drawing

Q: Is Fr+Cos a good initial drawing? North Rome Comm.

fr-cos vs cr-small

Research Questions

Q: What is good parametrization of our algorithm?

Q: What is a good choice for an initial drawing?

Q: Does our heuristic improve the crossing angle?

Improvement of the Crossing Angle

Q: Does our Heuristic improve the Crossing Angle?

Improvement of the Crossing Angle

Q: Does our Heuristic improve the Crossing Angle?

Improvement of the Crossing Angle

Q: Does our Heuristic improve the Crossing Angle?

Our Heuristic

Our Heuristic

Running Time

Task Find edges e,f s.t. $\operatorname{cr-}\angle(\Gamma,e,f)=\operatorname{cr-}\angle(\Gamma)$

Possibility Sweep: Sweep-Line Algorithm

Possibility Buckets

sort edges into buckets according to slopes edges of adjacent buckets form $\operatorname{cr-}\angle(\Gamma)$

Running Time

Task Find edges e,f s.t. $\operatorname{cr-}\angle(\Gamma,e,f)=\operatorname{cr-}\angle(\Gamma)$

Possibility Sweep: Sweep-Line Algorithm

Possibility Bucket:

sort edges into buckets according to slopes edges of adjacent buckets form $\operatorname{cr-}\angle(\Gamma)$

Running Time

Task Find edges e,f s.t. $\operatorname{cr-}\angle(\Gamma,e,f) = \operatorname{cr-}\angle(\Gamma)$

Possibility Sweep: Sweep-Line Algorithm

Possibility *Bucket*:

sort edges into buckets according to slopes edges of adjacent buckets form $\operatorname{cr-}\angle(\Gamma)$

Time to move a single vertex

Future Work

Drawings are not necessarily readableLet R be a region that ensure some properties

Optimize position of \boldsymbol{v} within \boldsymbol{R}

Future Work

Drawings are not necessarily readable

Let R be a region that ensure some pro Optimize position of v within R

Future Work

Drawings are not necessarily readable Let R be a region that ensure some properties of v Optimize position of v within R

GD Contest duplicated the number of applied papers on Cr. Angle Max ;-)

Future Work

Drawings are not necessarily readable Let R be a region that ensure some properties of v Optimize position of v within R

Thank you.

Configurations:

Sloppy Fast and *inaccurate*

Medium Trade of between speed and accuracy

Precise Slow and accurate

Time Limit: n seconds for an n-vertex graph

Configurations:

Sloppy Fast and *inaccurate*

Medium Trade of between speed and accuracy

Precise Slow and accurate

Time Limit: n seconds for an n-vertex graph \longrightarrow allows fair comparison

Configurations:

Sloppy Fast and *inaccurate*

Medium Trade of between speed and accuracy

Precise Slow and accurate

Time Limit: n seconds for an n-vertex graph \longrightarrow allows fair comparison

There is no obvious difference between the configurations

Configurations:

Sloppy Fast and *inaccurate*

Medium Trade of between speed and accuracy

Precise Slow and accurate

Time Limit: n seconds for an n-vertex graph \longrightarrow allows fair comparison

There is no obvious difference between the configurations

Configurations:

Sloppy Fast and *inaccurate*

Medium Trade of between speed and accuracy

Precise Slow and accurate

Time Limit: n seconds for an n-vertex graph \longrightarrow allows fair comparison

There is no obvious difference between the configurations?