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k-bend planar slope number

The k-bend planar slope number psnk(G) of a planar graph G
is the minimum number of slopes needed to construct a
drawing of G that:
• is planar
• has at most k bends per edge

psn0(K4) = 6 psn2(K4) = 2psn1(K4) = 3



k-bend planar slope number: known results

For every planar graph G
• psn0(G) = O(K∆) (for a constant K)
• psn0(G) = Ω(∆)

• psn1(G) ≤ 2∆

• in the worst case psn1(G) ≥ 3(∆−1)
4

• psn2(G) = d∆
2 e

Keszegh, Pach, Pálvölgyi, GD 2010, SIDMA 2013

For every planar graph G, psn1(G) ≤ 3(∆−1)
2

Knauer and Walczak, LATIN 2016
For every planar graph G, psn1(G) ≤ ∆− 1
Angelini et al., SoCG 2017



k-bend upward planar slope number

The k-bend upward planar slope number upsnk(G) of an
upward planar graph G is the minimum number of slopes
needed to construct a drawing that:
• is planar
• has at most k bends per edge
• is upward
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Non-upward vs. upward slope number

upsn1(G) = 3

G

upsn1(G) = 5



k-bend upward planar slope number: known results

For every planar poset P , upsn1(P ) ≤ ∆, which is worst-case
optimal
Czyzowicz, Pelc, Rival, Urrutia, Order 1990

For every series-parallel digraph G, upsn1(G) ≤ ∆, which is
worst-case optimal
Di Giacomo, Lio�a, Montecchiani, GD 2016
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What does it mean upward?

Every edge is drawn as a
curve monotonically
increasing in the y-direction

Every edge is drawn as a
curve monotonically
non-decreasing in the
y-direction

In this case, however,
the number of slopes
increases by one
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What does it mean upward?

Every edge is drawn as a
curve monotonically
increasing in the y-direction

Every edge is drawn as a
curve monotonically
non-decreasing in the
y-direction

In the rest of the talk
I will use the
non-decreasing
model

All the constructions
can also be used in the
increasing model with
one slope more
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Our results

• For every bitonic planar st-graph G, upsn1(G) ≤ ∆

In all cases the set of slopes can be chosen arbitrarily, the
only requirement is that it contains the horizontal slope

The results above imply lower bounds on the angular
resolution

The results above are based on linear time algorithms

• For every upward planar graph G, upsn2(G) ≤ ∆ + 1

– worst-case optimal
• For every planar st-graph G, upsn2(G) ≤ ∆

– in the worst case upsn2(G) ≥ ∆− 1
– total number of bends 4n− 9



1-bend upward planar
drawings of bitonic st-graphs
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• A bitonic planar st-graph is an embedded planar DAG
that admits a bitonic st-ordering, i.e., numbering σ of its
vertices s.t.
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– for each vertex the numbers assigned to its successors
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The drawing algorithm: overview

INPUT: a bitonic planar st-graph G, a set of ∆ slopes S
including the horizontal
OUTPUT: a 1-bend upward planar drawing Γ that uses only
the slopes in S
1 - Compute a bitonic st-ordering σ of G

2 - Transform σ into an upward canonical ordering χ
3 - Construct Γ by adding a vertex per step according to χ
while maintaining a set of geometric invariants
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2 - Transform σ into an upward canonical ordering χ
3 - Construct Γ by adding a vertex per step according to χ
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Canonical augmentation
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σ = {v1, v2, . . . , vn}
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Canonical augmentation
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vL
vR

A bitonic planar st-graph G with a bitonic st-ordering
σ = {v1, v2, . . . , vn}
Augment G so that each vertex has at least two predecessors
(see [1])

[1] Gronemann, GD 2016

Triangulate G;
χ = {vL, vR, v1, v2, . . . , vn} is an upward canonical ordering



The drawing algorithm: overview

3 - Construct Γ by adding a vertex per step according to χ
while maintaining a set of geometric invariants

2 - Transform σ into an upward canonical ordering χ

INPUT: a bitonic planar st-graph G, a set of ∆ slopes S
including the horizontal
OUTPUT: a 1-bend upward planar drawing Γ that uses only
the slopes in S
1 - Compute a bitonic st-ordering σ of G
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Let S = {ρ1, ρ2, . . . , ρ∆} be the given set of slopes
• These slopes will be called real slopes

For each pair of consecutive slopes in S we add ∆∗ dummy
slopes between them



Construction of Γ

We compute a drawing by adding a vertex per step.
The drawing Γi of Gi obtained by the addition of vi, satisfies
the following invariants:



Construction of Γ

We compute a drawing by adding a vertex per step.
The drawing Γi of Gi obtained by the addition of vi, satisfies
the following invariants:

I1 – Γi is a 1-bend planar upward drawing whose real edges
uses only the slopes in S



Construction of Γ

We compute a drawing by adding a vertex per step.
The drawing Γi of Gi obtained by the addition of vi, satisfies
the following invariants:

I1 – Γi is a 1-bend planar upward drawing whose real edges
uses only the slopes in S
I2 – Every edge in the upper boundary Pi of Γi contains a
horizontal segment

ΓivL vR
Pi



Construction of Γ

We compute a drawing by adding a vertex per step.
The drawing Γi of Gi obtained by the addition of vi, satisfies
the following invariants:

I3 – For each vertex v the number of real slopes above v that
are free are at least the number of real edges incident on v
that have still to be drawn

Γi

v

vL vR

Enough real
slopes



Construction of Γ

We compute a drawing by adding a vertex per step.
The drawing Γi of Gi obtained by the addition of vi, satisfies
the following invariants:

I4 – For each vertex v the number of dummy slopes above v
that are before the first real slope and are free are at least the
number of dummy edges incident on v that have still to be
drawn

v
ΓivL vR

Enough dummy slopes
here and here



A crucial lemma

Let Γi be a drawing that satisfies I1-I4;
let (u, v) be an edge of Pi such that u is before v;
let λ be a positive number.

There exists Γ′i such that:
• satisfies I1-I4
• the horizontal distance between u and v is increased by λ
• the horizontal distance between any two other

consecutive vertices along Pi is not changed
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A crucial lemma

Let Γi be a drawing that satisfies I1-I4;
let (u, v) be an edge of Pi such that u is before v;
let λ be a positive number.

There exists Γ′i such that:
• satisfies I1-I4
• the horizontal distance between u and v is increased by λ
• the horizontal distance between any two other

consecutive vertices along Pi is not changed

u
v

u
v

λ

Γi Γ′i



Sketch of proof

u
v

u
v

By using I2 and induction we can prove that there is a cut of
horizontal edges



Construction of Γ

We draw G2 as a horizontal path (ignoring some dummy
edges)

v1 v2vL vR
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Construction of Γ

Addition of vi (2 < i < n)

vi

u4
u3u2

u1 u4
u2 u3

u1

A line above the topmost
point of Γi−1
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Construction of Γ

Addition of vi (2 < i < n)

vi

u4
u3u2

u1

vi

u2 u3

u1 u4

The computed drawing
satisfies I1-I4



Construction of Γ

Vertex vn can be added similarly, but in this case the number
of real edges to be drawn can be up to ∆

The first and the last edge are dummy, so they are supposed
to use the horizontal slope

We modify the technique so that one real edge uses the
horizontal and some dummy edges are not drawn at all

Thus there are only ∆− 1 real slopes to host the ∆ real edges
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Open problems

For planar st-graph we proved an upper bound of ∆ with 2
bends per edge and 4n− 9 bends in total and a lower bound
of ∆− 1.

• What is the 2-bend upward planar slope number of
planar st-graphs? Is ∆ a tight bound?

• What is the straight-line upward planar slope number of
upward planar digraphs?

• Can we draw every planar st-graph with at most one
bend per edge (or less than 4n− 9 in total) and ∆ slopes?

For upward planar digraphs we proved an upper bound of ∆
for 2-bend drawings.



upsn1(Thank you) ≤ 3


