

# Arrangements of Pseudocircles: On Circularizability

Stefan Felsner and Manfred Scheucher

pseudocircle ...simple closed curve

arrangement ... collection of pcs. s.t. intersection of any two pcs. either empty or 2 points where curves cross







pseudocircle ...simple closed curve

arrangement ... collection of pcs. s.t. intersection of any two pcs. either empty or 2 points where curves cross







pseudocircle ...simple closed curve

arrangement ... collection of pcs. s.t. intersection of any two pcs. either empty or 2 points where curves cross



simple ... no 3 pcs. intersect in common point
connected ... intersection graph is connected







simple ... no 3 pcs. intersect in common point
connected ... intersection graph is connected







simple ... no 3 pcs. intersect in common point
connected ... intersection graph is connected

assumptions throughout presentation







simple ... no 3 pcs. intersect in common point
connected ... intersection graph is connected

assumptions throughout presentation







simple ... no 3 pcs. intersect in common point
connected ... intersection graph is connected

assumptions throughout presentation

*circularizable* ...∃ isomorphic arrangement of circles



connected ... graph of arrangement is connected

intersecting ...any 2 pseudocircles cross twice



connected ... graph of arrangement is connected



intersecting ... any 2 pseudocircles cross twice



arr. of great-pseudocircles ...any 3 pcs. form a Krupp





connected ... graph of arrangement is connected



intersecting ...any 2 pseudocircles cross twice



arr. of great-pseudocircles ...any 3 pcs. form a Krupp



connected ... graph of arrangement is connected intersecting ... any 2 pseudocircles cross twice arr. of great-pseudocircles ...any 3 pcs. form a Krupp digon-free ... no cell bounded by two pcs.

connected ... graph of arrangement is connected intersecting ... any 2 pseudocircles cross twice arr. of great-pseudocircles ...any 3 pcs. form a Krupp digon-free ... no cell bounded by two pcs. *cylindrical* ...  $\exists$  two cells separated by each of the pcs.

connected ... graph of arrangement is connected



intersecting ... any 2 pseudocircles cross twice



arr. of great-pseudocircles ...any 3 pcs. form a Krupp





# **Enumeration of Arrangements**

| n            | 3 | 4  | 5   | 6       | 7           |
|--------------|---|----|-----|---------|-------------|
| connected    | 3 | 21 | 984 | 609 423 | ?           |
| +digon-free  | 1 | 3  | 30  | 4 509   | ?           |
| intersecting | 2 | 8  | 278 | 145 058 | 447 905 202 |
| +digon-free  | 1 | 2  | 14  | 2 131   | 3 012 972   |
| great-p.c.s  | 1 | 1  | 1   | 4       | 11          |

**Table:** # of combinatorially different arragements of n pcs.

# **Enumeration of Arrangements**

| $\underline{}$ | 3 | 4  | 5   | 6       | 7           |
|----------------|---|----|-----|---------|-------------|
| connected      | 3 | 21 | 984 | 609 423 | ?           |
| +digon-free    | 1 | 3  | 30  | 4 509   | ?           |
| intersecting   | 2 | 8  | 278 | 145 058 | 447 905 202 |
| +digon-free    | 1 | 2  | 14  | 2 131   | 3 012 972   |
| great-p.c.s    | 1 | 1  | 1   | 4       | 11          |

**Table:** # of combinatorially different arragements of n pcs.

arrangements of pseudocircles:  $2^{\Theta(n^2)}$ 

arrangements of circles:  $2^{\Theta(n \log n)}$ 

• non-circularizability of intersecting n=6 arrangement [Edelsbrunner and Ramos '97]



- non-circularizability of intersecting n=6 arrangement [Edelsbrunner and Ramos '97]
- non-circularizability of n=5 arrangement [Linhart and Ortner '05]



- non-circularizability of intersecting n=6 arrangement [Edelsbrunner and Ramos '97]
- non-circularizability of n=5 arrangement [Linhart and Ortner '05]
- circularizability of all n=4 arrangements [Kang and Müller '14]

- non-circularizability of intersecting n=6 arrangement [Edelsbrunner and Ramos '97]
- non-circularizability of n=5 arrangement [Linhart and Ortner '05]
- circularizability of all n=4 arrangements [Kang and Müller '14]
- NP-hardness of circularizability [Kang and Müller '14]

**Theorem.** There are exactly 4 non-circularizable n=5 arrangements (984 classes).



**Theorem.** There are exactly 4 non-circularizable n=5 arrangements (984 classes).





- ullet assume there is a circle representation of  $\mathcal{N}_5^1$
- shrink the yellow, green, and red circle
- cyclic order is preserved (also for blue)



- ullet assume there is a circle representation of  $\mathcal{N}_5^1$
- shrink the yellow, green, and red circle
- cyclic order is preserved (also for blue)



ullet assume there is a circle representation of  $\mathcal{N}_5^1$ 

shrink the yellow, green, and red circle

cyclic order is preserved (also for blue)



blue and black: 4 crossings – contradiction

cannot exist!

**Theorem.** There are exactly 3 non-circularizable digon-free intersecting n=6 arrangements (2131 classes).



**Theorem.** There are exactly 3 non-circularizable digon-free intersecting n=6 arrangements (2131 classes).



 $\mathcal{N}_6^{\triangle}$  is unique digon-free intersecting with 8 triangular cells

Grünbaum Conjecture:  $p_3 \ge 2n-4$ 

**Theorem.** There are exactly 3 non-circularizable digon-free intersecting n=6 arrangements (2131 classes).



 $\mathcal{N}_6^{\triangle}$  is unique digon-free intersecting with 8 triangular cells

Grünbaum Conjecture:  $p_3 \ge 2n-4$ 

non-circularizability proof based on sweeping argument in 3-D

#### **Great-Circle Theorem:**

An arr. of great-pcs. is circularizable (i.e., has a circle representation) if and only if it has a great-circle repr.



#### **Great-Circle Theorem:**

An arr. of great-pcs. is circularizable (i.e., has a circle representation) if and only if it has a great-circle repr.

#### Proof.

 $C_1, \ldots, C_n$  ...circles on sphere realizing the arrangement

 $E_1, \ldots, E_n$  ... planes spanned by  $C_1, \ldots, C_n$ 

for  $t \geq 1$ , sweep  $E_i$  to  $\frac{1}{t}E_i$  (towards origin)

#### **Great-Circle Theorem:**

An arr. of great-pcs. is circularizable (i.e., has a circle representation) if and only if it has a great-circle repr.

#### Proof.

 $C_1, \ldots, C_n$  ... circles on sphere realizing the arrangement

 $E_1, \ldots, E_n$  ... planes spanned by  $C_1, \ldots, C_n$ 

for  $t \geq 1$ , sweep  $E_i$  to  $\frac{1}{t}E_i$  (towards origin)

all triples are Krupp, thus intersections remain inside sphere during sweep, thus no flip

as  $t \to \infty$ , we obtain great-circle arrangement

#### **Great-Circle Theorem:**

An arr. of great-pcs. is circularizable (i.e., has a circle representation) if and only if it has a great-circle repr.



#### **Great-Circle Theorem:**

An arr. of great-pcs. is circularizable (i.e., has a circle representation) if and only if it has a great-circle repr.

#### **Corollaries:**

 Every non-stretchable arr. of pseudolines has a corresponding non-circularizable arr. of pseudocircles

#### **Great-Circle Theorem:**

An arr. of great-pcs. is circularizable (i.e., has a circle representation) if and only if it has a great-circle repr.

#### **Corollaries:**

- Every non-stretchable arr. of pseudolines has a corresponding non-circularizable arr. of pseudocircles
- Deciding circularizability is  $\exists \mathbb{R}$ -complete

## Great-(Pseudo)Circles

#### **Great-Circle Theorem:**

An arr. of great-pcs. is circularizable (i.e., has a circle representation) if and only if it has a great-circle repr.

#### **Corollaries:**

- Every non-stretchable arr. of pseudolines has a corresponding non-circularizable arr. of pseudocircles
- Deciding circularizability is  $\exists \mathbb{R}$ -complete
- ∃ infinite families of minimal non-circ. arrangements
- ∃ circularizable arr with a disconnected realization space

• . . .



#### **Proof.** (similar)

 $C_1, \ldots, C_6 \ldots$  circles

 $E_1, \ldots, E_6 \ldots$  planes



#### **Proof.** (similar)

$$C_1, \ldots, C_6 \ldots$$
 circles

$$E_1,\ldots,E_6\ldots$$
 planes

the origin  $E_1,\ldots,E_6\ldots$  planes for  $t\geq 1$ , sweep  $E_i$  to  $t\cdot E_i$  (to  $\infty$ )

planes move

away from



**Proof.** (similar)

 $C_1, \ldots, C_6 \ldots$  circles

planes move away from the origin

 $E_1,\ldots,E_6\ldots$  planes for  $t\geq 1$ , sweep  $E_i$  to  $t\cdot E_i$  (to  $\infty$ )

No greatcircle arr., thus events occur





**Proof.** (similar)

 $C_1, \ldots, C_6 \ldots$  circles

 $E_1, \ldots, E_6 \ldots$  planes

for  $t \geq 1$ , sweep  $E_i$  to  $t \cdot E_i$  (to  $\infty$ )

No greatcircle arr., thus events occur

first event is triangle flip (no digons)

but triangle flip not possible because all triangles in NonKrupp. Contradiction.



**Proof.** (also similar)

 $C_1, \ldots, C_6 \ldots$  circles

 $E_1, \ldots, E_6 \ldots$  planes



#### **Proof.** (also similar)

$$C_1, \ldots, C_6 \ldots$$
 circles

$$E_1, \ldots, E_6 \ldots$$
 planes

for  $t \geq 1$ , sweep  $E_i$  to  $1/t \cdot E_i$ 

planes move

towards origin



**Proof.** (also similar)

 $C_1, \ldots, C_6 \ldots$  circles

 $E_1, \ldots, E_6 \ldots$  planes

planes move towards origin

for  $t \geq 1$ , sweep  $E_i$  to  $1/t \cdot E_i$ 

 $\exists$  NonKrupp subarr.  $\Rightarrow$  events occur



∃ point of intersection outside the unit-sphere (will move inside)



**Proof.** (also similar)

 $C_1, \ldots, C_6 \ldots$  circles

 $E_1, \ldots, E_6 \ldots$  planes

for  $t \geq 1$ , sweep  $E_i$  to  $1/t \cdot E_i$ 

 $\exists$  NonKrupp subarr.  $\Rightarrow$  events occur

first event is triangle flip (no digons)

but triangle flip not possible because all triangles in Krupp. Contradiction.

#### Computational Part

- connected arrangements encoded via primal-dual graph
- intersecting arrangements encoded via dual graph



#### Computational Part

enumeration via recursive search on flip graph



#### Computational Part

- circle representations heuristically
- hard instances by hand

### Further Results (Full Version)

- alternative proofs for  $\mathcal{N}_6^{\triangle}$  and  $\mathcal{N}_6^2$
- 8 additional arrangements of 6 pseudocircles (group of symmetries  $\geq 4$ )

### Further Results (Full Version)

- alternative proofs for  $\mathcal{N}_6^{\triangle}$  and  $\mathcal{N}_6^2$
- 8 additional arrangements of 6 pseudocircles (group of symmetries  $\geq 4$ )
- $\approx$ 4 400 connected digon-free arrangements of 6 circles ( $\approx$ 98%),
- $\approx$ 130 000 intersecting arrangements of 6 circles ( $\approx$ 90%), and
- $\approx$ 2M intersecting digon-free arrangements of 7 circles ( $\approx$ 66%).

### Further Results (Full Version)

- alternative proofs for  $\mathcal{N}_6^{\triangle}$  and  $\mathcal{N}_6^2$
- 8 additional arrangements of 6 pseudocircles (group of symmetries  $\geq 4$ )
- $\approx$ 4 400 connected digon-free arrangements of 6 circles ( $\approx$ 98%),
- $\approx$ 130 000 intersecting arrangements of 6 circles ( $\approx$ 90%), and
- $\approx$ 2M intersecting digon-free arrangements of 7 circles ( $\approx$ 66%).
- some results on the flipgraph
- $2^{\Theta(n^2)}$  and  $2^{\Theta(n\log n)}$  bound (# of arrangements)

