On RAC Drawings of Graphs with one Bend per Edge

Patrizio Angelini, Michael A. Bekos, Henry Förster, Michael Kaufmann

Wilhelm-Schickard-Institut für Informatik Universität Tübingen, Germany

k-bend RAC Drawings

- k-bend: edges drawn as polylines with at most k bends

0-bend RAC Drawing of K_{5}

1-bend RAC Drawing of K_{6}

k-bend RAC Drawings

- k-bend: edges drawn as polylines with at most k bends
- Right Angle Crossing: all crossings at 90°

0-bend RAC Drawing of K_{5}

1-bend RAC Drawing of K_{6}

k-bend RAC Drawings

- k-bend: edges drawn as polylines with at most k bends
- Right Angle Crossing: all crossings at 90°
- Motivation: few bends and large crossing angles increase readability[Purchase'00, Purchase et al. '02, Huang'07, Huang et al. '14]

0-bend RAC Drawing of K_{5}

1-bend RAC Drawing of K_{6}

Known Results

- 0-bend RAC:
- At most $4 n-10$ edges (tight)

Known Results

- 0-bend RAC:
- At most $4 n-10$ edges (tight)
- Maximally dense graphs are 1-planar
[Didimo et al.'11]
[Eades, Liotta'13]

Known Results

- 0-bend RAC:
- At most $4 n-10$ edges (tight)
- Maximally dense graphs are 1-planar
- Recognition is NP-hard
[Didimo et al.'11]
[Eades, Liotta'13]
[Argyriou et al.'12]

Known Results

- 0-bend RAC:
- At most $4 n-10$ edges (tight)
- Maximally dense graphs are 1-planar
- Recognition is NP-hard
- Recognition remains NP-hard if drawing must be upward or 1-planar
[Didimo et al.'11]
[Eades, Liotta'13]
[Argyriou et al.'12]
[Angelini et al.'11]
[Bekos et al.'17]

Known Results

- 0-bend RAC:
- At most $4 n-10$ edges (tight)
- Maximally dense graphs are 1-planar
- Recognition is NP-hard
- Recognition remains NP-hard if drawing must be upward or 1-planar
- All IC-planar graphs are RAC, but not all NIC-planar graphs
[Didimo et al.'11]
[Eades, Liotta'13]
[Argyriou et al.'12]
[Angelini et al.'11]
[Bekos et al.'17]
[Brandenburg et al.'16]
[Bachmaier et al.'17]

Known Results

- 0-bend RAC:
- At most $4 n-10$ edges (tight)
- Maximally dense graphs are 1-planar
- Recognition is NP-hard
- Recognition remains NP-hard if drawing must be upward or 1-planar
- All IC-planar graphs are RAC, but not all NIC-planar graphs
- Studies on variants with restricted vertex position
[Didimo et al.'11]
[Eades, Liotta'13]
[Argyriou et al.'12]
[Angelini et al.'11]
[Bekos et al.'17]
[Brandenburg et al.'16]
[Bachmaier et al.'17]
[Di Giacomo et al.'14]
[Hong, Nagamochi'15]

Known Results

- 1-bend RAC:
- At most $6.5 n-13$ edges

[Arikushi et al.'12]

- 1-bend RAC graphs with $4.5 n-O(\sqrt{n})$ edges
- 2-bend RAC:
- At most $74.2 n$ edges
- 2-bend RAC graphs with $7.83 n-O(\sqrt{n})$ edges
- 3-bend RAC:
- All graphs are 3-bend RAC

Known Results

- 1-bend RAC:
- At most $6.5 n-13$ edges
- 1-bend RAC graphs with $4.5 n-O(\sqrt{n})$ edges
- Quadratic area for NIC-plane graphs [Chaplick et al.'18]
- Superpolynomial area for 1-plane graphs [Bekos et al.'17]
- 2-bend RAC:
- At most $74.2 n$ edges
[Arikushi et al.'12]
- 2-bend RAC graphs with $7.83 n-O(\sqrt{n})$ edges
- 3-bend RAC:
- All graphs are 3-bend RAC

Known Results

- 1-bend RAC:
- At most $6.5 n-13$ edges
- 1-bend RAC graphs with $4.5 n-O(\sqrt{n})$ edges
- Quadratic area for NIC-plane graphs
- Superpolynomial area for 1-plane graphs [Bekos et al.'17]
- 2-bend RAC:
- At most $74.2 n$ edges
[Arikushi et al.'12]
- 2-bend RAC graphs with $7.83 n-O(\sqrt{n})$ edges
- 3-bend RAC:
- All graphs are 3-bend RAC
[Didimo et al.'11]
- Cubic area
[Di Giacomo et al.'11]

Known Results

- 1-bend RAC:
- At most $6.5 n-13$ edges
- 1-bend RAC graphs with $4.5 n-O(\sqrt{n})$ edges
- Quadratic area for NIC-plane graphs [Chaplick et al.'18]
- Superpolynomial area for 1-plane graphs [Bekos et al.'17]
- Maximum degree 3 graphs are 1-bend RAC [Angelini et al.'11]
- 2-bend RAC:
- At most $74.2 n$ edges
[Arikushi et al.'12]
- 2-bend RAC graphs with $7.83 n-O(\sqrt{n})$ edges
- 3-bend RAC:
- All graphs are 3-bend RAC
[Didimo et al.'11]
- Cubic area
[Di Giacomo et al.'11]

Known Results

- 1-bend RAC:
- At most $6.5 n-13$ edges
- 1-bend RAC graphs with $4.5 n-O(\sqrt{n})$ edges
- Quadratic area for NIC-plane graphs [Chaplick et al.'18]
- Superpolynomial area for 1-plane graphs [Bekos et al.'17]
- Maximum degree 3 graphs are 1-bend RAC [Angelini et al.'11]
- 2-bend RAC:
- At most $74.2 n$ edges
[Arikushi et al.'12]
- 2-bend RAC graphs with $7.83 n-O(\sqrt{n})$ edges
- Maximum degree 6 graphs are 2-bend RAC [Angelini et al. '11]
- 3-bend RAC:
- All graphs are 3-bend RAC
[Didimo et al.'11]
- Cubic area
[Di Giacomo et al.'11]

Known Results

- 1-bend RAC:

At most $6.5 n-13$ edges
1-bend RAC graphs with $4.5 n-O(\sqrt{n})$ edges

- Quadratic area for NIC-plane graphs [Chaplick et al.'18]
- Superpolynomial area for 1-plane graphs [Bekos et al.'17]
- Maximum degree 3 graphs are 1-bend RAC [Angelini et al.'11]
- 2-bend RAC:
- At most $74.2 n$ edges
[Arikushi et al.'12]
- 2-bend RAC graphs with $7.83 n-O(\sqrt{n})$ edges
- Maximum degree 6 graphs are 2-bend RAC [Angelini et al. '11]
- 3-bend RAC:
- All graphs are 3-bend RAC
[Didimo et al.'11]
- Cubic area
[Di Giacomo et al.'11]

Our Contribution

- 1-bend RAC graphs have at most $5.5 n-11$ edges

Our Contribution

- 1-bend RAC graphs have at most $5.5 n-11$ edges
- There are infinitely many 1-bend RAC graphs with $5 n-10$ edges

Our Contribution

- 1-bend RAC graphs have at most $5.5 n-11$ edges
- There are infinitely many 1-bend RAC graphs with $5 n-10$ edges
- This reduces the gap from $2 n$ to $0.5 n$

The Lower Bound

- The dodecahedral graph admits a drawing with 4 types of face geometries

The Lower Bound

- The dodecahedral graph admits a drawing with 4 types of face geometries

- Both inner- and outermost faces are regular 5-gons

The Lower Bound

- The dodecahedral graph admits a drawing with 4 types of face geometries

- Both inner- and outermost faces are regular 5-gons
\Longrightarrow we can glue copies together

The Lower Bound

- The dodecahedral graph admits a drawing with 4 types of face geometries

- Both inner- and outermost faces are regular 5-gons
\Longrightarrow we can glue copies together
- By adding 5 edges in each face, we achieve $5 n-10$ edges

The Lower Bound

Arikushi et al. 2012

- Upper bound on the intersected edges

Arikushi et al. 2012

- Upper bound on the intersected edges
- Remove the planar edges

Arikushi et al. 2012

- Upper bound on the intersected edges
- Remove the planar edges (their geometry can be arbitrary)

Arikushi et al. 2012

- Upper bound on the intersected edges
- Remove the planar edges (their geometry can be arbitrary)
- Planarize

Arikushi et al. 2012

- Upper bound on the intersected edges
- Remove the planar edges (their geometry can be arbitrary)
- Planarize
- Charge $\operatorname{ch}(v)=\operatorname{deg}(v)-4$

(All dummy vertices have charge 0.)

Arikushi et al. 2012

- Upper bound on the intersected edges
- Remove the planar edges (their geometry can be arbitrary)
- Planarize
- Charge $\operatorname{ch}(v)=\operatorname{deg}(v)-4$
- Charge $\operatorname{ch}(f)=s(f)-4$

(All dummy vertices have charge 0.)

Arikushi et al. 2012

- Upper bound on the intersected edges
- Remove the planar edges (their geometry can be arbitrary)
- Planarize
- Charge $\operatorname{ch}(v)=\operatorname{deg}(v)-4$
- Charge $c h(f)=s(f)-4$
- By Euler's Formula:
$\sum \operatorname{ch}(v)+\sum \operatorname{ch}(f)=-8$

(All dummy vertices have charge 0.)

Arikushi et al. 2012

- Upper bound on the intersected edges
- Remove the planar edges (their geometry can be arbitrary)
- Planarize
- Charge $\operatorname{ch}(v)=\operatorname{deg}(v)-4$
- Charge $c h(f)=s(f)-4$
- By Euler's Formula:
$\sum c h(v)+\sum c h(f)=-8$
- Triangles have charge -1 and are incident to a convex bend

(All dummy vertices have charge 0.)

Arikushi et al. 2012

- Upper bound on the intersected edges
- Remove the planar edges (their geometry can be arbitrary)
- Planarize
- Charge $\operatorname{ch}(v)=\operatorname{deg}(v)-4$
- Charge $c h(f)=s(f)-4$
- By Euler's Formula:
$\sum \operatorname{ch}(v)+\sum \operatorname{ch}(f)=-8$
- Triangles have charge -1 and are incident to a convex bend
- Lenses have charge -2 and are
 incident to two bends, one of (All dummy vertices have charge 0.) which is convex

Arikushi et al. 2012

- Discharging phase 1
- For each edge, move $1 / 2$ charge from each endpoint to the face incident to its convex bend

(All dummy vertices have charge 0.)

Arikushi et al. 2012

- Discharging phase 1
- For each edge, move $1 / 2$ charge from each endpoint to the face incident to its convex bend

(All dummy vertices have charge 0.)

Arikushi et al. 2012

- Discharging phase 1
- For each edge, move $1 / 2$ charge from each endpoint to

(All dummy vertices have charge 0.)

Arikushi et al. 2012

- Discharging phase 1
- For each edge, move $1 / 2$ charge from each endpoint to the face incident to its convex bend
- Triangles have charge 0

(All dummy vertices have charge 0 .)

Arikushi et al. 2012

- Discharging phase 1
- For each edge, move $1 / 2$ charge from each endpoint to the face incident to its convex bend
- Triangles have charge 0
- Lenses have charge -1 (one convex bend) or 0

(All dummy vertices have charge 0 .)

Arikushi et al. 2012

- Discharging phase 1
- For each edge, move $1 / 2$ charge from each endpoint to the face incident to its convex bend
- Triangles have charge 0
- Lenses have charge -1 (one convex bend) or 0
${ }^{>} c h^{\prime}(v) \geq 1 / 2 \operatorname{deg}(v)-4$

(All dummy vertices have charge 0 .)

Arikushi et al. 2012

- Discharging phase 2
- Injection from lenses with reflex bends to convex bends at faces of size at least 4

(All dummy vertices have charge 0.)

Arikushi et al. 2012

- Discharging phase 2
- Injection from lenses with reflex bends to convex bends at faces of size at least 4
- Transfer charges from these large faces to lenses

(All dummy vertices have charge 0.)

Arikushi et al. 2012

- Discharging phase 2
- Injection from lenses with reflex bends to convex bends at faces of size at least 4
- Transfer charges from these large faces to lenses

(All dummy vertices have charge 0.)

Arikushi et al. 2012

- Discharging phase 2
- Injection from lenses with reflex bends to convex bends at faces of size at least 4
- Transfer charges from these large faces to lenses
$-c h^{\prime \prime}(v)=c h^{\prime}(v)$

(All dummy vertices have charge 0.)

Arikushi et al. 2012

- Discharging phase 2
- Injection from lenses with
reflex bends to convex bends at faces of size at least 4
- Transfer charges from these large faces to lenses
$-c h^{\prime \prime}(v)=c h^{\prime}(v)$
- $c h^{\prime \prime}(f) \geq 0, c h^{\prime \prime}(f) \geq \operatorname{ch}(f)$

(All dummy vertices have charge 0.)

Arikushi et al. 2012

- Some maths magic happens

$$
\left|E_{1}\right|-4 n=\sum \frac{1}{2} \operatorname{deg}(v)-4
$$

Arikushi et al. 2012

- Some maths magic happens

$$
\left|E_{1}\right|-4 n=\sum \frac{1}{2} \operatorname{deg}(v)-4 \leq \sum c h^{\prime \prime}(v)
$$

Arikushi et al. 2012

- Some maths magic happens

$$
\left|E_{1}\right|-4 n \leq \sum c h^{\prime \prime}(v)
$$

Arikushi et al. 2012

- Some maths magic happens

$$
\left|E_{1}\right|-4 n \leq \sum c h^{\prime \prime}(v)+\sum c h^{\prime \prime}(f)
$$

Arikushi et al. 2012

- Some maths magic happens

$$
\left|E_{1}\right|-4 n \leq \sum c h^{\prime \prime}(v)+\sum c h^{\prime \prime}(f)=-8
$$

Arikushi et al. 2012

- Some maths magic happens

$$
\begin{gathered}
\left|E_{1}\right|-4 n \leq \sum c h^{\prime \prime}(v)+\sum c h^{\prime \prime}(f)=-8 \\
\Longrightarrow\left|E_{1}\right| \leq 4 n-8 \Longrightarrow|E| \leq 7 n-14
\end{gathered}
$$

Arikushi et al. 2012

- Some maths magic happens

$$
\begin{aligned}
& \left|E_{1}\right|-4 n \leq \sum c h^{\prime \prime}(v)+\sum c h^{\prime \prime}(f)=-8 \\
& \Longrightarrow\left|E_{1}\right| \leq 4 n-8 \Longrightarrow|E| \leq 7 n-14
\end{aligned}
$$

- Improvement: Consider planar subgraph G_{0}

Arikushi et al. 2012

- Some maths magic happens

$$
\begin{aligned}
& \left|E_{1}\right|-4 n \leq \sum c h^{\prime \prime}(v)+\sum c h^{\prime \prime}(f)=-8 \\
& \Longrightarrow\left|E_{1}\right| \leq 4 n-8 \Longrightarrow|E| \leq 7 n-14
\end{aligned}
$$

- Improvement: Consider planar subgraph G_{0}
- Triangles contain no intersected edges

Arikushi et al. 2012

- Some maths magic happens

$$
\begin{aligned}
& \left|E_{1}\right|-4 n \leq \sum c h^{\prime \prime}(v)+\sum c h^{\prime \prime}(f)=-8 \\
& \Longrightarrow\left|E_{1}\right| \leq 4 n-8 \Longrightarrow|E| \leq 7 n-14
\end{aligned}
$$

- Improvement: Consider planar subgraph G_{0}
- Triangles contain no intersected edges
- Face \mathcal{F} with $d(\mathcal{F})$ vertices has $\leq 4 d(\mathcal{F})-8$ intersected edges

Arikushi et al. 2012

- Some maths magic happens

$$
\begin{aligned}
& \left|E_{1}\right|-4 n \leq \sum c h^{\prime \prime}(v)+\sum c h^{\prime \prime}(f)=-8 \\
& \Longrightarrow\left|E_{1}\right| \leq 4 n-8 \Longrightarrow|E| \leq 7 n-14
\end{aligned}
$$

- Improvement: Consider planar subgraph G_{0}
- Triangles contain no intersected edges
- Face \mathcal{F} with $d(\mathcal{F})$ vertices has $\leq 4 d(\mathcal{F})-8$ intersected edges
- Induction: If G_{0} can be triangulated with k edges then $\left|E_{1}\right| \leq 8 k$

Arikushi et al. 2012

- Some maths magic happens

$$
\begin{aligned}
& \left|E_{1}\right|-4 n \leq \sum c h^{\prime \prime}(v)+\sum c h^{\prime \prime}(f)=-8 \\
& \Longrightarrow\left|E_{1}\right| \leq 4 n-8 \Longrightarrow|E| \leq 7 n-14
\end{aligned}
$$

- Improvement: Consider planar subgraph G_{0}
- Triangles contain no intersected edges
- Face \mathcal{F} with $d(\mathcal{F})$ vertices has $\leq 4 d(\mathcal{F})-8$ intersected edges
- Induction: If G_{0} can be triangulated with k edges then $\left|E_{1}\right| \leq 8 k$

Arikushi et al. 2012

- Some maths magic happens

$$
\begin{aligned}
& \left|E_{1}\right|-4 n \leq \sum c h^{\prime \prime}(v)+\sum c h^{\prime \prime}(f)=-8 \\
& \Longrightarrow\left|E_{1}\right| \leq 4 n-8 \Longrightarrow|E| \leq 7 n-14
\end{aligned}
$$

- Improvement: Consider planar subgraph G_{0}
- Triangles contain no intersected edges
- Face \mathcal{F} with $d(\mathcal{F})$ vertices has $\leq 4 d(\mathcal{F})-8$ intersected edges
- Induction: If G_{0} can be triangulated with k edges then $\left|E_{1}\right| \leq 8 k$

Arikushi et al. 2012

- Some maths magic happens

$$
\begin{aligned}
& \left|E_{1}\right|-4 n \leq \sum c h^{\prime \prime}(v)+\sum c h^{\prime \prime}(f)=-8 \\
& \Longrightarrow\left|E_{1}\right| \leq 4 n-8 \Longrightarrow|E| \leq 7 n-14
\end{aligned}
$$

- Improvement: Consider planar subgraph G_{0}
- Triangles contain no intersected edges
- Face \mathcal{F} with $d(\mathcal{F})$ vertices has $\leq 4 d(\mathcal{F})-8$ intersected edges
- Induction: If G_{0} can be triangulated with k edges then $\left|E_{1}\right| \leq 8 k$

Arikushi et al. 2012

- Some maths magic happens

$$
\begin{aligned}
& \left|E_{1}\right|-4 n \leq \sum c h^{\prime \prime}(v)+\sum c h^{\prime \prime}(f)=-8 \\
& \Longrightarrow\left|E_{1}\right| \leq 4 n-8 \Longrightarrow|E| \leq 7 n-14
\end{aligned}
$$

- Improvement: Consider planar subgraph G_{0}
- Triangles contain no intersected edges
- Face \mathcal{F} with $d(\mathcal{F})$ vertices has $\leq 4 d(\mathcal{F})-8$ intersected edges
- Induction: If G_{0} can be triangulated with k edges then $\left|E_{1}\right| \leq 8 k$

Arikushi et al. 2012

- Some maths magic happens

$$
\begin{gathered}
\left|E_{1}\right|-4 n \leq \sum c h^{\prime \prime}(v)+\sum c h^{\prime \prime}(f)=-8 \\
\Longrightarrow\left|E_{1}\right| \leq 4 n-8 \Longrightarrow|E| \leq 7 n-14
\end{gathered}
$$

- Improvement: Consider planar subgraph G_{0}
- Triangles contain no intersected edges
- Face \mathcal{F} with $d(\mathcal{F})$ vertices has $\leq 4 d(\mathcal{F})-8$ intersected edges
- Induction: If G_{0} can be triangulated with k edges then $\left|E_{1}\right| \leq 8 k$

Arikushi et al. 2012

- Some maths magic happens

$$
\begin{gathered}
\left|E_{1}\right|-4 n \leq \sum c h^{\prime \prime}(v)+\sum c h^{\prime \prime}(f)=-8 \\
\Longrightarrow\left|E_{1}\right| \leq 4 n-8 \Longrightarrow|E| \leq 7 n-14
\end{gathered}
$$

- Improvement: Consider planar subgraph G_{0}
- Triangles contain no intersected edges
- Face \mathcal{F} with $d(\mathcal{F})$ vertices has $\leq 4 d(\mathcal{F})-8$ intersected edges
- Induction: If G_{0} can be triangulated with k edges then $\left|E_{1}\right| \leq 8 k$

Arikushi et al. 2012

- Some maths magic happens

$$
\begin{aligned}
& \left|E_{1}\right|-4 n \leq \sum c h^{\prime \prime}(v)+\sum c h^{\prime \prime}(f)=-8 \\
& \Longrightarrow\left|E_{1}\right| \leq 4 n-8 \Longrightarrow|E| \leq 7 n-14
\end{aligned}
$$

- Improvement: Consider planar subgraph G_{0}
- Triangles contain no intersected edges
- Face \mathcal{F} with $d(\mathcal{F})$ vertices has $\leq 4 d(\mathcal{F})-8$ intersected edges
- Induction: If G_{0} can be triangulated with k edges then $\left|E_{1}\right| \leq 8 k$

Arikushi et al. 2012

- Some maths magic happens

$$
\begin{aligned}
& \left|E_{1}\right|-4 n \leq \sum c h^{\prime \prime}(v)+\sum c h^{\prime \prime}(f)=-8 \\
& \Longrightarrow\left|E_{1}\right| \leq 4 n-8 \Longrightarrow|E| \leq 7 n-14
\end{aligned}
$$

- Improvement: Consider planar subgraph G_{0}
- Triangles contain no intersected edges
- Face \mathcal{F} with $d(\mathcal{F})$ vertices has $\leq 4 d(\mathcal{F})-8$ intersected edges
- Induction: If G_{0} can be triangulated with k edges then $\left|E_{1}\right| \leq 8 k$

Arikushi et al. 2012

- Some maths magic happens

$$
\begin{gathered}
\left|E_{1}\right|-4 n \leq \sum c h^{\prime \prime}(v)+\sum c h^{\prime \prime}(f)=-8 \\
\Longrightarrow\left|E_{1}\right| \leq 4 n-8 \Longrightarrow|E| \leq 7 n-14
\end{gathered}
$$

- Improvement: Consider planar subgraph G_{0}
- Triangles contain no intersected edges
- Face \mathcal{F} with $d(\mathcal{F})$ vertices has $\leq 4 d(\mathcal{F})-8$ intersected edges
- Induction: If G_{0} can be triangulated with k edges then $\left|E_{1}\right| \leq 8 k$

$\Rightarrow|E| \leq 7 n-14-k,|E| \leq 3 n-6-k+8 k \Longrightarrow|E| \leq 6.5 n-13$

Arikushi et al. 2012

- Some maths magic happens

Step 1:
 $\gg 0$ for bounded faces

$$
\begin{gathered}
\left|E_{1}\right|-4 n \leq \sum c h^{\prime \prime}(v)+\sum c h^{\prime \prime}(f)=-8 \\
\Longrightarrow\left|E_{1}\right| \leq 4 n-8 \Longrightarrow|E| \leq 7 n-14
\end{gathered}
$$

- Improvement: Consider planar subgraph G_{0}
- Triangles contain no intersected edges
- Face \mathcal{F} with $d(\mathcal{F})$ vertices has $\leq 4 d(\mathcal{F})-8$ intersected edges
- Induction: If G_{0} can be triangulated with k edges then $\left|E_{1}\right| \leq 8 k$

$\Rightarrow|E| \leq 7 n-14-k,|E| \leq 3 n-6-k+8 k \Longrightarrow|E| \leq 6.5 n-13$

Arikushi et al. 2012

- Some maths magic happens

Step 1:
 $\gg 0$ for bounded faces

$$
\begin{gathered}
\left|E_{1}\right|-4 n \leq \sum c h^{\prime \prime}(v)+\sum c h^{\prime \prime}(f)=-8 \\
\Longrightarrow\left|E_{1}\right| \leq 4 n-8 \Longrightarrow|E| \leq 7 n-14
\end{gathered}
$$

- Improvement: Consider planar subreesult: G_{0}
\checkmark Triangles contain no intersected edge ${ }^{2 d}(\mathcal{F})+$ something
- Face \mathcal{F} with $d(\mathcal{F})$ vertices has $\leq 4 d(\mathcal{F})-8$ intersected edges
- Induction: If G_{0} can be triangulated with k edges then $\left|E_{1}\right| \leq 8 k$

- $|E| \leq 7 n-14-k,|E| \leq 3 n-6-k+8 k \Longrightarrow|E| \leq 6.5 n-13$

Arikushi et al. 2012

- Some maths magic happens

Step 1:
 $\gg 0$ for bounded faces

$$
\begin{gathered}
\left|E_{1}\right|-4 n \leq \sum c h^{\prime \prime}(v)+\sum c h^{\prime \prime}(f)=-8 \\
\Longrightarrow\left|E_{1}\right| \leq 4 n-8 \Longrightarrow|E| \leq 7 n-14
\end{gathered}
$$

- Improvement: Consider planar subreesult: G_{0}
- Triangles contain no intersected edge ${ }^{2 d}(\mathcal{F})+$ something
- Face \mathcal{F} with $d(\mathcal{F})$ vertices has $\leq 4 d(\mathcal{F})-8$ intersected edges
- Induction: If G_{0} can be triangulated wit betterganalysis of 1 small faces

- $|E| \leq 7 n-14-k,|E| \leq 3 n-6-k+8 k \Longrightarrow|E| \leq 6.5 n-13$

Properties of Faces of Planar Subgraph G_{0}

- We count:

Properties of Faces of Planar Subgraph G_{0}

- We count:
vertices $d(\mathcal{F})=11$

Properties of Faces of Planar Subgraph G_{0}

- We count:
- vertices $d(\mathcal{F})=11$
- biconnected facial walks $b(\mathcal{F})=3$

Properties of Faces of Planar Subgraph G_{0}

- We count:
- vertices $d(\mathcal{F})=11$
- biconnected facial walks $b(\mathcal{F})=3$
- multiple occurences beyond first $m(\mathcal{F})=1$

Properties of Faces of Planar Subgraph G_{0}

- We count:
- vertices $d(\mathcal{F})=11$
- biconnected facial walks $b(\mathcal{F})=3$
- multiple occurences beyond first $m(\mathcal{F})=1$
- isolated vertices $i(\mathcal{F})=1$

Properties of Faces of Planar Subgraph G_{0}

- We count:
- vertices $d(\mathcal{F})=11$
- biconnected facial walks $b(\mathcal{F})=3$
- multiple occurences beyond first $m(\mathcal{F})=1$
- isolated vertices $i(\mathcal{F})=1$
- Length of boundary $\ell(\mathcal{F})=d(\mathcal{F})+m(\mathcal{F})-i(\mathcal{F})=11$

Good Faces

- Consider planarization

Good Faces

- Consider planarization

Good Faces

- Consider planarization

planar edge e is good if it cannot see another planar edge e^{\prime}

Good Faces

- Consider planarization

planar edge e is good if it cannot see another planar edge e^{\prime}
$\checkmark \mathcal{F}$ is good if all its edges are good (or if it is a triangle)

Good Faces

- Consider planarization
planar edge e is good if it cannot see another planar edge e^{\prime}
$\checkmark \mathcal{F}$ is good if all its edges are good (or if it is a triangle)
- In a good face, each facial walk is surrounded by a (planarized) face with at least twice the length of the facial walk

Good Faces

- Consider planarization
planar edge e is good if it cannot see another planar edge e^{\prime}
$\checkmark \mathcal{F}$ is good if all its edges are good (or if it is a triangle)
- In a good face, each facial walk is surrounded by a (planarized) face with at least twice the length of the facial walk
- These faces have at least $2 \ell(\mathcal{F})-4 b(\mathcal{F})$ initial charge (Recall: $\operatorname{ch}(f)=\ell(f)-4)$

Number of Intersected Edges in a Good Face

- We want to show:
$\left|E_{1}(\mathcal{F})\right| \leq 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8$

Number of Intersected Edges in a Good Face

- We want to show:

$$
\begin{aligned}
& \left|E_{1}(\mathcal{F})\right| \leq 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8 \\
& \left|E_{1}(\mathcal{F})\right|-4 d(\mathcal{F}) \leq \sum c h^{\prime \prime}(v)
\end{aligned}
$$

- We know the following:

1) $\left|E_{1}(\mathcal{F})\right|-4 d(\mathcal{F}) \leq \sum c h^{\prime \prime}(v)$

Number of Intersected Edges in a Good Face

- We want to show:

$$
\begin{aligned}
& \left|E_{1}(\mathcal{F})\right| \leq 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8 \\
& \left|E_{1}(\mathcal{F})\right|-4 d(\mathcal{F}) \leq \sum c h^{\prime \prime}(v)
\end{aligned}
$$

- We know the following:
- 1) $\left|E_{1}(\mathcal{F})\right|-4 d(\mathcal{F}) \leq \sum c h^{\prime \prime}(v)$
- 2) $c h^{\prime \prime}(f) \geq c h(f)$

Number of Intersected Edges in a Good Face

- We want to show:

$$
\begin{aligned}
& \left|E_{1}(\mathcal{F})\right| \leq 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8 \\
& \left|E_{1}(\mathcal{F})\right|-4 d(\mathcal{F}) \leq \sum c h^{\prime \prime}(v)
\end{aligned}
$$

- We know the following:

1) $\left|E_{1}(\mathcal{F})\right|-4 d(\mathcal{F}) \leq \sum c h^{\prime \prime}(v)$

- 2) $c h^{\prime \prime}(f) \geq c h(f)$
-3) $\sum c h(f) \geq 2 \ell(\mathcal{F})-4 b(\mathcal{F})$

Number of Intersected Edges in a Good Face

- We want to show:

$$
\begin{aligned}
& \left|E_{1}(\mathcal{F})\right| \leq 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8 \\
& \left|E_{1}(\mathcal{F})\right|-4 d(\mathcal{F}) \leq \sum c h^{\prime \prime}(v)+\sum c h^{\prime \prime}(f)-2 \ell(\mathcal{F})+4 b(\mathcal{F})
\end{aligned}
$$

- We know the following:

1) $\left|E_{1}(\mathcal{F})\right|-4 d(\mathcal{F}) \leq \sum c h^{\prime \prime}(v)$

- 2) $c h^{\prime \prime}(f) \geq c h(f)$
-3) $\sum c h(f) \geq 2 \ell(\mathcal{F})-4 b(\mathcal{F})$

Number of Intersected Edges in a Good Face

- We want to show:

$$
\begin{aligned}
& \left|E_{1}(\mathcal{F})\right| \leq 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8 \\
& \left|E_{1}(\mathcal{F})\right|-4 d(\mathcal{F}) \leq \sum c h^{\prime \prime}(v)+\sum c h^{\prime \prime}(f)-2 \ell(\mathcal{F})+4 b(\mathcal{F})
\end{aligned}
$$

- We know the following:
- 1) $\left|E_{1}(\mathcal{F})\right|-4 d(\mathcal{F}) \leq \sum c h^{\prime \prime}(v)$
- 2) $c h^{\prime \prime}(f) \geq c h(f)$
-3) $\sum c h(f) \geq 2 \ell(\mathcal{F})-4 b(\mathcal{F})$
- 4) $\sum c h^{\prime \prime}(v)+\sum c h^{\prime \prime}(f)=-8$

Number of Intersected Edges in a Good Face

- We want to show:

$$
\begin{aligned}
& \left|E_{1}(\mathcal{F})\right| \leq 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8 \\
& \left|E_{1}(\mathcal{F})\right|-4 d(\mathcal{F}) \leq-8-2 \ell(\mathcal{F})+4 b(\mathcal{F})
\end{aligned}
$$

- We know the following:
- 1) $\left|E_{1}(\mathcal{F})\right|-4 d(\mathcal{F}) \leq \sum c h^{\prime \prime}(v)$
- 2) $c h^{\prime \prime}(f) \geq c h(f)$
-3) $\sum c h(f) \geq 2 \ell(\mathcal{F})-4 b(\mathcal{F})$
-4) $\sum c h^{\prime \prime}(v)+\sum c h^{\prime \prime}(f)=-8$

Number of Intersected Edges in a Good Face

- We want to show:

$$
\begin{aligned}
& \left|E_{1}(\mathcal{F})\right| \leq 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8 \\
& \left|E_{1}(\mathcal{F})\right|-4 d(\mathcal{F}) \leq-8-2 \ell(\mathcal{F})+4 b(\mathcal{F})
\end{aligned}
$$

- We know the following:
- 1) $\left|E_{1}(\mathcal{F})\right|-4 d(\mathcal{F}) \leq \sum c h^{\prime \prime}(v)$
- 2) $c h^{\prime \prime}(f) \geq c h(f)$
-3) $\sum c h(f) \geq 2 \ell(\mathcal{F})-4 b(\mathcal{F})$
- 4) $\sum c h^{\prime \prime}(v)+\sum c h^{\prime \prime}(f)=-8$
- 5) $\ell(\mathcal{F})=d(\mathcal{F})+m(\mathcal{F})-i(\mathcal{F})$

Number of Intersected Edges in a Good Face

- We want to show:

$$
\begin{aligned}
& \left|E_{1}(\mathcal{F})\right| \leq 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8 \\
& \left|E_{1}(\mathcal{F})\right|-4 d(\mathcal{F}) \leq-8-2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})
\end{aligned}
$$

- We know the following:

1 1) $\left|E_{1}(\mathcal{F})\right|-4 d(\mathcal{F}) \leq \sum c h^{\prime \prime}(v)$
-2) $c h^{\prime \prime}(f) \geq c h(f)$
-3) $\sum c h(f) \geq 2 \ell(\mathcal{F})-4 b(\mathcal{F})$

- 4) $\sum c h^{\prime \prime}(v)+\sum c h^{\prime \prime}(f)=-8$
- 5) $\ell(\mathcal{F})=d(\mathcal{F})+m(\mathcal{F})-i(\mathcal{F})$

Number of Intersected Edges in a Good Face

- We want to show:

$$
\begin{aligned}
& \left|E_{1}(\mathcal{F})\right| \leq 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8 \\
& \left|E_{1}(\mathcal{F})\right| \leq 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8
\end{aligned}
$$

- We know the following:
- 1) $\left|E_{1}(\mathcal{F})\right|-4 d(\mathcal{F}) \leq \sum c h^{\prime \prime}(v)$
-2) $c h^{\prime \prime}(f) \geq c h(f)$
-3) $\sum c h(f) \geq 2 \ell(\mathcal{F})-4 b(\mathcal{F})$
-4) $\sum c h^{\prime \prime}(v)+\sum c h^{\prime \prime}(f)=-8$
- 5) $\ell(\mathcal{F})=d(\mathcal{F})+m(\mathcal{F})-i(\mathcal{F})$

Small Faces

- K_{n} contains $\binom{n}{2}$ edges

Small Faces

- K_{n} contains $\binom{n}{2}$ edges
- All bounded planar faces \mathcal{F} which can be triangulated with

Small Faces

- K_{n} contains $\binom{n}{2}$ edges
- All bounded planar faces \mathcal{F} which can be triangulated with
- one edge:

2 edges missing to K_{4}

Small Faces

- K_{n} contains $\binom{n}{2}$ edges
- All bounded planar faces \mathcal{F} which can be triangulated with
- one edge:

2 edges missing to K_{4}

1 edges missing to K_{3}

Small Faces

- K_{n} contains $\binom{n}{2}$ edges
- All bounded planar faces \mathcal{F} which can be triangulated with
- one edge:

2 edges missing to K_{4}

1 edges missing to K_{3}

- two edges:

Small Faces

- K_{n} contains $\binom{n}{2}$ edges
- All bounded planar faces \mathcal{F} which can be triangulated with
- one edge:

2 edges missing to K_{4}

1 edges missing to K_{3}

- two edges:

5 edges missing to K_{5}

Small Faces

- K_{n} contains $\binom{n}{2}$ edges
- All bounded planar faces \mathcal{F} which can be triangulated with
- one edge:

2 edges missing to K_{4}

1 edges missing to K_{3}

- two edges:

5 edges missing to $K_{5} \quad 2$ edges missing to K_{4}

Small Faces

- K_{n} contains $\binom{n}{2}$ edges
- All bounded planar faces \mathcal{F} which can be triangulated with
- one edge:

2 edges missing to K_{4}

1 edges missing to K_{3}

- two edges:

5 edges missing to $K_{5} 2$ edges missing to $K_{4} \quad 2$ edges missing to K_{3}

Small Faces

- K_{n} contains $\binom{n}{2}$ edges
- All bounded planar faces \mathcal{F} which can be triangulated with
- one edge:

2 edges missing to K_{4}

1 edges missing to K_{3}
We assume $8 / 3$ intersected edges here.

- two edges:

5 edges missing to $K_{5} 2$ edges missing to $K_{4} \quad 2$ edges missing to K_{3}

Small Faces

- K_{n} contains $\binom{n}{2}$ edges
- All bounded planar faces \mathcal{F} which can be triangulated with
- one edge:

2 edges missing to K_{4}

1 edges missing to K_{3}

We assume $8 / 3$ intersected edges here.

- two edges:

5 edges missing to $K_{5} 2$ edges missing to $K_{4} \quad 2$ edges missing to K_{3} We assume $16 / 3$ intersected edges here.

Improving the Upper Bound

- So far we know:
$\left|E_{1}\right| \leq 8 / 3\left|\mathcal{F}_{1}\right|+16 / 3\left|\mathcal{F}_{2}\right|+\sum_{\mathcal{F} \in \mathcal{F}_{3}+} 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8$

Improving the Upper Bound

- So far we know:

$$
\left|E_{1}\right| \leq 8 / 3\left|\mathcal{F}_{1}\right|+16 / 3\left|\mathcal{F}_{2}\right|+\sum_{\mathcal{F} \in \mathcal{F}_{3+}} 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8
$$

- Now: Assume that G_{0} is obtained from triangulation T

Improving the Upper Bound

- So far we know:

$$
\left|E_{1}\right| \leq 8 / 3\left|\mathcal{F}_{1}\right|+16 / 3\left|\mathcal{F}_{2}\right|+\sum_{\mathcal{F} \in \mathcal{F}_{3+}} 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8
$$

- Now: Assume that G_{0} is obtained from triangulation T
- Induction: removal of k edges from $T \Rightarrow$ at most $8 / 3 k$ intersected edges

Improving the Upper Bound

- So far we know:

$$
\left|E_{1}\right| \leq 8 / 3\left|\mathcal{F}_{1}\right|+16 / 3\left|\mathcal{F}_{2}\right|+\sum_{\mathcal{F} \in \mathcal{F}_{3+}} 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8
$$

- Now: Assume that G_{0} is obtained from triangulation T
- Induction: removal of k edges from $T \Rightarrow$ at most $8 / 3 k$ intersected edges
- Actually, we show that $\left|E_{1}\left(\mathcal{F}^{\prime}\right)\right| \leq 8 / 3 t\left(\mathcal{F}^{\prime}\right)$ if \mathcal{F}^{\prime} can be triangulated with $t\left(\mathcal{F}^{\prime}\right)$ edges

Improving the Upper Bound

- So far we know:

$$
\left|E_{1}\right| \leq 8 / 3\left|\mathcal{F}_{1}\right|+16 / 3\left|\mathcal{F}_{2}\right|+\sum_{\mathcal{F} \in \mathcal{F}_{3+}} 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8
$$

- Now: Assume that G_{0} is obtained from triangulation T
- Induction: removal of k edges from $T \Rightarrow$ at most $8 / 3 k$ intersected edges
- Actually, we show that $\left|E_{1}\left(\mathcal{F}^{\prime}\right)\right| \leq 8 / 3 t\left(\mathcal{F}^{\prime}\right)$ if \mathcal{F}^{\prime} can be triangulated with $t\left(\mathcal{F}^{\prime}\right)$ edges
- Remove edges based on a BFS traversal of the dual

Improving the Upper Bound

- So far we know:

$$
\left|E_{1}\right| \leq 8 / 3\left|\mathcal{F}_{1}\right|+16 / 3\left|\mathcal{F}_{2}\right|+\sum_{\mathcal{F} \in \mathcal{F}_{3+}} 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8
$$

- Now: Assume that G_{0} is obtained from triangulation T
- Induction: removal of k edges from $T \Rightarrow$ at most $8 / 3 k$ intersected edges
- Actually, we show that $\left|E_{1}\left(\mathcal{F}^{\prime}\right)\right| \leq 8 / 3 t\left(\mathcal{F}^{\prime}\right)$ if \mathcal{F}^{\prime} can be triangulated with $t\left(\mathcal{F}^{\prime}\right)$ edges
- Remove edges based on a BFS traversal of the dual

Improving the Upper Bound

- So far we know:

$$
\left|E_{1}\right| \leq 8 / 3\left|\mathcal{F}_{1}\right|+16 / 3\left|\mathcal{F}_{2}\right|+\sum_{\mathcal{F} \in \mathcal{F}_{3+}} 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8
$$

- Now: Assume that G_{0} is obtained from triangulation T
- Induction: removal of k edges from $T \Rightarrow$ at most $8 / 3 k$ intersected edges
- Actually, we show that $\left|E_{1}\left(\mathcal{F}^{\prime}\right)\right| \leq 8 / 3 t\left(\mathcal{F}^{\prime}\right)$ if \mathcal{F}^{\prime} can be triangulated with $t\left(\mathcal{F}^{\prime}\right)$ edges
- Remove edges based on a BFS traversal of the dual

Improving the Upper Bound

- So far we know:

$$
\left|E_{1}\right| \leq 8 / 3\left|\mathcal{F}_{1}\right|+16 / 3\left|\mathcal{F}_{2}\right|+\sum_{\mathcal{F} \in \mathcal{F}_{3+}} 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8
$$

- Now: Assume that G_{0} is obtained from triangulation T
- Induction: removal of k edges from $T \Rightarrow$ at most $8 / 3 k$ intersected edges
- Actually, we show that $\left|E_{1}\left(\mathcal{F}^{\prime}\right)\right| \leq 8 / 3 t\left(\mathcal{F}^{\prime}\right)$ if \mathcal{F}^{\prime} can be triangulated with $t\left(\mathcal{F}^{\prime}\right)$ edges
- Remove edges based on a BFS traversal of the dual

OR

Improving the Upper Bound

- So far we know:

$$
\left|E_{1}\right| \leq 8 / 3\left|\mathcal{F}_{1}\right|+16 / 3\left|\mathcal{F}_{2}\right|+\sum_{\mathcal{F} \in \mathcal{F}_{3+}} 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8
$$

- Now: Assume that G_{0} is obtained from triangulation T
- Induction: removal of k edges from $T \Rightarrow$ at most $8 / 3 k$ intersected edges
- Actually, we show that $\left|E_{1}\left(\mathcal{F}^{\prime}\right)\right| \leq 8 / 3 t\left(\mathcal{F}^{\prime}\right)$ if \mathcal{F}^{\prime} can be triangulated with $t\left(\mathcal{F}^{\prime}\right)$ edges
- Remove edges based on a BFS traversal of the dual

OR

Improving the Upper Bound

Done for
 - So far we know: $t\left(\mathcal{F}^{\prime}\right) \in\{0,1,2\}$

$\left|E_{1}\right| \leq 8 / 3\left|\mathcal{F}_{1}\right|+16 / 3\left|\mathcal{F}_{2}\right|+\sum_{\mathcal{F} \in \mathcal{F}_{3+}} 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8$

- Now: Assume that G_{0} is obtained from triangulation T
- Induction: removal of k edges from $T \Rightarrow$ at most $8 / 3 k$ intersected edges
- Actually, we show that $\left|E_{1}\left(\mathcal{F}^{\prime}\right)\right| \leq 8 / 3 t\left(\mathcal{F}^{\prime}\right)$ if \mathcal{F}^{\prime} can be triangulated with $t\left(\mathcal{F}^{\prime}\right)$ edges
- Remove edges based on a BFS traversal of the dual

OR

$t\left(\mathcal{F}^{\prime}\right)=3 \Rightarrow\left|E_{1}\left(\mathcal{F}^{\prime}\right)\right| \leq 8$
$\left|E_{1}\left(\mathcal{F}^{\prime}\right)\right| \leq 2 d\left(\mathcal{F}^{\prime}\right)-2 m\left(\mathcal{F}^{\prime}\right)+2 i\left(\mathcal{F}^{\prime}\right)+4 b\left(\mathcal{F}^{\prime}\right)-8$

$t\left(\mathcal{F}^{\prime}\right)=3 \Rightarrow\left|E_{1}\left(\mathcal{F}^{\prime}\right)\right| \leq 8$
$\left|E_{1}\left(\mathcal{F}^{\prime}\right)\right| \leq 2 d\left(\mathcal{F}^{\prime}\right)-2 m\left(\mathcal{F}^{\prime}\right)+2 i\left(\mathcal{F}^{\prime}\right)+4 b\left(\mathcal{F}^{\prime}\right)-8$

$t\left(\mathcal{F}^{\prime}\right)=3 \Rightarrow\left|E_{1}\left(\mathcal{F}^{\prime}\right)\right| \leq 8$
$\left|E_{1}\left(\mathcal{F}^{\prime}\right)\right| \leq 2 d\left(\mathcal{F}^{\prime}\right)-2 m\left(\mathcal{F}^{\prime}\right)+2 i\left(\mathcal{F}^{\prime}\right)+4 b\left(\mathcal{F}^{\prime}\right)-8$

$t\left(\mathcal{F}^{\prime}\right)=3 \Rightarrow\left|E_{1}\left(\mathcal{F}^{\prime}\right)\right| \leq 8$
$\left|E_{1}\left(\mathcal{F}^{\prime}\right)\right| \leq 2 d\left(\mathcal{F}^{\prime}\right)-2 m\left(\mathcal{F}^{\prime}\right)+2 i\left(\mathcal{F}^{\prime}\right)+4 b\left(\mathcal{F}^{\prime}\right)-8$

$t\left(\mathcal{F}^{\prime}\right)=3 \Rightarrow\left|E_{1}\left(\mathcal{F}^{\prime}\right)\right| \leq 8$
$\left|E_{1}\left(\mathcal{F}^{\prime}\right)\right| \leq 2 d\left(\mathcal{F}^{\prime}\right)-2 m\left(\mathcal{F}^{\prime}\right)+2 i\left(\mathcal{F}^{\prime}\right)+4 b\left(\mathcal{F}^{\prime}\right)-8$

$t\left(\mathcal{F}^{\prime}\right)=3 \Rightarrow\left|E_{1}\left(\mathcal{F}^{\prime}\right)\right| \leq 8$
$\left|E_{1}\left(\mathcal{F}^{\prime}\right)\right| \leq 2 d\left(\mathcal{F}^{\prime}\right)-2 m\left(\mathcal{F}^{\prime}\right)+2 i\left(\mathcal{F}^{\prime}\right)+4 b\left(\mathcal{F}^{\prime}\right)-8$

$t\left(\mathcal{F}^{\prime}\right)>3$

- Induction hypothesis:

$$
\left|E_{1}(\mathcal{F})\right| \leq 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8 \leq 8 / 3 t(\mathcal{F})
$$

$t\left(\mathcal{F}^{\prime}\right)>3$

- Induction hypothesis:

$$
\left|E_{1}(\mathcal{F})\right| \leq 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8 \leq 8 / 3 t(\mathcal{F})
$$

- Induction step:

$t\left(\mathcal{F}^{\prime}\right)>3$
- Induction hypothesis:

$$
\left|E_{1}(\mathcal{F})\right| \leq 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8 \leq 8 / 3 t(\mathcal{F})
$$

- Induction step:

$t\left(\mathcal{F}^{\prime}\right)>3$
- Induction hypothesis:

$$
\left|E_{1}(\mathcal{F})\right| \leq 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8 \leq 8 / 3 t(\mathcal{F})
$$

- Induction step:

$t\left(\mathcal{F}^{\prime}\right)>3$

- Induction hypothesis:

$$
\left|E_{1}(\mathcal{F})\right| \leq 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8 \leq 8 / 3 t(\mathcal{F})
$$

- Induction step:

$t\left(\mathcal{F}^{\prime}\right)>3$

- Induction hypothesis:

$$
\left|E_{1}(\mathcal{F})\right| \leq 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8 \leq 8 / 3 t(\mathcal{F})
$$

- Induction step:

$t\left(\mathcal{F}^{\prime}\right)>3$

- Induction hypothesis:

$$
\left|E_{1}(\mathcal{F})\right| \leq 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8 \leq 8 / 3 t(\mathcal{F})
$$

- Induction step:

$$
m\left(\mathcal{F}^{\prime}\right)=m(\mathcal{F})+1
$$

$$
i\left(\mathcal{F}^{\prime}\right)=i(\mathcal{F})
$$

$$
b\left(\mathcal{F}^{\prime}\right)=b(\mathcal{F})+1
$$

$$
\left|E_{1}\left(\mathcal{F}^{\prime}\right)\right| \leq 8 / 3 t(\mathcal{F})+2
$$

$t\left(\mathcal{F}^{\prime}\right)>3$

- Induction hypothesis:

$$
\left|E_{1}(\mathcal{F})\right| \leq 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8 \leq 8 / 3 t(\mathcal{F})
$$

- Induction step:

$$
m\left(\mathcal{F}^{\prime}\right)=m(\mathcal{F})+1
$$

$$
i\left(\mathcal{F}^{\prime}\right)=i(\mathcal{F})
$$

$$
b\left(\mathcal{F}^{\prime}\right)=b(\mathcal{F})+1
$$

$$
\left|E_{1}\left(\mathcal{F}^{\prime}\right)\right| \leq 8 / 3 t(\mathcal{F})+2
$$

$t\left(\mathcal{F}^{\prime}\right)>3$

- Induction hypothesis:

$$
\left|E_{1}(\mathcal{F})\right| \leq 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8 \leq 8 / 3 t(\mathcal{F})
$$

- Induction step:

$t\left(\mathcal{F}^{\prime}\right)>3$

- Induction hypothesis:

$$
\left|E_{1}(\mathcal{F})\right| \leq 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8 \leq 8 / 3 t(\mathcal{F})
$$

- Induction step:

$t\left(\mathcal{F}^{\prime}\right)>3$

- Induction hypothesis:

$$
\left|E_{1}(\mathcal{F})\right| \leq 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8 \leq 8 / 3 t(\mathcal{F})
$$

- Induction step:

$t\left(\mathcal{F}^{\prime}\right)>3$
- Induction hypothesis:

$$
\left|E_{1}(\mathcal{F})\right| \leq 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8 \leq 8 / 3 t(\mathcal{F})
$$

- Induction step:

$t\left(\mathcal{F}^{\prime}\right)>3$
- Induction hypothesis:

$$
\left|E_{1}(\mathcal{F})\right| \leq 2 d(\mathcal{F})-2 m(\mathcal{F})+2 i(\mathcal{F})+4 b(\mathcal{F})-8 \leq 8 / 3 t(\mathcal{F})
$$

- Induction step:

The Upper Bound

- $|E| \leq 7 n-14-k,|E| \leq 3 n-6-k+8 / 3 k$

The Upper Bound

- $|E| \leq 7 n-14-k,|E| \leq 3 n-6-k+8 / 3 k$
$\Longrightarrow|E| \leq 5.5 n-11$

The Upper Bound

- $|E| \leq 7 n-14-k,|E| \leq 3 n-6-k+8 / 3 k$
$\Longrightarrow|E| \leq 5.5 n-11$
- If a face is not good, we can triangulate it:

The Upper Bound

- $|E| \leq 7 n-14-k,|E| \leq 3 n-6-k+8 / 3 k$
$\Longrightarrow|E| \leq 5.5 n-11$
- If a face is not good, we can triangulate it:

The Upper Bound

- $|E| \leq 7 n-14-k,|E| \leq 3 n-6-k+8 / 3 k$
$\Longrightarrow|E| \leq 5.5 n-11$
- If a face is not good, we can triangulate it:

The Upper Bound

- $|E| \leq 7 n-14-k,|E| \leq 3 n-6-k+8 / 3 k$
$\Longrightarrow|E| \leq 5.5 n-11$
- If a face is not good, we can triangulate it:

The Upper Bound

- $|E| \leq 7 n-14-k,|E| \leq 3 n-6-k+8 / 3 k$
$\Longrightarrow|E| \leq 5.5 n-11$
- If a face is not good, we can triangulate it:

The Upper Bound

- $|E| \leq 7 n-14-k,|E| \leq 3 n-6-k+8 / 3 k$
$\Longrightarrow|E| \leq 5.5 n-11$
- If a face is not good, we can triangulate it:

- Layout subgraphs separated by selfloops individually

Open Problems

- Get a tight bound! We conjecture $5 n-10$ to be correct.

Open Problems

- Get a tight bound! We conjecture $5 n-10$ to be correct.
- Better bounds on the number of edges for 2-bend RAC (currently the gap is $\sim 67 n$)

Open Problems

- Get a tight bound! We conjecture $5 n-10$ to be correct.
- Better bounds on the number of edges for 2-bend RAC (currently the gap is $\sim 67 n$)
- Recognition and characterization of 1-bend and 2-bend RAC graphs

Open Problems

- Get a tight bound! We conjecture $5 n-10$ to be correct.
- Better bounds on the number of edges for 2-bend RAC (currently the gap is $\sim 67 n$)
- Recognition and characterization of 1-bend and 2-bend RAC graphs

Thank you for your attention!

