On RAC Drawings of Graphs with one Bend per Edge

Patrizio Angelini, Michael A. Bekos, Henry Förster, Michael Kaufmann

Wilhelm-Schickard-Institut für Informatik Universität Tübingen, Germany

k-bend RAC Drawings

k-bend: edges drawn as polylines with at most k bends

k-bend RAC Drawings

- k-bend: edges drawn as polylines with at most k bends
- ► Right Angle Crossing: all crossings at 90°

k-bend RAC Drawings

- k-bend: edges drawn as polylines with at most k bends
- ► Right Angle Crossing: all crossings at 90°

Motivation: few bends and large crossing angles increase readability[Purchase'00, Purchase et al.'02, Huang'07, Huang et al.'14]

0-bend RAC Drawing of K_5 1-bend RAC Drawing of K_6

- ► 0-bend RAC:
 - At most 4n 10 edges (tight)

[Didimo et al.'11]

► 0-bend RAC:

- At most 4n 10 edges (tight)
- Maximally dense graphs are 1-planar

[Didimo et al.'11]

[Eades, Liotta'13]

▶ 0-bend RAC:

- At most 4n 10 edges (tight)
- Maximally dense graphs are 1-planar
- Recognition is NP-hard

[Didimo et al.'11] [Eades, Liotta'13] [Argyriou et al.'12]

▶ 0-bend RAC:

- At most 4n 10 edges (tight)
- Maximally dense graphs are 1-planar
- Recognition is NP-hard
- Recognition remains NP-hard if drawing must be upward or 1-planar

[Didimo et al.'11]
[Eades, Liotta'13]
[Argyriou et al.'12]
[Angelini et al.'11]
[Bekos et al.'17]

► 0-bend RAC:

- At most 4n 10 edges (tight)
- Maximally dense graphs are 1-planar
- Recognition is NP-hard
- Recognition remains NP-hard if drawing must be upward or 1-planar
- All IC-planar graphs are RAC, but not all NIC-planar graphs

[Didimo et al.'11]
[Eades, Liotta'13]
[Argyriou et al.'12]
[Angelini et al.'11]
[Bekos et al.'17]
[Brandenburg et al.'16]
[Bachmaier et al.'17]

▶ 0-bend RAC:

- At most 4n 10 edges (tight)
- Maximally dense graphs are 1-planar
- Recognition is NP-hard
- Recognition remains NP-hard if drawing must be upward or 1-planar
- All IC-planar graphs are RAC, but not all NIC-planar graphs
- Studies on variants with restricted vertex position

[Didimo et al.'11]
[Eades, Liotta'13]
[Argyriou et al.'12]
[Angelini et al.'11]
[Bekos et al.'17]
[Brandenburg et al.'16]
[Bachmaier et al.'17]
[Di Giacomo et al.'14]
[Hong, Nagamochi'15]

► 1-bend RAC:

At most 6.5n - 13 edges

[Arikushi et al.'12]

▶ 1-bend RAC graphs with $4.5n - O(\sqrt{n})$ edges

- 2-bend RAC:
 - ► At most 74.2*n* edges

[Arikushi et al.'12]

- ▶ 2-bend RAC graphs with $7.83n O(\sqrt{n})$ edges
- ► 3-bend RAC:
 - ► All graphs are 3-bend RAC

[Didimo et al.'11]

► 1-bend RAC:

ightharpoonup At most 6.5n-13 edges

- [Arikushi et al.'12]
- ▶ 1-bend RAC graphs with $4.5n O(\sqrt{n})$ edges
- Quadratic area for NIC-plane graphs [Chaplick et al.'18]
- Superpolynomial area for 1-plane graphs [Bekos et al.'17]

2-bend RAC:

► At most 74.2*n* edges

[Arikushi et al.'12]

▶ 2-bend RAC graphs with $7.83n - O(\sqrt{n})$ edges

3-bend RAC:

All graphs are 3-bend RAC

[Didimo et al.'11]

► 1-bend RAC:

ightharpoonup At most 6.5n - 13 edges

- [Arikushi et al.'12]
- ▶ 1-bend RAC graphs with $4.5n O(\sqrt{n})$ edges
- Quadratic area for NIC-plane graphs [Chaplick et al.'18]
- Superpolynomial area for 1-plane graphs [Bekos et al.'17]

2-bend RAC:

► At most 74.2*n* edges

- [Arikushi et al.'12]
- ▶ 2-bend RAC graphs with $7.83n O(\sqrt{n})$ edges

3-bend RAC:

- All graphs are 3-bend RAC
- Cubic area

[Didimo et al.'11]

► 1-bend RAC:

ightharpoonup At most 6.5n-13 edges

- [Arikushi et al.'12]
- ▶ 1-bend RAC graphs with $4.5n O(\sqrt{n})$ edges
- Quadratic area for NIC-plane graphs [Chaplick et al.'18]
- Superpolynomial area for 1-plane graphs [Bekos et al.'17]
- ► Maximum degree 3 graphs are 1-bend RAC [Angelini et al.'11]

2-bend RAC:

► At most 74.2*n* edges

[Arikushi et al.'12]

▶ 2-bend RAC graphs with $7.83n - O(\sqrt{n})$ edges

3-bend RAC:

- All graphs are 3-bend RAC
- Cubic area

[Didimo et al.'11]

► 1-bend RAC:

ightharpoonup At most 6.5n - 13 edges

- [Arikushi et al.'12]
- ▶ 1-bend RAC graphs with $4.5n O(\sqrt{n})$ edges
- Quadratic area for NIC-plane graphs [Chaplick et al.'18]
- Superpolynomial area for 1-plane graphs [Bekos et al.'17]
- ► Maximum degree 3 graphs are 1-bend RAC [Angelini et al.'11]

2-bend RAC:

► At most 74.2*n* edges

[Arikushi et al.'12]

- ▶ 2-bend RAC graphs with $7.83n O(\sqrt{n})$ edges
- Maximum degree 6 graphs are 2-bend RAC [Angelini et al.'11]

3-bend RAC:

- All graphs are 3-bend RAC
- Cubic area

[Didimo et al.'11]

► 1-bend RAC:

At most 6.5n - 13 edges

- [Arikushi et al.'12]
- ▶ 1-bend RAC graphs with $4.5n O(\sqrt{n})$ edges
- Quadratic area for NIC-plane graphs [Chaplick et al.'18]
- Superpolynomial area for 1-plane graphs [Bekos et al.'17]
- ► Maximum degree 3 graphs are 1-bend RAC [Angelini et al.'11]

2-bend RAC:

► At most 74.2*n* edges

[Arikushi et al.'12]

- ▶ 2-bend RAC graphs with $7.83n O(\sqrt{n})$ edges
- Maximum degree 6 graphs are 2-bend RAC [Angelini et al.'11]

3-bend RAC:

- All graphs are 3-bend RAC
- Cubic area

[Didimo et al.'11]

Our Contribution

▶ 1-bend RAC graphs have at most 5.5n - 11 edges

Our Contribution

- ▶ 1-bend RAC graphs have at most 5.5n 11 edges
- ► There are infinitely many 1-bend RAC graphs with 5n-10 edges

Our Contribution

- ▶ 1-bend RAC graphs have at most 5.5n 11 edges
- ► There are infinitely many 1-bend RAC graphs with 5n-10 edges
- ▶ This reduces the gap from 2n to 0.5n

► The dodecahedral graph admits a drawing with 4 types of

face geometries

► The dodecahedral graph admits a drawing with 4 types of

face geometries

▶ Both inner- and outermost faces are regular 5-gons

► The dodecahedral graph admits a drawing with 4 types of

face geometries

▶ Both inner- and outermost faces are regular 5-gons
 ⇒ we can glue copies together

► The dodecahedral graph admits a drawing with 4 types of

face geometries

- ▶ Both inner- and outermost faces are regular 5-gons
 ⇒ we can glue copies together
- ▶ By adding 5 edges in each face, we achieve 5n 10 edges

Upper bound on the intersected edges

- Upper bound on the intersected edges
 - ► Remove the planar edges

- Upper bound on the intersected edges
 - Remove the planar edges (their geometry can be arbitrary)

- Upper bound on the intersected edges
 - Remove the planar edges (their geometry can be arbitrary)
 - Planarize

- Upper bound on the intersected edges
 - Remove the planar edges (their geometry can be arbitrary)
 - Planarize

- Upper bound on the intersected edges
 - Remove the planar edges (their geometry can be arbitrary)
 - Planarize

- Upper bound on the intersected edges
 - Remove the planar edges (their geometry can be arbitrary)
 - Planarize

 - By Euler's Formula:

$$\sum ch(v) + \sum ch(f) = -8$$

- Upper bound on the intersected edges
 - Remove the planar edges (their geometry can be arbitrary)
 - Planarize

 - ► By Euler's Formula:

$$\sum ch(v) + \sum ch(f) = -8$$

► Triangles have charge -1 and are incident to a convex bend

- Upper bound on the intersected edges
 - Remove the planar edges (their geometry can be arbitrary)
 - Planarize

 - ► By Euler's Formula:

$$\sum ch(v) + \sum ch(f) = -8$$

► Triangles have charge -1 and are incident to a convex bend

- Discharging phase 1
 - ► For each edge, move 1/2 charge from each endpoint to the face incident to its convex bend

- Discharging phase 1
 - ► For each edge, move 1/2 charge from each endpoint to the face incident to its convex bend

Discharging phase 1

► For each edge, move 1/2 charge from each endpoint to the face incident to its convex bend

- Discharging phase 1
 - ► For each edge, move 1/2 charge from each endpoint to the face incident to its convex bend
 - ► Triangles have charge 0

- Discharging phase 1
 - ► For each edge, move 1/2 charge from each endpoint to the face incident to its convex bend
 - Triangles have charge 0
 - ► Lenses have charge -1 (one convex bend) or 0

- Discharging phase 1
 - ► For each edge, move 1/2 charge from each endpoint to the face incident to its convex bend
 - ► Triangles have charge 0
 - ► Lenses have charge -1 (one convex bend) or 0
 - $hlimetharpoonup ch'(v) \geq 1/2deg(v) 4$

- Discharging phase 2
 - ► Injection from lenses with reflex bends to convex bends at faces of size at least 4

- Discharging phase 2
 - ► Injection from lenses with reflex bends to convex bends at faces of size at least 4
 - Transfer charges from these large faces to lenses

- Discharging phase 2
 - ► Injection from lenses with reflex bends to convex bends at faces of size at least 4
 - Transfer charges from these large faces to lenses

- Discharging phase 2
 - ► Injection from lenses with reflex bends to convex bends at faces of size at least 4
 - Transfer charges from these large faces to lenses
 - ightharpoonup ch'(v) = ch'(v)

- Discharging phase 2
 - ► Injection from lenses with reflex bends to convex bends at faces of size at least 4
 - Transfer charges from these large faces to lenses
 - b ch''(v) = ch'(v)
 - $ightharpoonup ch''(f) \geq 0$, $ch''(f) \geq ch(f)$

$$|E_1| - 4n = \sum \frac{1}{2} \deg(v) - 4$$

$$|E_1| - 4n = \sum \frac{1}{2} \deg(v) - 4 \le \sum ch''(v)$$

$$|E_1|-4n\leq \sum ch''(v)$$

Some maths magic happens
$$|E_1| - 4n \le \sum ch''(v) + \sum ch''(f)$$

$$|E_1| - 4n \le \sum ch''(v) + \sum ch''(f) = -8$$

$$|E_1| - 4n \le \sum ch''(v) + \sum ch''(f) = -8$$

 $\implies |E_1| \le 4n - 8 \implies |E| \le 7n - 14$

Some maths magic happens

$$|E_1| - 4n \le \sum ch''(v) + \sum ch''(f) = -8$$

 $\implies |E_1| \le 4n - 8 \implies |E| \le 7n - 14$

▶ Improvement: Consider planar subgraph G_0

$$|E_1| - 4n \le \sum ch''(v) + \sum ch''(f) = -8$$

 $\implies |E_1| \le 4n - 8 \implies |E| \le 7n - 14$

- ▶ Improvement: Consider planar subgraph G_0
 - Triangles contain no intersected edges

$$|E_1| - 4n \le \sum ch''(v) + \sum ch''(f) = -8$$

 $\implies |E_1| \le 4n - 8 \implies |E| \le 7n - 14$

- ▶ Improvement: Consider planar subgraph G_0
 - ► Triangles contain no intersected edges
 - ▶ Face \mathcal{F} with $d(\mathcal{F})$ vertices has $\leq 4d(\mathcal{F}) 8$ intersected edges

$$|E_1| - 4n \le \sum ch''(v) + \sum ch''(f) = -8$$

 $\implies |E_1| \le 4n - 8 \implies |E| \le 7n - 14$

- ▶ Improvement: Consider planar subgraph G_0
 - ► Triangles contain no intersected edges
 - ▶ Face \mathcal{F} with $d(\mathcal{F})$ vertices has $\leq 4d(\mathcal{F}) 8$ intersected edges
 - ▶ Induction: If G_0 can be triangulated with k edges then $|E_1| \leq 8k$

$$|E_1| - 4n \le \sum ch''(v) + \sum ch''(f) = -8$$

 $\implies |E_1| \le 4n - 8 \implies |E| \le 7n - 14$

- ▶ Improvement: Consider planar subgraph G_0
 - ► Triangles contain no intersected edges
 - ▶ Face \mathcal{F} with $d(\mathcal{F})$ vertices has $\leq 4d(\mathcal{F}) 8$ intersected edges
 - ▶ Induction: If G_0 can be triangulated with k edges then $|E_1| \leq 8k$

$$|E_1| - 4n \le \sum ch''(v) + \sum ch''(f) = -8$$

 $\implies |E_1| \le 4n - 8 \implies |E| \le 7n - 14$

- ▶ Improvement: Consider planar subgraph G_0
 - ► Triangles contain no intersected edges
 - ▶ Face \mathcal{F} with $d(\mathcal{F})$ vertices has $\leq 4d(\mathcal{F}) 8$ intersected edges
 - ▶ Induction: If G_0 can be triangulated with k edges then $|E_1| \leq 8k$

$$|E_1| - 4n \le \sum ch''(v) + \sum ch''(f) = -8$$

 $\implies |E_1| \le 4n - 8 \implies |E| \le 7n - 14$

- ▶ Improvement: Consider planar subgraph G_0
 - ► Triangles contain no intersected edges
 - ▶ Face \mathcal{F} with $d(\mathcal{F})$ vertices has $\leq 4d(\mathcal{F}) 8$ intersected edges
 - ▶ Induction: If G_0 can be triangulated with k edges then $|E_1| \leq 8k$

$$|E_1| - 4n \le \sum ch''(v) + \sum ch''(f) = -8$$

 $\implies |E_1| \le 4n - 8 \implies |E| \le 7n - 14$

- ▶ Improvement: Consider planar subgraph G_0
 - ► Triangles contain no intersected edges
 - ▶ Face \mathcal{F} with $d(\mathcal{F})$ vertices has $\leq 4d(\mathcal{F}) 8$ intersected edges
 - ▶ Induction: If G_0 can be triangulated with k edges then $|E_1| \leq 8k$

$$|E_1| - 4n \le \sum ch''(v) + \sum ch''(f) = -8$$

 $\implies |E_1| \le 4n - 8 \implies |E| \le 7n - 14$

- ▶ Improvement: Consider planar subgraph G_0
 - ► Triangles contain no intersected edges
 - ▶ Face \mathcal{F} with $d(\mathcal{F})$ vertices has $\leq 4d(\mathcal{F}) 8$ intersected edges
 - ▶ Induction: If G_0 can be triangulated with k edges then $|E_1| \leq 8k$

$$|E_1| - 4n \le \sum ch''(v) + \sum ch''(f) = -8$$

 $\implies |E_1| \le 4n - 8 \implies |E| \le 7n - 14$

- ▶ Improvement: Consider planar subgraph G_0
 - Triangles contain no intersected edges
 - ▶ Face \mathcal{F} with $d(\mathcal{F})$ vertices has $\leq 4d(\mathcal{F}) 8$ intersected edges
 - ▶ Induction: If G_0 can be triangulated with k edges then $|E_1| \leq 8k$

$$|E_1| - 4n \le \sum ch''(v) + \sum ch''(f) = -8$$

 $\implies |E_1| \le 4n - 8 \implies |E| \le 7n - 14$

- ▶ Improvement: Consider planar subgraph G_0
 - Triangles contain no intersected edges
 - ▶ Face \mathcal{F} with $d(\mathcal{F})$ vertices has $\leq 4d(\mathcal{F}) 8$ intersected edges
 - ▶ Induction: If G_0 can be triangulated with k edges then $|E_1| \leq 8k$

$$|E_1| - 4n \le \sum ch''(v) + \sum ch''(f) = -8$$

 $\implies |E_1| \le 4n - 8 \implies |E| \le 7n - 14$

- ▶ Improvement: Consider planar subgraph G_0
 - ► Triangles contain no intersected edges
 - ▶ Face \mathcal{F} with $d(\mathcal{F})$ vertices has $\leq 4d(\mathcal{F}) 8$ intersected edges
 - ▶ Induction: If G_0 can be triangulated with k edges then $|E_1| \leq 8k$

Some maths magic happens

$$|E_1| - 4n \le \sum ch''(v) + \sum ch''(f) = -8$$

 $\implies |E_1| \le 4n - 8 \implies |E| \le 7n - 14$

- ▶ Improvement: Consider planar subgraph G_0
 - Triangles contain no intersected edges
 - ▶ Face \mathcal{F} with $d(\mathcal{F})$ vertices has $\leq 4d(\mathcal{F}) 8$ intersected edges
 - ▶ Induction: If G_0 can be triangulated with k edges then $|E_1| \leq 8k$

 $|E| \le 7n - 14 - k, |E| \le 3n - 6 - k + 8k \implies |E| \le 6.5n - 13$

Some maths magic happens

Step 1:
$$\gg 0$$
 for bounded faces

$$|E_1| - 4n \le \sum ch''(v) + \sum ch''(f) = -8$$

 $\implies |E_1| \le 4n - 8 \implies |E| \le 7n - 14$

- ▶ Improvement: Consider planar subgraph G_0
 - ► Triangles contain no intersected edges
 - ▶ Face \mathcal{F} with $d(\mathcal{F})$ vertices has $\leq 4d(\mathcal{F}) 8$ intersected edges
 - ▶ Induction: If G_0 can be triangulated with k edges then $|E_1| \leq 8k$

 $|E| \le 7n - 14 - k, |E| \le 3n - 6 - k + 8k \implies |E| \le 6.5n - 13$

Step 1:
$$\gg$$
 0 for bounded faces

$$|E_1| - 4n \le \sum ch''(v) + \sum ch''(f) = -8$$

 $\implies |E_1| \le 4n - 8 \implies |E| \le 7n - 14$

- Improvement: Consider planar subgestit: Go
 - ightharpoonup Triangles contain no intersected edge $2^{d(\mathcal{F})}$ + something
 - ▶ Face \mathcal{F} with $d(\mathcal{F})$ vertices has $\leq 4d(\mathcal{F}) 8$ intersected edges
 - ▶ Induction: If G_0 can be triangulated with k edges then $|E_1| \leq 8k$

$$|E| \le 7n - 14 - k, |E| \le 3n - 6 - k + 8k \implies |E| \le 6.5n - 13$$

Step 1:
$$\gg$$
 0 for bounded faces

$$|E_1| - 4n \le \sum ch''(v) + \sum ch''(f) = -8$$

 $\implies |E_1| \le 4n - 8 \implies |E| \le 7n - 14$

- Improvement: Consider planar subgestit. Go
 - ▶ Triangles contain no intersected edge $2d(\mathcal{F})$ + something
 - ► Face \mathcal{F} with $d(\mathcal{F})$ vertices has $\leq 4d(\mathcal{F}) 8$ intersected edges. Step 2:
 - Induction: If G_0 can be triangulated wit betterganalysis of small faces

$$|E| \le 7n - 14 - k$$
, $|E| \le 3n - 6 - k + 8k \implies |E| \le 6.5n - 13$

Properties of Faces of Planar Subgraph G₀

► We count:

Properties of Faces of Planar Subgraph G₀

- ► We count:
 - ightharpoonup vertices $d(\mathcal{F})=11$

- ► We count:
 - ightharpoonup vertices $d(\mathcal{F})=11$
 - ▶ biconnected facial walks $b(\mathcal{F}) = 3$

- ► We count:
 - ightharpoonup vertices $d(\mathcal{F})=11$
 - ▶ biconnected facial walks $b(\mathcal{F}) = 3$
 - ightharpoonup multiple occurences beyond first $m(\mathcal{F})=1$

- ► We count:
 - ightharpoonup vertices $d(\mathcal{F})=11$
 - biconnected facial walks $b(\mathcal{F}) = 3$
 - ightharpoonup multiple occurences beyond first $m(\mathcal{F})=1$
 - ▶ isolated vertices $i(\mathcal{F}) = 1$

- ► We count:
 - ightharpoonup vertices $d(\mathcal{F})=11$
 - ▶ biconnected facial walks $b(\mathcal{F}) = 3$
 - ightharpoonup multiple occurences beyond first $m(\mathcal{F})=1$
 - ▶ isolated vertices $i(\mathcal{F}) = 1$
- ▶ Length of boundary $\ell(\mathcal{F}) = d(\mathcal{F}) + m(\mathcal{F}) i(\mathcal{F}) = 11$

Consider planarization

Consider planarization

- Consider planarization
 - ightharpoonup planar edge e is good if it cannot see another planar edge e'

- Consider planarization
 - ightharpoonup planar edge e is good if it cannot see another planar edge e'
 - \triangleright \mathcal{F} is good if all its edges are good (or if it is a triangle)

- Consider planarization
 - ightharpoonup planar edge e is good if it cannot see another planar edge e'
 - \triangleright \mathcal{F} is good if all its edges are good (or if it is a triangle)
 - In a good face, each facial walk is surrounded by a (planarized) face with at least twice the length of the facial walk

- Consider planarization
 - ightharpoonup planar edge e is good if it cannot see another planar edge e'
 - \triangleright \mathcal{F} is good if all its edges are good (or if it is a triangle)
 - In a good face, each facial walk is surrounded by a (planarized) face with at least twice the length of the facial walk
 - These faces have at least $2\ell(\mathcal{F}) 4b(\mathcal{F})$ initial charge (Recall: $ch(f) = \ell(f) 4$)

$$|E_1(\mathcal{F})| \leq 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8$$

$$|E_1(\mathcal{F})| \leq 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8$$

 $|E_1(\mathcal{F})| - 4d(\mathcal{F}) \leq \sum ch''(v)$

- ► We know the following:
 - ▶ 1) $|E_1(\mathcal{F})| 4d(\mathcal{F}) \leq \sum ch''(v)$

$$|E_1(\mathcal{F})| \leq 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8$$

 $|E_1(\mathcal{F})| - 4d(\mathcal{F}) \leq \sum ch''(v)$

- ► We know the following:
 - ▶ 1) $|E_1(\mathcal{F})| 4d(\mathcal{F}) \leq \sum ch''(v)$
 - ightharpoonup 2) $ch''(f) \geq ch(f)$

$$|E_1(\mathcal{F})| \leq 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8$$

 $|E_1(\mathcal{F})| - 4d(\mathcal{F}) \leq \sum ch''(v)$

- ► We know the following:
 - ▶ 1) $|E_1(\mathcal{F})| 4d(\mathcal{F}) \leq \sum ch''(v)$
 - ightharpoonup 2) $ch''(f) \geq ch(f)$
 - ightharpoonup 3) $\sum ch(f) \geq 2\ell(\mathcal{F}) 4b(\mathcal{F})$

We want to show:

$$|E_1(\mathcal{F})| \leq 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8$$

 $|E_1(\mathcal{F})| - 4d(\mathcal{F}) \leq \sum ch''(v) + \sum ch''(f) - 2\ell(\mathcal{F}) + 4b(\mathcal{F})$

► We know the following:

- ▶ 1) $|E_1(\mathcal{F})| 4d(\mathcal{F}) \leq \sum ch''(v)$
- ightharpoonup 2) $ch''(f) \geq ch(f)$
- ightharpoonup 3) $\sum ch(f) \geq 2\ell(\mathcal{F}) 4b(\mathcal{F})$

We want to show:

$$|E_1(\mathcal{F})| \leq 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8$$

 $|E_1(\mathcal{F})| - 4d(\mathcal{F}) \leq \sum ch''(v) + \sum ch''(f) - 2\ell(\mathcal{F}) + 4b(\mathcal{F})$

► We know the following:

▶ 1)
$$|E_1(\mathcal{F})| - 4d(\mathcal{F}) \leq \sum ch''(v)$$

- ightharpoonup 2) $ch''(f) \geq ch(f)$
- ightharpoonup 3) $\sum ch(f) \geq 2\ell(\mathcal{F}) 4b(\mathcal{F})$
- ▶ 4) $\sum ch''(v) + \sum ch''(f) = -8$

$$|E_1(\mathcal{F})| \leq 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8$$

 $|E_1(\mathcal{F})| - 4d(\mathcal{F}) \leq -8 - 2\ell(\mathcal{F}) + 4b(\mathcal{F})$

- ► We know the following:
 - ▶ 1) $|E_1(\mathcal{F})| 4d(\mathcal{F}) \leq \sum ch''(v)$
 - ightharpoonup 2) $ch''(f) \geq ch(f)$
 - ▶ 3) $\sum ch(f) \geq 2\ell(\mathcal{F}) 4b(\mathcal{F})$
 - ▶ 4) $\sum ch''(v) + \sum ch''(f) = -8$

$$|E_1(\mathcal{F})| \leq 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8$$

 $|E_1(\mathcal{F})| - 4d(\mathcal{F}) \leq -8 - 2\ell(\mathcal{F}) + 4b(\mathcal{F})$

- ► We know the following:
 - ▶ 1) $|E_1(\mathcal{F})| 4d(\mathcal{F}) \leq \sum ch''(v)$
 - ightharpoonup 2) $ch''(f) \geq ch(f)$
 - ightharpoonup 3) $\sum ch(f) \geq 2\ell(\mathcal{F}) 4b(\mathcal{F})$
 - ▶ 4) $\sum ch''(v) + \sum ch''(f) = -8$
 - ► 5) $\ell(\mathcal{F}) = d(\mathcal{F}) + m(\mathcal{F}) i(\mathcal{F})$

$$|E_1(\mathcal{F})| \leq 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8$$

 $|E_1(\mathcal{F})| - 4d(\mathcal{F}) \leq -8 - 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F})$

- ► We know the following:
 - ▶ 1) $|E_1(\mathcal{F})| 4d(\mathcal{F}) \leq \sum ch''(v)$
 - ightharpoonup 2) $ch''(f) \geq ch(f)$
 - $ightharpoonup 3) \sum ch(f) \geq 2\ell(\mathcal{F}) 4b(\mathcal{F})$
 - ▶ 4) $\sum ch''(v) + \sum ch''(f) = -8$
 - ► 5) $\ell(\mathcal{F}) = d(\mathcal{F}) + m(\mathcal{F}) i(\mathcal{F})$

$$|E_1(\mathcal{F})| \leq 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8$$

 $|E_1(\mathcal{F})| \leq 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8$

- ► We know the following:
 - ▶ 1) $|E_1(\mathcal{F})| 4d(\mathcal{F}) \leq \sum ch''(v)$
 - ightharpoonup 2) $ch''(f) \geq ch(f)$
 - ▶ 3) $\sum ch(f) \geq 2\ell(\mathcal{F}) 4b(\mathcal{F})$
 - ▶ 4) $\sum ch''(v) + \sum ch''(f) = -8$
 - ► 5) $\ell(\mathcal{F}) = d(\mathcal{F}) + m(\mathcal{F}) i(\mathcal{F})$

 $ightharpoonup K_n$ contains $\binom{n}{2}$ edges

- $ightharpoonup K_n$ contains $\binom{n}{2}$ edges
- ightharpoonup All bounded planar faces $\mathcal F$ which can be triangulated with

- $ightharpoonup K_n$ contains $\binom{n}{2}$ edges
- ightharpoonup All bounded planar faces $\mathcal F$ which can be triangulated with
 - one edge:

2 edges missing to K_4

- $ightharpoonup K_n$ contains $\binom{n}{2}$ edges
- ightharpoonup All bounded planar faces $\mathcal F$ which can be triangulated with
 - one edge:

2 edges missing to K_4

1 edges missing to K_3

- $ightharpoonup K_n$ contains $\binom{n}{2}$ edges
- ightharpoonup All bounded planar faces $\mathcal F$ which can be triangulated with
 - one edge:

2 edges missing to K_4

1 edges missing to K_3

two edges:

- $ightharpoonup K_n$ contains $\binom{n}{2}$ edges
- ightharpoonup All bounded planar faces $\mathcal F$ which can be triangulated with
 - one edge:

2 edges missing to K_4

1 edges missing to K_3

two edges:

5 edges missing to K_5

- $ightharpoonup K_n$ contains $\binom{n}{2}$ edges
- ightharpoonup All bounded planar faces $\mathcal F$ which can be triangulated with
 - one edge:

2 edges missing to K_4

1 edges missing to K_3

two edges:

5 edges missing to K_5 2 edges missing to K_4

- $ightharpoonup K_n$ contains $\binom{n}{2}$ edges
- ightharpoonup All bounded planar faces $\mathcal F$ which can be triangulated with
 - one edge:

2 edges missing to K_4

1 edges missing to K_3

two edges:

5 edges missing to K_5 2 edges missing to K_4 2 edges missing to K_3

- $ightharpoonup K_n$ contains $\binom{n}{2}$ edges
- ightharpoonup All bounded planar faces $\mathcal F$ which can be triangulated with
 - one edge:

2 edges missing to K_4

1 edges missing to K_3

We assume 8/3 intersected edges here.

two edges:

5 edges missing to K_5 2 edges missing to K_4 2 edges missing to K_3

- $ightharpoonup K_n$ contains $\binom{n}{2}$ edges
- ightharpoonup All bounded planar faces $\mathcal F$ which can be triangulated with
 - one edge:

2 edges missing to K_4

1 edges missing to K_3

We assume 8/3 intersected edges here.

two edges:

5 edges missing to K_5 2 edges missing to K_4 2 edges missing to K_3 We assume 16/3 intersected edges here.

$$|E_1| \le 8/3|\mathcal{F}_1| + 16/3|\mathcal{F}_2| + \sum_{\mathcal{F} \in \mathcal{F}_{3+}} 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8$$

So far we know:

$$|E_1| \le 8/3|\mathcal{F}_1| + 16/3|\mathcal{F}_2| + \sum_{\mathcal{F} \in \mathcal{F}_{3+}} 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8$$

ightharpoonup Now: Assume that G_0 is obtained from triangulation T

$$|E_1| \le 8/3|\mathcal{F}_1| + 16/3|\mathcal{F}_2| + \sum_{\mathcal{F} \in \mathcal{F}_{3+}} 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8$$

- ightharpoonup Now: Assume that G_0 is obtained from triangulation T
 - Induction: removal of k edges from $T \Rightarrow$ at most 8/3k intersected edges

$$|E_1| \le 8/3|\mathcal{F}_1| + 16/3|\mathcal{F}_2| + \sum_{\mathcal{F} \in \mathcal{F}_{3+}} 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8$$

- ightharpoonup Now: Assume that G_0 is obtained from triangulation T
 - Induction: removal of k edges from $T \Rightarrow$ at most 8/3k intersected edges
 - Actually, we show that $|E_1(\mathcal{F}')| \leq 8/3t(\mathcal{F}')$ if \mathcal{F}' can be triangulated with $t(\mathcal{F}')$ edges

$$|E_1| \le 8/3|\mathcal{F}_1| + 16/3|\mathcal{F}_2| + \sum_{\mathcal{F} \in \mathcal{F}_{3+}} 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8$$

- ightharpoonup Now: Assume that G_0 is obtained from triangulation T
 - ▶ Induction: removal of k edges from $T \Rightarrow$ at most 8/3k intersected edges
 - Actually, we show that $|E_1(\mathcal{F}')| \leq 8/3t(\mathcal{F}')$ if \mathcal{F}' can be triangulated with $t(\mathcal{F}')$ edges
 - Remove edges based on a BFS traversal of the dual

$$|E_1| \le 8/3|\mathcal{F}_1| + 16/3|\mathcal{F}_2| + \sum_{\mathcal{F} \in \mathcal{F}_{3+}} 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8$$

- ightharpoonup Now: Assume that G_0 is obtained from triangulation T
 - Induction: removal of k edges from $T \Rightarrow$ at most 8/3k intersected edges
 - Actually, we show that $|E_1(\mathcal{F}')| \leq 8/3t(\mathcal{F}')$ if \mathcal{F}' can be triangulated with $t(\mathcal{F}')$ edges
 - Remove edges based on a BFS traversal of the dual

$$|E_1| \le 8/3|\mathcal{F}_1| + 16/3|\mathcal{F}_2| + \sum_{\mathcal{F} \in \mathcal{F}_{3+}} 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8$$

- ightharpoonup Now: Assume that G_0 is obtained from triangulation T
 - Induction: removal of k edges from $T \Rightarrow$ at most 8/3k intersected edges
 - Actually, we show that $|E_1(\mathcal{F}')| \leq 8/3t(\mathcal{F}')$ if \mathcal{F}' can be triangulated with $t(\mathcal{F}')$ edges
 - Remove edges based on a BFS traversal of the dual

$$|E_1| \le 8/3|\mathcal{F}_1| + 16/3|\mathcal{F}_2| + \sum_{\mathcal{F} \in \mathcal{F}_{3+}} 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8$$

- ightharpoonup Now: Assume that G_0 is obtained from triangulation T
 - ▶ Induction: removal of k edges from $T \Rightarrow$ at most 8/3k intersected edges
 - Actually, we show that $|E_1(\mathcal{F}')| \leq 8/3t(\mathcal{F}')$ if \mathcal{F}' can be triangulated with $t(\mathcal{F}')$ edges
 - Remove edges based on a BFS traversal of the dual

$$|E_1| \le 8/3|\mathcal{F}_1| + 16/3|\mathcal{F}_2| + \sum_{\mathcal{F} \in \mathcal{F}_{3+}} 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8$$

- ightharpoonup Now: Assume that G_0 is obtained from triangulation T
 - ▶ Induction: removal of k edges from $T \Rightarrow$ at most 8/3k intersected edges
 - Actually, we show that $|E_1(\mathcal{F}')| \leq 8/3t(\mathcal{F}')$ if \mathcal{F}' can be triangulated with $t(\mathcal{F}')$ edges
 - Remove edges based on a BFS traversal of the dual

So far we know: Done for
$$t(\mathcal{F}') \in \{0, 1, 2\}$$

$$|E_1| \le 8/3|\mathcal{F}_1| + 16/3|\mathcal{F}_2| + \sum_{\mathcal{F} \in \mathcal{F}_{3+}} 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8$$

- ightharpoonup Now: Assume that G_0 is obtained from triangulation T
 - ▶ Induction: removal of k edges from $T \Rightarrow$ at most 8/3kintersected edges
 - Actually, we show that $|E_1(\mathcal{F}')| \leq 8/3t(\mathcal{F}')$ if \mathcal{F}' can be triangulated with $t(\mathcal{F}')$ edges
 - Remove edges based on a BFS traversal of the dual

$$t(\mathcal{F}') = 3 \Rightarrow |E_1(\mathcal{F}')| \leq 8$$

$$|E_1(\mathcal{F}')| \leq 2d(\mathcal{F}') - 2m(\mathcal{F}') + 2i(\mathcal{F}') + 4b(\mathcal{F}') - 8$$

$$d(\mathcal{F}')=6$$

$$m(\mathcal{F}')=0$$

$$i(\mathcal{F}')=0$$

$$b(\mathcal{F}')=1$$

$$|E_1(\mathcal{F}')| \leq 8$$

$$t(\mathcal{F}') = 3 \Rightarrow |E_1(\mathcal{F}')| \leq 8$$

$$|E_1(\mathcal{F}')| \leq 2d(\mathcal{F}') - 2m(\mathcal{F}') + 2i(\mathcal{F}') + 4b(\mathcal{F}') - 8$$

$$d(\mathcal{F}') = 0$$

$$m(\mathcal{F}') = 0$$

$$i(\mathcal{F}') = 0$$

$$b(\mathcal{F}') = 1$$

$$|E_1(\mathcal{F}')| \le 8$$

$$d(\mathcal{F}') = 5$$

$$m(\mathcal{F}') = 1$$

$$i(\mathcal{F}') = 0$$

$$b(\mathcal{F}') = 2$$

$$|E_1(\mathcal{F}')| \le 8$$

$$t(\mathcal{F}') = 3 \Rightarrow |E_1(\mathcal{F}')| \leq 8$$

$$|E_1(\mathcal{F}')| \leq 2d(\mathcal{F}') - 2m(\mathcal{F}') + 2i(\mathcal{F}') + 4b(\mathcal{F}') - 8$$

$$d(\mathcal{F}') = 6$$

$$m(\mathcal{F}') = 0$$

$$i(\mathcal{F}') = 0$$

$$b(\mathcal{F}') = 1$$

$$|E_1(\mathcal{F}')| \le 8$$

$$t(\mathcal{F}') = 3 \Rightarrow |E_1(\mathcal{F}')| \leq 8$$

$$|E_1(\mathcal{F}')| \leq 2d(\mathcal{F}') - 2m(\mathcal{F}') + 2i(\mathcal{F}') + 4b(\mathcal{F}') - 8$$

$$d(\mathcal{F}') = 6$$

$$m(\mathcal{F}') = 0$$

$$i(\mathcal{F}') = 0$$

$$b(\mathcal{F}') = 1$$

$$d(\mathcal{F}') = 4$$

$$m(\mathcal{F}') = 2$$

$$i(\mathcal{F}') = 0$$

$$b(\mathcal{F}') = 3$$

$$|E_1(\mathcal{F}')| \le 8$$

$$b(\mathcal{F}') = 2$$
$$|E_1(\mathcal{F}')| \le 8$$

$$t(\mathcal{F}') = 3 \Rightarrow |E_1(\mathcal{F}')| \leq 8$$

$$|E_1(\mathcal{F}')| \leq 2d(\mathcal{F}') - 2m(\mathcal{F}') + 2i(\mathcal{F}') + 4b(\mathcal{F}') - 8$$

$$d(\mathcal{F}') = 6$$

$$m(\mathcal{F}') = 0$$

$$i(\mathcal{F}') = 0$$

$$b(\mathcal{F}') = 1$$

$$d(\mathcal{F}') = 4$$

$$m(\mathcal{F}') = 2$$

$$i(\mathcal{F}') = 0$$

$$b(\mathcal{F}') = 3$$

$$|E_1(\mathcal{F}')| \le 8$$

$$d(\mathcal{F}') = 5$$

$$m(\mathcal{F}') = 1$$

$$i(\mathcal{F}') = 0$$

$$b(\mathcal{F}') = 2$$

$$|E_1(\mathcal{F}')| \le 8$$

$$d(\mathcal{F}') = 4$$

$$m(\mathcal{F}') = 2$$

$$i(\mathcal{F}') = 0$$

$$b(\mathcal{F}') = 3$$

$$|E_1(\mathcal{F}')| \le 8$$

$$t(\mathcal{F}') = 3 \Rightarrow |E_1(\mathcal{F}')| \leq 8$$

$$|E_1(\mathcal{F}')| \leq 2d(\mathcal{F}') - 2m(\mathcal{F}') + 2i(\mathcal{F}') + 4b(\mathcal{F}') - 8$$

$$d(\mathcal{F}') = 6$$

$$m(\mathcal{F}') = 0$$

$$i(\mathcal{F}') = 0$$

$$b(\mathcal{F}') = 1$$

$$d(\mathcal{F}') = 4$$

$$m(\mathcal{F}') = 2$$

$$i(\mathcal{F}') = 0$$

$$b(\mathcal{F}') = 3$$

$$|E_1(\mathcal{F}')| \le 8$$

$$d(\mathcal{F}') = 5$$

$$m(\mathcal{F}') = 1$$

$$i(\mathcal{F}') = 0$$

$$b(\mathcal{F}') = 2$$

$$|E_1(\mathcal{F}')| \le 8$$

$$d(\mathcal{F}') = 4$$

$$m(\mathcal{F}') = 2$$

$$i(\mathcal{F}') = 0$$

$$b(\mathcal{F}') = 3$$

$$|E_1(\mathcal{F}')| \le 8$$

$$d(\mathcal{F}') = 4$$

$$m(\mathcal{F}') = 2$$

$$i(\mathcal{F}') = 0$$

$$b(\mathcal{F}') = 3$$

$$b(\mathcal{F}') = 3$$

$$|E_1(\mathcal{F}')| \leq 8$$

$$t(\mathcal{F}') > 3$$

$$|E_1(\mathcal{F})| \leq 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8 \leq 8/3t(\mathcal{F})$$

$$t(\mathcal{F}') > 3$$

$$|E_1(\mathcal{F})| \leq 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8 \leq 8/3t(\mathcal{F})$$

$$t(\mathcal{F}') > 3$$

$$|E_1(\mathcal{F})| \leq 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8 \leq 8/3t(\mathcal{F})$$

$$f'$$

$$d(\mathcal{F}') = d(\mathcal{F}) + 1$$

$$m(\mathcal{F}') = m(\mathcal{F})$$

$$i(\mathcal{F}') = i(\mathcal{F})$$

$$b(\mathcal{F}') = b(\mathcal{F})$$

$$|\mathcal{E}_{1}(\mathcal{F}')| \leq 8/3t(\mathcal{F}) + 2$$

$$t(\mathcal{F}') > 3$$

$$|E_1(\mathcal{F})| \leq 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8 \leq 8/3t(\mathcal{F})$$

$$t(\mathcal{F}') > 3$$

$$|E_1(\mathcal{F})| \leq 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8 \leq 8/3t(\mathcal{F})$$

$$d(\mathcal{F}') = d(\mathcal{F})$$

$$m(\mathcal{F}') = m(\mathcal{F}) + 1$$

$$i(\mathcal{F}') = i(\mathcal{F})$$

$$b(\mathcal{F}') = b(\mathcal{F}) + 1$$

$$|E_1(\mathcal{F}')| \le 8/3t(\mathcal{F}) + 2$$

$$t(\mathcal{F}') > 3$$

$$|E_1(\mathcal{F})| \leq 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8 \leq 8/3t(\mathcal{F})$$

$$t(\mathcal{F}') > 3$$

$$|E_1(\mathcal{F})| \leq 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8 \leq 8/3t(\mathcal{F})$$

$$t(\mathcal{F}') > 3$$

$$|E_1(\mathcal{F})| \leq 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8 \leq 8/3t(\mathcal{F})$$

$$d(\mathcal{F}') = d(\mathcal{F})$$

$$m(\mathcal{F}') = m(\mathcal{F}) + 1$$

$$i(\mathcal{F}') = i(\mathcal{F})$$

$$b(\mathcal{F}') = b(\mathcal{F}) + 1$$

$$|\mathcal{E}_1(\mathcal{F}')| \le 8/3t(\mathcal{F}) + 2$$

$$t(\mathcal{F}') > 3$$

$$|E_1(\mathcal{F})| \leq 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8 \leq 8/3t(\mathcal{F})$$

$$t(\mathcal{F}') > 3$$

$$|E_1(\mathcal{F})| \leq 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8 \leq 8/3t(\mathcal{F})$$

$$t(\mathcal{F}') > 3$$

$$|E_1(\mathcal{F})| \leq 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8 \leq 8/3t(\mathcal{F})$$

$$t(\mathcal{F}') > 3$$

$$|E_1(\mathcal{F})| \leq 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8 \leq 8/3t(\mathcal{F})$$

$$t(\mathcal{F}') > 3$$

$$|E_1(\mathcal{F})| \leq 2d(\mathcal{F}) - 2m(\mathcal{F}) + 2i(\mathcal{F}) + 4b(\mathcal{F}) - 8 \leq 8/3t(\mathcal{F})$$

 $|E| \le 7n - 14 - k$, $|E| \le 3n - 6 - k + 8/3k$

► $|E| \le 7n - 14 - k$, $|E| \le 3n - 6 - k + 8/3k$ ⇒ $|E| \le 5.5n - 11$

► $|E| \le 7n - 14 - k$, $|E| \le 3n - 6 - k + 8/3k$ ⇒ $|E| \le 5.5n - 11$

► $|E| \le 7n - 14 - k$, $|E| \le 3n - 6 - k + 8/3k$ ⇒ $|E| \le 5.5n - 11$

► $|E| \le 7n - 14 - k$, $|E| \le 3n - 6 - k + 8/3k$ ⇒ $|E| \le 5.5n - 11$

► $|E| \le 7n - 14 - k$, $|E| \le 3n - 6 - k + 8/3k$ ⇒ $|E| \le 5.5n - 11$

►
$$|E| \le 7n - 14 - k$$
, $|E| \le 3n - 6 - k + 8/3k$
⇒ $|E| \le 5.5n - 11$

►
$$|E| \le 7n - 14 - k$$
, $|E| \le 3n - 6 - k + 8/3k$
⇒ $|E| \le 5.5n - 11$

▶ If a face is not good, we can triangulate it:

Layout subgraphs separated by selfloops individually

▶ Get a tight bound! We conjecture 5n - 10 to be correct.

- ▶ Get a tight bound! We conjecture 5n 10 to be correct.
- ▶ Better bounds on the number of edges for 2-bend RAC (currently the gap is $\sim 67n$)

- ▶ Get a tight bound! We conjecture 5n 10 to be correct.
- ▶ Better bounds on the number of edges for 2-bend RAC (currently the gap is $\sim 67n$)
- Recognition and characterization of 1-bend and 2-bend RAC graphs

- ▶ Get a tight bound! We conjecture 5n 10 to be correct.
- ▶ Better bounds on the number of edges for 2-bend RAC (currently the gap is $\sim 67n$)
- Recognition and characterization of 1-bend and 2-bend RAC graphs

Thank you for your attention!