Jawaherul Alam Michalis Bekos Martin Gronemann Michael Kaufmann Sergey Pupyrev

Def. partial planar 3-tree

Def. queue layout

Def. partial planar 3-tree

Def. queue layout

Def. queue layout

Def. queue layout

Def. queue layout

graph class	lower bound	upper bound
tree		
outerplanar		
planar 2-tree		
planar 3-tree		
planar		

graph class	lower bound		upper bound
tree	1	1	[Heath Rosenberg 1992]
outerplanar			
planar 2-tree			
planar 3-tree			
planar			

graph class	lower bound		upper bound
tree	1	1	[Heath Rosenberg 1992]
outerplanar	2	2	[Heath Rosenberg 1992]
planar 2-tree			
planar 3-tree			
planar			

graph class		lower bound		upper bound
tree	1		1	[Heath Rosenberg 1992]
outerplanar	2		2	[Heath Rosenberg 1992]
planar 2-tree	3	[Wiechert 2017]	3	[Rengarajan Madhavan 1995]
planar 3-tree				
planar				

graph class	lower bound	upper bound
tree	1	1 [Heath Rosenberg 1992]
outerplanar	2	2 [Heath Rosenberg 1992]
planar 2-tree	3 [Wiechert 2017]	[Rengarajan Madhavan 1995]
planar 3-tree	3 [Wiechert 2017] $\Omega(\log n)$ [Pemmaraju 1992]	
planar		

graph class	lower boun	d upper bound
tree	1	1 [Heath Rosenberg 1992]
outerplanar	2	2 [Heath Rosenberg 1992]
planar 2-tree	3 [Wiechers	[Rengarajan Madhavan 1995]
planar 3-tree	3 [Wiechers $\Omega(\log n)$ [Pemmaraji	
planar		

graph class	lower bound	upper bound
tree	1	[Heath Rosenberg 1992]
outerplanar	2	2 [Heath Rosenberg 1992]
planar 2-tree	3 [Wiechert 2017]	3 [Rengarajan Madhavan 1995]
planar 3-tree	$\mathfrak{Z}(\log n)$ [Wiechert 2017] $\Omega(\log n)$	
planar		

graph class	lower bound		ι	upper bound	
tree	1		1	[Heath Rosenberg 1992]	
outerplanar	2		2	[Heath Rosenberg 1992]	
planar 2-tree	3	[Wiechert 2017]	3	[Rengarajan Madhavan 1995]	
planar 3-tree	$\frac{3}{\Omega(\log n)}$	[Wiechert 2017] [Pemmaraju 1992]	125971 7	Dujmović Morin Wood 2004] [Wiechert 2017]	
planar	3	[Wiechert 2017]	$O(\log^4 n)$		

graph class	lower bound		u	upper bound	
tree	1		1	[Heath Rosenberg 1992]	
outerplanar	2		2	[Heath Rosenberg 1992]	
planar 2-tree	3	[Wiechert 2017]	3	[Rengarajan Madhavan 1995]	
	3	[Wiechert 2017]	125971	1 [Dujmović Morin Wood 2004]	
planar 3-tree	$\Omega(\log n)$	[Pemmaraju 1992]	7	[Wiechert 2017]	
	4		5		
	3	[Wiechert 2017]	$O(\log^4 n)$	[Di Battista Frati Pach 2010]	
planar	4		O(log <i>n</i>)	[Dujmović 2015]	

Our Results

- 1. Every planar 3-tree admits a **5**-queue layout
- 2. There exist planar 3-trees with queue number 4

Theorem 1

There exist planar 3-trees with queue number 4

Theorem 1

There exist planar 3-trees with queue number 4

What does **not** work

manually testing (small) instances

Theorem 1

There exist planar 3-trees with queue number 4

What does **not** work

- manually testing (small) instances
- computer-assisted exhaustive search of *all* 57,949,430 maximal planar 3-trees with $n \le 18$

Theorem 1

There exist planar 3-trees with queue number 4

What does **not** work

- manually testing (small) instances
- computer-assisted exhaustive search of *all* 57,949,430 maximal planar 3-trees with $n \le 18$
- computer-assisted exhaustive search of 1,000,000,000 maximal planar 3-trees with $20 \le n \le 200$

Theorem 1

There exist planar 3-trees with queue number 4

What does **not** work

- manually testing (small) instances
- computer-assisted exhaustive search of *all* 57,949,430 maximal planar 3-trees with $n \le 18$
- computer-assisted exhaustive search of 1,000,000,000 maximal planar 3-trees with $20 \le n \le 200$

What **does** work

Theorem 1

There exist planar 3-trees with queue number 4

What does **not** work

- manually testing (small) instances
- computer-assisted exhaustive search of *all* 57,949,430 maximal planar 3-trees with $n \le 18$
- computer-assisted exhaustive search of 1,000,000,000 maximal planar 3-trees with $20 \le n \le 200$

What **does** work

- ullet a fully combinatorial proof for a graph with $pprox 10.5 imes 10^{12}$ vertices
- a computer-assisted verified example with 1,038 vertices

Theorem 2

Theorem 2

Theorem 2

Theorem 2

Theorem 2

Theorem 2

Theorem 2

Upper bound: Two levels

Key observations:

• every level is outerplanar

Upper bound: Two levels

Key observations:

- every level is outerplanar
- every connected component of a level is in a triangular face

- every level is outerplanar
- every connected component of a level is in a triangular face

- every level is outerplanar
- every connected component of a level is in a triangular face

- every level is outerplanar
- every connected component of a level is in a triangular face

- every level is outerplanar
- a level is in a triangular face

Def. track layout	track	(1
	track	έ 2
	track	3 ک
	track	< 4

Def. track layout

Def. track layout

Def. track layout

[Dujmović Pór Morin Wood 2004]

- ullet Every graph has a $\mathcal{O}(1)$ -queue layout iff it has $\mathcal{O}(1)$ -track layout
- Every graph with track number t has $\mathcal{O}(t) \times \mathcal{O}(t) \times \mathcal{O}(n)$ drawing

Def. track layout

[Dujmović Pór Morin Wood 2004]

- ullet Every graph has a $\mathcal{O}(1)$ -queue layout iff it has $\mathcal{O}(1)$ -track layout
- Every graph with track number t has $\mathcal{O}(t) \times \mathcal{O}(t) \times \mathcal{O}(n)$ drawing

Theorem 3

The track number of a planar 3-tree is at most 15*

graph class		lower bound	d upper bound
tree		1	1
outer	planar	2	2
plana	ır 2-tree	3	3
plana	ır 3-tree	4	5
pl	anar	4	O(log <i>n</i>)

graph class	lower bound	upper bound	<u>1</u>
tree	1	1	
outerplanar	2	2	_
planar 2-tree	3	3	_
planar 3-tree	4	5	← Open Problem 1
planar	4	O (log <i>n</i>)	
			-

graph class	lower bound	upper bound	<u>d</u> _		
tree	1	1			
outerplanar	2	2			
planar 2-tree	3	3			
planar 3-tree	4	5	—	Open	Problem 1
planar	4	O(log <i>n</i>)	—	Open	Problem 2
			_		

graph class	lower bound	upper bound	<u></u>
tree	1	1	
outerplanar	2	2	
planar 2-tree	3	3	
planar 3-tree	4	5	COpen Problem 1
planar	4	O (log <i>n</i>)	<- Open Problem 2
(non-planar) <i>k</i> -tree	k+1	2 ^k - 1	Open Problem 3

graph class	lower bound	upper bound	<u>d</u>
tree	1	1	
outerplanar	2	2	
planar 2-tree	3	3	_
planar 3-tree	4	5	← Open Problem 1
planar	4	O (log <i>n</i>)	← Open Problem 2
(non-planar) <i>k</i> -tree	k+1	$2^{k} - 1$	Open Problem 3
cubic planar	2	O (log <i>n</i>)	Open Problem 4
bipartite planar	2	O(log <i>n</i>)	← Open Problem 5

graph class	lower bound	upper bound	
tree	1	1	
outerplanar	2	2	_
planar 2-tree	3	3	_
planar 3-tree	4	5	← Open Problem 1
planar	4	O (log <i>n</i>)	✓—Open Problem 2
(non-planar) <i>k</i> -tree	k+1	$2^{k} - 1$	Open Problem 3
cubic planar	2	O (log <i>n</i>)	Open Problem 4
bipartite planar	2	O(log <i>n</i>)	Open Problem 5

Questions?