The Queue-Number of Planar Posets

Kolja Knauer
Aix Marseille Université

Piotr Micek
Jagellionian University Krakow

Torsten Ueckerdt*
Karlsruhe Institute of Technology

Graph Drawing 2018
September 26, 2018
Barcelona

\triangleright Queue-Number of a Graph (Heath, Rosenberg 1992).

$$
\mathrm{qn}(G)=\min k \text { s.t. }\left\{\begin{array}{l}
\exists \text { vertex ordering } \\
\exists k \text {-edge partition }
\end{array}\right\} \text { with } \text { no nesting in each part }
$$

\triangleright Queue-Number of a Graph (Heath, Rosenberg 1992).

$$
\mathrm{qn}(G)=\min k \text { s.t. }\left\{\begin{array}{l}
\exists \text { vertex ordering } \\
\exists k \text {-edge partition }
\end{array}\right\} \text { with } \text { no nesting in each part }
$$

\triangleright Queue-Number of a Graph (Heath, Rosenberg 1992).
$\mathrm{qn}(G)=\min k$ s.t. $\left\{\begin{array}{l}\exists \text { vertex ordering } \\ \exists k \text {-edge partition }\end{array}\right\}$ with no nesting in each part
$\mathrm{qn}(G)=\min k$ s.t. $\quad \exists$ vertex ordering
with
no k-nesting*

\triangleright Queue-Number of a Graph (Heath, Rosenberg 1992).
$\mathrm{qn}(G)=\min k$ s.t. $\left\{\begin{array}{l}\exists \text { vertex ordering } \\ \exists k \text {-edge partition }\end{array}\right\}$ with no nesting in each part
$\mathrm{qn}(G)=\min k$ s.t. $\quad \exists$ vertex ordering
with
no k-nesting*

\triangleright Queue-Number of a Graph (Heath, Rosenberg 1992).
$\mathrm{qn}(G)=\min k$ s.t. $\left\{\begin{array}{l}\exists \text { vertex ordering } \\ \exists k \text {-edge partition }\end{array}\right\}$ with no nesting in each part
$\mathrm{qn}(G)=\min k$ s.t. $\quad \exists$ vertex ordering

\triangleright Queue-Number of a Poset (Heath, Pemmaraju 1997). $\mathrm{qn}(P)=\min k$ s.t. $\quad \exists$ linear extension \quad with no k-nesting of covers
*also called k-rainbow
\triangleright Queue-Number of a Poset (Heath, Pemmaraju 1997). $\mathrm{qn}(P)=\min k$ s.t. $\quad \exists$ linear extension \quad with no k-nesting of covers
\triangleright Queue-Number of a Poset (Heath, Pemmaraju 1997). $\mathrm{qn}(P)=\min k$ s.t. $\quad \exists$ linear extension \quad with no k-nesting of covers

Hasse diagram

$$
P=(X, \leq) \text { poset}^{*}
$$

binary relation \leq on finite set X
reflexive, antisymmetric, transitive

y-mon. path

\triangleright Queue-Number of a Poset (Heath, Pemmaraju 1997). $\mathrm{qn}(P)=\min k$ s.t. $\quad \exists$ linear extension \quad with no k-nesting of covers

Hasse diagram

$$
P=(X, \leq) \text { poset}^{*}
$$

binary relation \leq on finite set X reflexive, antisymmetric, transitive

y-mon. path

edge

incomparable
L linear extension $\Leftrightarrow L$ is vertex ordering respecting P

$$
a \prec b \text { in } P \quad \Longrightarrow \quad a \text { before } b \text { in } L
$$

*short for partially ordered set

Q1 $\quad \mathrm{qn}(P)$ large $\quad \Longrightarrow \quad$ width (P) large?
Q2 $\quad P$ planar, $\mathrm{qn}(P)$ large $\quad \Longrightarrow \quad$ width (P) large?
Q3 $\quad \mathrm{qn}(P)$ large $\quad \Longrightarrow \quad$ height (P) large?
Q4 $\quad P$ planar, qn (P) large $\quad \Longrightarrow \quad$ height (P) large?
nesting covers
$a_{1} \prec b_{1}$ below $a_{2} \prec b_{2}$

$a_{2}<a_{1}$ and $b_{1}<b_{2}$ impossible since $a_{2} \prec b_{2}$ is a cover

$$
\begin{array}{cc}
\text { type A } & b_{2} \\
a_{2}<a_{1} \\
b_{1} \| b_{2} & \\
& a_{2}
\end{array}
$$

Q1	$\mathrm{qn}(P)$ large	\Longrightarrow	width (P) large	\checkmark YES
Q2	P planar, qn (P) large	\Longrightarrow	width (P) large	V YES
Q3	$\mathrm{qn}(P)$ large	\Longrightarrow	height (P) large	X no
Q4	P planar, qn (P) large	\Longrightarrow	height (P) large	? MAYBE

Q1 $\quad \mathrm{qn}(P)$ large $\quad \Longrightarrow \quad$ width (P) large $\sqrt{ } \mathrm{YES}$

Theorem (Heath, Pemmaraju 1997).

$$
w \leq \max \{\operatorname{qn}(P) \mid \operatorname{width}(P)=w\} \leq w^{2}
$$

Conjecture (Heath, Pemmaraju 1997).

$$
\max \{\operatorname{qn}(P) \mid \operatorname{width}(P)=w\}=w
$$

lower bound

Q1 $\quad \mathrm{qn}(P)$ large $\quad \Longrightarrow \quad$ width (P) large $\sqrt{ } \mathrm{YES}$

Theorem (Heath, Pemmaraju 1997).

$$
w \leq \max \{\operatorname{qn}(P) \mid \operatorname{width}(P)=w\} \leq w^{2}
$$

Conjecture (Heath, Pemmaraju 1997).

$$
\max \{\operatorname{qn}(P) \mid \operatorname{width}(P)=w\}=w
$$

lower bound

Theorem.

$$
\begin{gathered}
\max \{\operatorname{qn}(P) \mid \operatorname{width}(P)=2\}=2 \\
w \leq \max \{\operatorname{qn}(P) \mid \operatorname{width}(P)=w\} \leq w^{2}-(w+1)
\end{gathered}
$$

Theorem (Heath, Pemmaraju 1997).

$$
\sqrt{w} \leq \max \{\operatorname{qn}(P) \mid P \text { planar, width }(P)=w\} \leq 4 w-1
$$

Theorem (Heath, Pemmaraju 1997).

$$
\sqrt{w} \leq \max \{\operatorname{qn}(P) \mid P \text { planar, width }(P)=w\} \leq 4 w-1
$$

$\operatorname{width}(P)=n$

$$
\mathrm{qn}(P)=\lceil\sqrt{n}\rceil
$$

Q2 $\quad P$ planar, qn (P) large $\quad \Longrightarrow \quad$ width (P) large $\sqrt{ }$ YES

Theorem (Heath, Pemmaraju 1997).

$$
\sqrt{w} \leq \max \{\operatorname{qn}(P) \mid P \text { planar, width }(P)=w\} \leq 4 w-1
$$

Theorem.

$$
w \leq \max \{\operatorname{qn}(P) \mid P \text { planar, } \operatorname{width}(P)=w\} \leq 3 w-2
$$

Theorem (Heath, Pemmaraju 1997).

$$
\sqrt{w} \leq \max \{\operatorname{qn}(P) \mid P \text { planar, width }(P)=w\} \leq 4 w-1
$$

Theorem.

$$
w \leq \max \{\operatorname{qn}(P) \mid P \text { planar, width }(P)=w\} \leq 3 w-2
$$

lower bound
planar with 0 and 1

Q2 $\quad P$ planar, qn (P) large $\quad \Longrightarrow \quad$ width (P) large $\sqrt{ }$ YES

Theorem (Heath, Pemmaraju 1997).

$$
\sqrt{w} \leq \max \{\operatorname{qn}(P) \mid P \text { planar, width }(P)=w\} \leq 4 w-1
$$

Theorem.

$$
w \leq \max \{\operatorname{qn}(P) \mid P \text { planar, } \operatorname{width}(P)=w\} \leq 3 w-2
$$

lower bound
$P_{1} \quad 9$
planar

with 0 and 1
upper bound

Q2 $\quad P$ planar, qn (P) large $\quad \Longrightarrow \quad$ width (P) large $\sqrt{ }$ YES

Theorem (Heath, Pemmaraju 1997).

$$
\sqrt{w} \leq \max \{\operatorname{qn}(P) \mid P \text { planar, width }(P)=w\} \leq 4 w-1
$$

Theorem.

$$
w \leq \max \{\operatorname{qn}(P) \mid P \text { planar, } \operatorname{width}(P)=w\} \leq 3 w-2
$$

lower bound

planar with 0 and 1
upper bound

$\leq 2 w-2$ new covers \leadsto planar P^{\prime} ≤ 2 lost covers each \rightsquigarrow with 0 and 1
$\Longrightarrow \mathrm{qn}\left(P^{\prime}\right) \leq w \Longrightarrow \mathrm{qn}(P) \leq 3 w-2$

Theorem (Heath, Pemmaraju 1997).

$$
\sqrt{w} \leq \max \{\operatorname{qn}(P) \mid P \text { planar, width }(P)=w\} \leq 4 w-1
$$

Theorem.

$$
w \leq \max \{q n(P) \mid P \text { planar, width }(P)=w\} \leq 3 w-2
$$

Theorem.
If P has no embedded subdivided crown, then $\mathrm{qn}(P) \leq$ width (P).

Theorem (Heath, Pemmaraju 1997).

$$
\sqrt{w} \leq \max \{\operatorname{qn}(P) \mid P \text { planar, } \operatorname{width}(P)=w\} \leq 4 w-1
$$

Theorem.

$$
w \leq \max \{\operatorname{qn}(P) \mid P \text { planar, } \operatorname{width}(P)=w\} \leq 3 w-2
$$

Theorem.
If P has no embedded subdivided crown, then $\mathrm{qn}(P) \leq$ width (P).
 2-crown

subdivided 3-crown
embedded $=$ all long diagonals are cover relations
proofidea
introduce new edges

\leadsto show acyclicity
\leadsto use topological ordering
Q3 \quad qn (P) large $\quad \Longrightarrow \quad$ height (P) large \quad X NO

$$
\begin{aligned}
\operatorname{height}(P) & =2 \\
\operatorname{qn}(P) & =n
\end{aligned}
$$

Q3 $\quad \mathrm{qn}(P)$ large $\quad \Longrightarrow \quad \operatorname{height}(P)$ large \quad X NO

$$
\begin{aligned}
\operatorname{height}(P) & =2 \\
\operatorname{qn}(P) & =n
\end{aligned}
$$

Q4 $\quad P$ planar, qn (P) large $\quad \Longrightarrow \quad$ height (P) large ?MAYBE
lower bound

$$
\operatorname{qn}(P) \geq \sqrt{\operatorname{height}(P) / 2}
$$

$\operatorname{height}(P)=2 n+1$ $\mathrm{qn}(P)=\lceil\sqrt{n}\rceil$
Q3 $\mathrm{qn}(P)$ large $\quad \Longrightarrow \quad$ height (P) large $\quad \mathbf{X N O}$

$\operatorname{height}(P)=2$

$$
\mathrm{qn}(P)=n
$$

Q4 $\quad P$ planar, qn (P) large $\quad \Longrightarrow \quad$ height (P) large ?MAYBE
lower bound

$$
\operatorname{qn}(P) \geq \sqrt{\operatorname{height}(P) / 2}
$$

Conjecture (Heath, Pemmaraju 1997).
P planar $\Longrightarrow \quad \mathrm{qn}(P) \leq \operatorname{height}(P)$

Q4 $\quad P$ planar, $\mathrm{qn}(P)$ large $\quad \Longrightarrow \quad \operatorname{height}(P)$ large MAYBE
lower bound
$\exists P$ planar s.t. qn $(P) \geq \sqrt{\text { height }(P) / 2}$
Conjecture (Heath, Pemmaraju 1997).
P planar $\Longrightarrow \quad \mathrm{qn}(P) \leq \operatorname{height}(P)$

Q4 $\quad P$ planar, $\mathrm{qn}(P)$ large $\quad \Longrightarrow \quad \operatorname{height}(P)$ large MAYBE
lower bound
$\exists P$ planar s.t. qn $(P) \geq \sqrt{\text { height }(P) / 2}$
Conjecture (Heath, Pemmaraju 1997).
P planar $\Longrightarrow \quad \mathrm{qn}(P) \leq \operatorname{height}(P)$
Theorem.

- $\exists P$ planar s.t. $\mathrm{qn}(P) \geq \operatorname{height}(P)-1$

Q4 $\quad P$ planar, $\mathrm{qn}(P)$ large $\quad \Longrightarrow \quad \operatorname{height}(P)$ large MAYBE
lower bound
$\exists P$ planar s.t. qn $(P) \geq \sqrt{\operatorname{height}(P) / 2}$
Conjecture (Heath, Pemmaraju 1997).
P planar $\Longrightarrow \quad \mathrm{qn}(P) \leq \operatorname{height}(P)$
Theorem.

- $\exists P$ planar s.t. $\mathrm{qn}(P) \geq \operatorname{height}(P)-1$
- $\exists P$ planar s.t. $\operatorname{height}(P)=2$ and $\mathrm{qn}(P)=4$
*hence, the conjecture is false
lower bound
$\exists P$ planar s.t. qn $(P) \geq \sqrt{\operatorname{height}(P) / 2}$
Conjecture (Heath, Pemmaraju 1997).
P planar $\Longrightarrow \quad \mathrm{qn}(P) \leq \operatorname{height}(P)$
Theorem.
- $\exists P$ planar s.t. $\mathrm{qn}(P) \geq \operatorname{height}(P)-1$
- $\exists P$ planar s.t. $\operatorname{height}(P)=2$ and $\mathrm{qn}(P)=4$
- The following are equivalent:
- $\forall P$ planar, $\operatorname{height}(P)=2: \quad \mathrm{qn}(P) \leq C$
*hence, the conjecture is false
lower bound
$\exists P$ planar s.t. qn $(P) \geq \sqrt{\operatorname{height}(P) / 2}$
Conjecture (Heath, Pemmaraju 1997).
P planar $\Longrightarrow \quad \mathrm{qn}(P) \leq \operatorname{height}(P)$
Theorem.
- $\exists P$ planar s.t. $q n(P) \geq \operatorname{height}(P)-1$
- $\exists P$ planar s.t. $\operatorname{height}(P)=2$ and $\mathrm{qn}(P)=4$
- The following are equivalent:
- $\forall P$ planar, height $(P)=2$:
- $\forall P$ planar:

$$
\begin{aligned}
& \operatorname{qn}(P) \leq C \\
& \operatorname{qn}(P) \leq C^{\prime} \cdot \operatorname{height}(P)
\end{aligned}
$$

*hence, the conjecture is false
lower bound
$\exists P$ planar s.t. qn $(P) \geq \sqrt{\operatorname{height}(P) / 2}$
Conjecture (Heath, Pemmaraju 1997).
P planar $\Longrightarrow \quad \mathrm{qn}(P) \leq \operatorname{height}(P)$

Theorem.

- $\exists P$ planar s.t. $q n(P) \geq \operatorname{height}(P)-1$
- $\exists P$ planar s.t. $\operatorname{height}(P)=2$ and $\mathrm{qn}(P)=4$
- The following are equivalent:
- $\forall P$ planar, height $(P)=2$:
- $\forall P$ planar:
- $\forall P$ planar:

$$
\begin{aligned}
\operatorname{qn}(P) & \leq C \\
\operatorname{qn}(P) & \leq C^{\prime} \cdot \operatorname{height}(P) \\
\operatorname{qn}(P) & \leq f(\operatorname{height}(P))
\end{aligned}
$$

* hence, the conjecture is false
lower bound
$\exists P$ planar s.t. qn $(P) \geq \sqrt{\text { height }(P) / 2}$
Conjecture (Heath, Pemmaraju 1997).
P planar $\Longrightarrow \quad \mathrm{qn}(P) \leq \operatorname{height}(P)$

Theorem.

- $\exists P$ planar s.t. $q n(P) \geq \operatorname{height}(P)-1$
- $\exists P$ planar s.t. $\operatorname{height}(P)=2$ and $\mathrm{qn}(P)=4$
- The following are equivalent:
- $\forall P$ planar, height $(P)=2$:
- $\forall P$ planar:
- $\forall P$ planar:
- $\forall G$ planar graph:

$$
\begin{aligned}
& \operatorname{qn}(P) \leq C \\
& \operatorname{qn}(P) \leq C^{\prime} \cdot \operatorname{height}(P) \\
& \operatorname{qn}(P) \leq f(\operatorname{height}(P)) \\
& \operatorname{qn}(G) \leq C^{\prime \prime}
\end{aligned}
$$

*hence, the conjecture is false

Take Home Slide

Conjecture (Heath, Pemmaraju 1997).
For every poset P we have qn $(P) \leq \operatorname{width}(P)$.
\leadsto interesting and looks doable

Open Question.
For every planar poset P we have $\mathrm{qn}(P) \leq f(\operatorname{height}(P))$?
\leadsto interesting and looks somewhat harder

Take Home Slide

Conjecture (Heath, Pemmaraju 1997).
For every poset P we have $\mathrm{qn}(P) \leq \operatorname{width}(P)$.
\leadsto interesting and looks doable

Open Question.
For every planar poset P we have $\mathrm{qn}(P) \leq f(\operatorname{height}(P))$?
\leadsto interesting and looks somewhat harder

Thank you for your attention!

