Universal Slope Sets for Upward Planar Drawings

Michael A. Bekos ${ }^{1}$, Emilio Di Giacomo ${ }^{2}$, Walter Didimo ${ }^{2}$, Giuseppe Liotta ${ }^{2}$, Fabrizio Montecchiani ${ }^{2}$

${ }^{1}$ Universität Tübingen, Germany
${ }^{2}$ Università degli Studi di Perugia, Italy

k-bend planar slope number

The k-bend planar slope number $\operatorname{psn}_{k}(G)$ of a planar graph G is the minimum number of slopes needed to construct a drawing of G that:

- is planar
- has at most k bends per edge

k-bend planar slope number

The k-bend planar slope number $\operatorname{psn}_{k}(G)$ of a planar graph G is the minimum number of slopes needed to construct a drawing of G that:

- is planar
- has at most k bends per edge

$\mathrm{psn}_{0}\left(K_{4}\right)=6$

k-bend planar slope number

The k-bend planar slope number $\operatorname{psn}_{k}(G)$ of a planar graph G is the minimum number of slopes needed to construct a drawing of G that:

- is planar
- has at most k bends per edge

$\mathrm{psn}_{0}\left(K_{4}\right)=6$

$\operatorname{psn}_{1}\left(K_{4}\right)=3$

k-bend planar slope number

The k-bend planar slope number $\operatorname{psn}_{k}(G)$ of a planar graph G is the minimum number of slopes needed to construct a drawing of G that:

- is planar
- has at most k bends per edge

$\mathrm{psn}_{0}\left(K_{4}\right)=6$

$\mathrm{psn}_{1}\left(K_{4}\right)=3$

$\operatorname{psn}_{2}\left(K_{4}\right)=2$

k-bend planar slope number: known results

For every planar graph G

- $\operatorname{psn}_{0}(G)=O\left(K^{\Delta}\right)($ for a constant $K)$
- $\operatorname{psn}_{0}(G)=\Omega(\Delta)$
- $\operatorname{psn}_{1}(G) \leq 2 \Delta$
- in the worst case $\mathrm{psn}_{1}(G) \geq \frac{3(\Delta-1)}{4}$
- $\operatorname{psn}_{2}(G)=\left\lceil\frac{\Delta}{2}\right\rceil$

Keszegh, Pach, Pálvölgyi, GD 2010, SIDMA 2013
For every planar graph $G, \operatorname{psn}_{1}(G) \leq \frac{3(\Delta-1)}{2}$
Knauer and Walczak, LATIN 2016
For every planar graph $G, \operatorname{psn}_{1}(G) \leq \Delta-1$
Angelini et al., SoCG 2017

k-bend upward planar slope number

The k-bend upward planar slope number $\operatorname{upsn}_{k}(G)$ of an upward planar graph G is the minimum number of slopes needed to construct a drawing that:

- is planar
- has at most k bends per edge
- is upward

Non-upward vs. upward slope number

G

Non-upward vs. upward slope number

$$
\operatorname{upsn}_{1}(G)=3
$$

Non-upward vs. upward slope number

$\operatorname{upsn}_{1}(G)=3$

$\operatorname{upsn}_{1}(G)=5$

k-bend upward planar slope number: known results

For every planar poset $P, \operatorname{upsn}_{1}(P) \leq \Delta$, which is worst-case optimal
Czyzowicz, Pelc, Rival, Urrutia, Order 1990
For every series-parallel digraph G, $\operatorname{upsn}_{1}(G) \leq \Delta$, which is worst-case optimal
Di Giacomo, Liotta, Montecchiani, GD 2016

What does it mean upward?

Every edge is drawn as a curve monotonically increasing in the y-direction

Every edge is drawn as a curve monotonically non-decreasing in the y-direction

What does it mean upward?

Every edge is drawn as a curve monotonically increasing in the y-direction

Every edge is drawn as a curve monotonically non-decreasing in the y-direction

What does it mean upward?

Every edge is drawn as a curve monotonically increasing in the y-direction

Every edge is drawn as a curve monotonically non-decreasing in the y-direction

Usually it doesn't make a big difference...

What does it mean upward?

Every edge is drawn as a curve monotonically increasing in the y-direction

Every edge is drawn as a curve monotonically non-decreasing in the y-direction

Usually it doesn't make a big difference...

What does it mean upward?

Every edge is drawn as a curve monotonically increasing in the y-direction

Every edge is drawn as a curve monotonically non-decreasing in the y-direction

In this case, however, the number of slopes increases by one

What does it mean upward?

Every edge is drawn as a curve monotonically increasing in the y-direction

Every edge is drawn as a curve monotonically non-decreasing in the y-direction

In the rest of the talk I will use the non-decreasing model

What does it mean upward?

Every edge is drawn as a curve monotonically increasing in the y-direction

Every edge is drawn as a curve monotonically non-decreasing in the y-direction

In the rest of the talk I will use the non-decreasing model All the constructions can also be used in the increasing model with
 one slope more

Our results

- For every bitonic planar st-graph $G, \operatorname{upsn}_{1}(G) \leq \Delta$

Our results

- For every bitonic planar $s t$-graph $G, \operatorname{upsn}_{1}(G) \leq \Delta$
- worst-case optimal

Our results

- For every bitonic planar st-graph $G, \operatorname{upsn}_{1}(G) \leq \Delta$
- worst-case optimal
- For every planar st-graph $G, \operatorname{upsn}_{2}(G) \leq \Delta$

Our results

- For every bitonic planar $s t$-graph $G, \operatorname{upsn}_{1}(G) \leq \Delta$
- worst-case optimal
- For every planar $s t$-graph $G, \operatorname{upsn}_{2}(G) \leq \Delta$
- total number of bends $4 n-9$
- in the worst case $\operatorname{upsn}_{2}(G) \geq \Delta-1$

Our results

- For every bitonic planar $s t$-graph $G, \operatorname{upsn}_{1}(G) \leq \Delta$
- worst-case optimal
- For every planar $s t$-graph $G, \operatorname{upsn}_{2}(G) \leq \Delta$
- total number of bends $4 n-9$
- in the worst case $\operatorname{upsn}_{2}(G) \geq \Delta-1$
- For every upward planar graph $G, \operatorname{upsn}_{2}(G) \leq \Delta+1$

Our results

- For every bitonic planar st-graph G, upsn ${ }_{1}(G) \leq \Delta$
- worst-case optimal
- For every planar $s t$-graph G, $\operatorname{upsn}_{2}(G) \leq \Delta$
- total number of bends $4 n-9$
- in the worst case $\operatorname{upsn}_{2}(G) \geq \Delta-1$
- For every upward planar graph G, upsn $_{2}(G) \leq \Delta+1$

In all cases the set of slopes can be chosen arbitrarily, the only requirement is that it contains the horizontal slope

Our results

- For every bitonic planar st-graph $G, \operatorname{upsn}_{1}(G) \leq \Delta$
- worst-case optimal
- For every planar st-graph $G, \operatorname{upsn}_{2}(G) \leq \Delta$
- total number of bends $4 n-9$
- in the worst case $\operatorname{upsn}_{2}(G) \geq \Delta-1$
- For every upward planar graph $G, \operatorname{upsn}_{2}(G) \leq \Delta+1$

In all cases the set of slopes can be chosen arbitrarily, the only requirement is that it contains the horizontal slope

The results above imply lower bounds on the angular resolution

Our results

- For every bitonic planar $s t$-graph G, $\operatorname{upsn}_{1}(G) \leq \Delta$
- worst-case optimal
- For every planar st-graph G, upsn $_{2}(G) \leq \Delta$
- total number of bends $4 n-9$
- in the worst case $\operatorname{upsn}_{2}(G) \geq \Delta-1$
- For every upward planar graph G, upsn ${ }_{2}(G) \leq \Delta+1$

In all cases the set of slopes can be chosen arbitrarily, the only requirement is that it contains the horizontal slope

The results above imply lower bounds on the angular resolution

The results above are based on linear time algorithms

1-bend upward planar drawings of bitonic st-graphs

Bitonic planar st-graph [1]

- A bitonic planar st-graph is an embedded planar DAG that admits a bitonic st-ordering, i.e., numbering σ of its vertices s.t.
[1] Gronemann, GD 2016

Bitonic planar st-graph [1]

- A bitonic planar st-graph is an embedded planar DAG that admits a bitonic st-ordering, i.e., numbering σ of its vertices s.t.
- σ is an $s t$-ordering

Bitonic planar st-graph [1]

- A bitonic planar st-graph is an embedded planar DAG that admits a bitonic st-ordering, i.e., numbering σ of its vertices s.t.
- σ is an $s t$-ordering
- for each vertex the numbers assigned to its successors in clockwise ordering form a bitonic sequence (i.e. first ascending and the descending)

[1] Gronemann, GD 2016

Bitonic planar st-graph [1]

- A bitonic planar st-graph is an embedded planar DAG that admits a bitonic st-ordering, i.e., numbering σ of its vertices s.t.
- σ is an $s t$-ordering
- for each vertex the numbers assigned to its successors in clockwise ordering form a bitonic sequence (i.e. first ascending and the descending)

[^0]
Bitonic planar st-graph [1]

- A bitonic planar st-graph is an embedded planar DAG that admits a bitonic st-ordering, i.e., numbering σ of its vertices s.t.
- σ is an $s t$-ordering
- for each vertex the numbers assigned to its successors in clockwise ordering form a bitonic sequence (i.e. first ascending and the descending)

[1] Gronemann, GD 2016

The drawing algorithm: overview

INPUT: a bitonic planar st-graph G, a set of Δ slopes \mathcal{S} including the horizontal
OUTPUT: a 1-bend upward planar drawing Γ that uses only the slopes in \mathcal{S}

1 - Compute a bitonic st-ordering σ of G
2 - Transform σ into an upward canonical ordering χ
3 - Construct Γ by adding a vertex per step according to χ while maintaining a set of geometric invariants

The drawing algorithm: overview

INPUT: a bitonic planar st-graph G, a set of Δ slopes \mathcal{S} including the horizontal
OUTPUT: a 1-bend upward planar drawing Γ that uses only the slopes in \mathcal{S}

1 - Compute a bitonic st-ordering σ of G
2 - Transform σ into an upward canonical ordering χ
3 - Construct Γ by adding a vertex per step according to χ while maintaining a set of geometric invariants

Canonical augmentation

A bitonic planar st-graph G with a bitonic $s t$-ordering $\sigma=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$

Canonical augmentation

A bitonic planar st-graph G with a bitonic $s t$-ordering $\sigma=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$
Augment G so that each vertex has at least two predecessors (see [1])

Canonical augmentation

A bitonic planar st-graph G with a bitonic $s t$-ordering $\sigma=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$
Augment G so that each vertex has at least two predecessors (see [1])
Triangulate G;
$\chi=\left\{v_{L}, v_{R}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ is an upward canonical ordering

The drawing algorithm: overview

INPUT: a bitonic planar st-graph G, a set of Δ slopes \mathcal{S} including the horizontal
OUTPUT: a 1-bend upward planar drawing Γ that uses only the slopes in \mathcal{S}

1 - Compute a bitonic st-ordering σ of G
2 - Transform σ into an upward canonical ordering χ
3 - Construct Γ by adding a vertex per step according to χ while maintaining a set of geometric invariants

The set of slopes

Let $\mathcal{S}=\left\{\rho_{1}, \rho_{2}, \ldots, \rho_{\Delta}\right\}$ be the given set of slopes

- These slopes will be called real slopes

The set of slopes

Let $\mathcal{S}=\left\{\rho_{1}, \rho_{2}, \ldots, \rho_{\Delta}\right\}$ be the given set of slopes

- These slopes will be called real slopes

Let Δ^{*} be the maximum number of dummy edges incident on a single vertex of the triangulated canonical augmentation \widehat{G}

The set of slopes

Let $\mathcal{S}=\left\{\rho_{1}, \rho_{2}, \ldots, \rho_{\Delta}\right\}$ be the given set of slopes

- These slopes will be called real slopes

Let Δ^{*} be the maximum number of dummy edges incident on a single vertex of the triangulated canonical augmentation \widehat{G}
For each pair of consecutive slopes in \mathcal{S} we add Δ^{*} dummy slopes between them

The set of slopes

Let $\mathcal{S}=\left\{\rho_{1}, \rho_{2}, \ldots, \rho_{\Delta}\right\}$ be the given set of slopes

- These slopes will be called real slopes

Let Δ^{*} be the maximum number of dummy edges incident on a single vertex of the triangulated canonical augmentation \widehat{G}
For each pair of consecutive slopes in \mathcal{S} we add Δ^{*} dummy slopes between them

Construction of Γ

We compute a drawing by adding a vertex per step.
The drawing Γ_{i} of G_{i} obtained by the addition of v_{i}, satisfies the following invariants:

Construction of Γ

We compute a drawing by adding a vertex per step.
The drawing Γ_{i} of G_{i} obtained by the addition of v_{i}, satisfies the following invariants:
I1 - Γ_{i} is a 1-bend planar upward drawing whose real edges uses only the slopes in \mathcal{S}

Construction of Γ

We compute a drawing by adding a vertex per step.
The drawing Γ_{i} of G_{i} obtained by the addition of v_{i}, satisfies the following invariants:
I1 - Γ_{i} is a 1-bend planar upward drawing whose real edges uses only the slopes in \mathcal{S}

I2 - Every edge in the upper boundary P_{i} of Γ_{i} contains a horizontal segment

Construction of Γ

We compute a drawing by adding a vertex per step.
The drawing Γ_{i} of G_{i} obtained by the addition of v_{i}, satisfies the following invariants:
I3 - For each vertex v the number of real slopes above v that are free are at least the number of real edges incident on v that have still to be drawn

Construction of Γ

We compute a drawing by adding a vertex per step.
The drawing Γ_{i} of G_{i} obtained by the addition of v_{i}, satisfies the following invariants:
I4 - For each vertex v the number of dummy slopes above v that are before the first real slope and are free are at least the number of dummy edges incident on v that have still to be drawn

A crucial lemma

Let Γ_{i} be a drawing that satisfies I1-I4;
let (u, v) be an edge of P_{i} such that u is before v;
let λ be a positive number.
There exists Γ_{i}^{\prime} such that:

- satisfies I1-I4
- the horizontal distance between u and v is increased by λ
- the horizontal distance between any two other consecutive vertices along P_{i} is not changed

A crucial lemma

Let Γ_{i} be a drawing that satisfies I1-I4;
let (u, v) be an edge of P_{i} such that u is before v;
let λ be a positive number.
There exists Γ_{i}^{\prime} such that:

- satisfies I1-I4
- the horizontal distance between u and v is increased by λ
- the horizontal distance between any two other consecutive vertices along P_{i} is not changed

A crucial lemma

Let Γ_{i} be a drawing that satisfies I1-I4;
let (u, v) be an edge of P_{i} such that u is before v;
let λ be a positive number.
There exists Γ_{i}^{\prime} such that:

- satisfies I1-I4
- the horizontal distance between u and v is increased by λ
- the horizontal distance between any two other consecutive vertices along P_{i} is not changed

Sketch of proof

By using I2 and induction we can prove that there is a cut of horizontal edges

Construction of Γ

We draw G_{2} as a horizontal path (ignoring some dummy edges)

Construction of Γ

Addition of $v_{i}(2<i<n)$

Construction of Γ

Addition of $v_{i}(2<i<n)$

Construction of Γ

Addition of $v_{i}(2<i<n)$

Construction of Γ

Addition of $v_{i}(2<i<n)$

Construction of Γ

Addition of $v_{i}(2<i<n)$

Construction of Γ

Addition of $v_{i}(2<i<n)$

Enough real slopes

Construction of Γ

Addition of $v_{i}(2<i<n)$

We arbitrarily choose one of them

Construction of Γ

Addition of $v_{i}(2<i<n)$

We arbitrarily choose one of them

Construction of Γ

Addition of $v_{i}(2<i<n)$

Construction of Γ

Addition of $v_{i}(2<i<n)$

We arbitrarily choose one of them

Construction of Γ

Addition of $v_{i}(2<i<n)$

Construction of Γ

Addition of $v_{i}(2<i<n)$

We choose the first one in

Construction of Γ

Addition of $v_{i}(2<i<n)$

Construction of Γ

Addition of $v_{i}(2<i<n)$

A line above the topmost point off Γ_{i-1}

Construction of Γ

Addition of $v_{i}(2<i<n)$

Construction of Γ

Addition of $v_{i}(2<i<n)$

Construction of Γ

Addition of $v_{i}(2<i<n)$
Arbitrarily choose $q-2$ slopes (real or dummy as needed)

Construction of Γ

Addition of $v_{i}(2<i<n)$
Arbitrarily choose $q-2$ slopes (real or dummy as needed)
(The number of real edges is at most $\Delta-1$ and we have $\Delta-1$ real slopes below v_{i})

Construction of Γ

Addition of $v_{i}(2<i<n)$
Arbitrarily choose $q-2$ slopes (real or dummy as needed)
(The number of real edges is at most $\Delta-1$ and we have $\Delta-1$ real slopes below v_{i})

Construction of Γ

Addition of $v_{i}(2<i<n)$

Construction of Γ

Addition of $v_{i}(2<i<n)$

The computed drawing satisfies I1-I4

Construction of Γ

Vertex v_{n} can be added similarly, but in this case the number of real edges to be drawn can be up to Δ
The first and the last edge are dummy, so they are supposed to use the horizontal slope

Thus there are only $\Delta-1$ real slopes to host the Δ real edges

We modify the technique so that one real edge uses the horizontal and some dummy edges are not drawn at all

An example

An example

$\Delta=5$
$\Delta^{*}=3$

An example

$\Delta=5$
$\Delta^{*}=3$

An example

$\Delta=5$
$\Delta^{*}=3$

An example

$$
\Delta=5
$$

$$
\Delta^{*}=3
$$

An example

$\Delta=5$

$$
\Delta^{*}=3
$$

An example

$\Delta=5$

$$
\Delta^{*}=3
$$

An example

$\Delta=5$

$$
\Delta^{*}=3
$$

An example

$\Delta=5$

$$
\Delta^{*}=3
$$

Open problems

For planar $s t$-graph we proved an upper bound of Δ with 2 bends per edge and $4 n-9$ bends in total and a lower bound of $\Delta-1$.

Open problems

For planar $s t$-graph we proved an upper bound of Δ with 2 bends per edge and $4 n-9$ bends in total and a lower bound of $\Delta-1$.

- Can we draw every planar st-graph with at most one bend per edge (or less than $4 n-9$ in total) and Δ slopes?
- What is the 2-bend upward planar slope number of planar st-graphs? Is Δ a tight bound?

Open problems

For planar $s t$-graph we proved an upper bound of Δ with 2 bends per edge and $4 n-9$ bends in total and a lower bound of $\Delta-1$.

- Can we draw every planar st-graph with at most one bend per edge (or less than $4 n-9$ in total) and Δ slopes?
- What is the 2-bend upward planar slope number of planar st-graphs? Is Δ a tight bound?
For upward planar digraphs we proved an upper bound of Δ for 2-bend drawings.
- What is the straight-line upward planar slope number of upward planar digraphs?

$\operatorname{upsn}_{1}($ Thank you $) \leq 3$

[^0]: [1] Gronemann, GD 2016

