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Ortho-polygon Visibility representations (OPVRs) of embedded graphs

e Input: graph + embedding (pairs of crossing edges + circular order
of the edges around vertices and crossings + external face)

e Output: OPVR
Vertices — Orthogonal polygons

Edges — Horizontal /Vertical visibilities
Embedding preserved
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Rectangle Visibility Representations

OPVRS introduced by Di Giacomo et al. as a generalization of
rectangle ViSibility representations [Di Giacomo, Didimo, Evans, Liotta,
Mejer, M., Wismath 2016]

Rectangle Visibility representation (RVR) of embedded graphs:
Vertices — Axis-aligned rectangles
Edges — Horizontal /Vertical visibilities
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Vertex complexity
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Vertex complexity of an OPVR I' = maximum number of reflex
corners of a polygon in I'

— RVR = OPVR with vertex complexity 0




Related work and motivation

e Deciding if a graph has an embedding that can be | VARIABLE
drawn as a RVR is NP-complete [Shermer 1996] EMBEDDING



Related work and motivation

e Deciding if a graph has an embedding that can be | VARIABLE
drawn as a RVR is NP-complete [Shermer 1996] EMBEDDING

e Deciding if an embedded graph has a RVR is
polynomial [Biedl, Liotta, M. 2016]

e Deciding if an embedded graph has an OPVR is
polynomial [Di Giacomo et al. 2016]

FIXED
EMBEDDING

e Algorithm to compute an OPVR with minimum
o 3 .

vertex complexity in O(n% log? n) time

[Di Giacomo et al. 2016]
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An embedded graph is 1-plane if it
has at most one crossing per edge.

FORBIDDEN
CONFIGURATIONS e A 1-plane graph admits a RVR if and only

if it does not contain any B-, W-, and
@ @ @ T-configuration as a subgrpah

[BiedI, Liotta, M. 2016]
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e Every 1-plane graph G has an OPVR. An OPVR of GG with
minimum vertex complexity can be computed in O(ni log\/n) time
[Di Giacomo, Didimo, Evans, Liotta, Mejer, M., Wismath 2016]
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e [here are 2-connected 1-plane graphs
such that any OPVR has vertex
complexity €2(n) [Di Giacomo et al. 2016]

e There are 3-connected 1-plane
graphs such that any OPVR has
vertex complexity at least 2

[Di Giacomo et al. 2016]

e Every 3-connected 1-plane graph

has an OPVR with vertex complexity —* E@g@ |

at most 12 [Di Giacomo et al. 2016]
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Contribution

e There are 3-connected 1-plane graphs such that any OPVR has
vertex complexity at least 4

e Lower bound increased from 2 to 4

e Every 3-connected 1-plane graph has an OPVR with vertex
. . . ~ 1 .
complexity at most 5, which can be computed in O(n'7) time
e Upper bound reduced from 12 to 5

e Running time reduced by using recent results on the min-cost
flow problem (not in this talk)



Proving the Lower Bound

Theorem 1 There exists an infinite family G of 3-connected 1-plane
graphs, such that for any G € G and for any OPVR T of GG, the vertex
complexity of I is at least 4.
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Proving the lower bound

Insert a vertex in each white face and add dummy edges
to make the graph 3-connected (and still 1-planar)
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Proving the lower bound

| ] The red vertices

I 1 are the poles of

5 T-conf _ @ f the configurations
N — -contigurations |

e Each B-/T-configuration requires a reflex corner on one of its poles
and in its interior region (light blue background) [Biedl, Liotta, M. 2016]

e The resulting graph G has:

e 3n — 6 B-configurations

e (& contains 4n — 8 configurations with n poles and whose interior
regions are pairwise disjoint

e At least one pole has at least 4 reflex corners (if n > 8) [



Proving the Upper Bound

Theorem 2 Every 3-connected 1-plane graph has an OPVR with
vertex complexity at most 5.
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At high-level, the proof works as follows (G = 3-conn. 1-plane graph):
e Compute a special set F' of B-/W-/T-configurations from G

e Assign each configuration of this set to one of its poles such that
each pole is assigned with at most 5 configurations

e Remove the configurations and compute a RVR

e Reinsert the configurations by attaching at most 5 spokes to the
rectangles representing the matched poles
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Sketch of the proof

At high-level, the proof works as follows (G = 3-conn. 1-plane graph):
e Compute a special set F' of B-/W-/T-configurations from G

e Assign each configuration of this set to one of its poles such that
each pole is assigned with at most 5 configurations

e Remove the configurations and compute a RVR

e Reinsert the configurations by attaching at most 5 spokes to the
rectangles representing the matched poles

e Remove some reflex corners when not needed
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Sketch of the proof

At high-level, the proof works as follows (G = 3-conn. 1-plane graph):
e Compute a special set F' of B-/W-/T-configurations from G

e Assign each configuration of this set to one of its poles such that
each pole is assigned with at most 5 configurations

£
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Some definitions

Two configurations that do not share any crossing are called
independent, or dependent otherwise

¥ Two dependent Two independent
configurations configurations

A set F' of configurations of a 3-connected 1-plane graph GG is
non-redundant if it contains:
e All B-configurations of G;
e All T-configurations of G that are independent of B-configurations.
e The W-configuration, if any.
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configuration in its interior region
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The T-configuration with poles
{u,v,w} is separating as it contains
another T-configuration in its
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A special case

A T-configuration is separating if it contains a pole of another

configuration in its interior region
(7

The T-configuration with poles
{u,v,w} is separating as it contains
another T-configuration in its

v W Interior region

GG: 3-connected 1-plane graph with set of poles P
F': non-redundant set of configurations of GG

B: number of B-configurations in G

7: number of T-configurations in G

Lemma 1 /f G has no separating T-configurations and no
W-configurations, then |F'| < 4|P| — 8. Also, |F| = 4|P| — 8 if and
only if 3 =3|P|—6 and 7 = |P| — 2
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A special case: sketch of proof

We construct an auxiliary graph G 4 from G-

Remove everything except the poles G4

For each pair of crossing edges in a
configuration of F', draw a crossing-free
edge (close to the removed edges)

e (G4 has ny = | P| vertices by construction

e (G4 has an edge for each B-configuration and 3 edges for each
T-configuration of GG, which are all independent — 8+ 37 = my4

e (G4 is plane and it has at most 2 parallel edges for each pair of
adjacent vertices by 3-connectivity — 8+ 37 < 6|P| — 12

e No two B-configurations can share the same pair of poles by
3-connectivity — 5 < 3|P| — 6
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A special case

Thus, we have:

1. |[F|=0+T

2. B+ 31 <6|P|—12
3. B<3|P|—6

For a fixed value of |P|, we can study the function f(8,7) =68+ 7
in the domain D defined by inequalities 2. and 3.

— f(B,7) < 4|P|— 8 in all points of D

— f(B,7) = 4|P| — 8 only in the point 8 =3|P|—6 and 7 = |P| — 2

More in general:
By using induction on the number of separating T-configurations,
we can show that, in general, |F| < 5|P|
By Hall's theorem, there is a 5-matching from F' into P, as
desired.
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Open Problems
1. There is still a gap between the upper (5) and the lower (4)
bound on the vertex complexity of 3-connected 1-plane graphs

2. Is 5| P| a tight bound on the number of non-redundant
configurations in a 3-connected 1-plane graph with |P| poles?

3. Can we compute OPVRs of 3-connected 1-plane graphs with
vertex complexity at most 5 in O(n) time?

THANK YOU!



