
Patrizio Angelini, Michael A. Bekos, Henry Förster, Michael Kaufmann

On RAC Drawings of Graphs
with one Bend per Edge

Wilhelm-Schickard-Institut für Informatik
Universität Tübingen, Germany
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k-bend RAC Drawings

k-bend: edges drawn as polylines with at most k bends

0-bend RAC Drawing of K5 1-bend RAC Drawing of K6

Right Angle Crossing: all crossings at 90◦

Motivation: few bends and large crossing angles increase
readability[Purchase’00, Purchase et al.’02, Huang’07, Huang et al.’14]
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All IC-planar graphs are RAC, but not all
NIC-planar graphs

[Brandenburg et al.’16]
[Bachmaier et al.’17]

Studies on variants with restricted vertex
position

[Di Giacomo et al.’14]
[Hong, Nagamochi’15]
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Our Contribution

1-bend RAC graphs have at most 5.5n − 11 edges

There are infinitely many 1-bend RAC graphs with
5n − 10 edges

This reduces the gap from 2n to 0.5n
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The Lower Bound

The dodecahedral graph admits a drawing with 4 types of
face geometries

Both inner- and outermost faces are regular 5-gons
=⇒ we can glue copies together

By adding 5 edges in each face, we achieve 5n − 10 edges
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Remove the planar edges

Upper bound on the intersected edges

Planarize

Charge ch(v) = deg(v)− 4 −3

−1 −2

−1
−2

−2

−3

−2 −2

(All dummy vertices have charge 0.)

Charge ch(f ) = s(f )− 4

0 −10

2

1 0

−2

10

By Euler’s Formula:

Triangles have charge -1 and
are incident to a convex bend

Lenses have charge -2 and are
incident to two bends, one of
which is convex

(their geometry can be arbitrary)

∑
ch(f )

∑
ch(v)+ = −8
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(All dummy vertices have charge 0.)
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0

Discharging phase 2

Injection from lenses with
reflex bends to convex bends
at faces of size at least 4

Transfer charges from these
large faces to lenses

11

0

ch′′(v) = ch′(v)

ch′′(f ) ≥ 0, ch′′(f ) ≥ ch(f )
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|E | ≤ 7n − 14− k , |E | ≤ 3n − 6− k + 8k =⇒ |E | ≤ 6.5n − 13

Step 1:
� 0 for bounded faces

Result:
2d(F) + something

Step 2:
better analysis of small faces
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We count:

biconnected facial walks b(F) = 3

vertices d(F) = 11

multiple occurences beyond first m(F) = 1

appears in
red and
green walk

isolated vertices i(F) = 1

isolated
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Length of boundary `(F) = d(F) + m(F)− i(F) = 11
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Good Faces

Consider planarization
planar edge e is good if it cannot see another planar edge e′

F is good if all its edges are good (or if it is a triangle)

In a good face, each facial walk is surrounded by a (planarized)
face with at least twice the length of the facial walk
These faces have at least 2`(F)− 4b(F) initial charge
(Recall: ch(f ) = `(f )− 4)
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Improving the Upper Bound

|E1| ≤ 8/3|F1|+ 16/3|F2|+
∑
F∈F3+

2d(F)− 2m(F) + 2i(F) + 4b(F)− 8

So far we know:

Now: Assume that G0 is obtained from triangulation T

Remove edges based on a BFS traversal of the dual

Induction: removal of k edges from T ⇒ at most 8/3k
intersected edges

F ′ F ′OR

Actually, we show that |E1(F ′)| ≤ 8/3t(F ′) if F ′ can be
triangulated with t(F ′) edges

Done for
t(F ′) ∈ {0, 1, 2}
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The Upper Bound

|E | ≤ 7n − 14− k , |E | ≤ 3n − 6− k + 8/3k

If a face is not good, we can triangulate it:

Layout subgraphs separated by selfloops individually

=⇒ |E | ≤ 5.5n − 11
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Open Problems

Get a tight bound! We conjecture 5n − 10 to be correct.

Better bounds on the number of edges for 2-bend RAC
(currently the gap is ∼ 67n)

Recognition and characterization of 1-bend and 2-bend RAC
graphs

Thank you for your attention!
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