Ortho-polygon Visibility Representations of 3-connected 1-plane Graphs

Giuseppe Liotta, <u>Fabrizio Montecchiani</u>, and Alessandra Tappini

University of Perugia, Italy

GD 2018, September 26-28, 2018, Barcelona

Ortho-polygon Visibility representations (OPVRs) of embedded graphs

Ortho-polygon Visibility representations (OPVRs) of embedded graphs

ullet Input: graph + embedding (pairs of crossing edges + circular order of the edges around vertices and crossings + external face)

Ortho-polygon Visibility representations (OPVRs) of embedded graphs

ullet Input: graph + embedding (pairs of crossing edges + circular order of the edges around vertices and crossings + external face)

Output: OPVR

Vertices → Orthogonal polygons

Ortho-polygon Visibility representations (OPVRs) of embedded graphs

ullet Input: graph + embedding (pairs of crossing edges + circular order of the edges around vertices and crossings + external face)

Output: OPVR

Vertices \rightarrow Orthogonal polygons Edges \rightarrow Horizontal/Vertical visibilities

Ortho-polygon Visibility representations (OPVRs) of embedded graphs

ullet Input: graph + embedding (pairs of crossing edges + circular order of the edges around vertices and crossings + external face)

Output: OPVR

Vertices \rightarrow Orthogonal polygons Edges \rightarrow Horizontal/Vertical visibilities Embedding preserved

Rectangle Visibility Representations

OPVRS introduced by Di Giacomo et al. as a generalization of rectangle visibility representations [Di Giacomo, Didimo, Evans, Liotta, Mejer, M., Wismath 2016]

Rectangle Visibility Representations

OPVRS introduced by Di Giacomo et al. as a generalization of rectangle visibility representations [Di Giacomo, Didimo, Evans, Liotta, Mejer, M., Wismath 2016]

Rectangle Visibility representation (RVR) of embedded graphs:

Vertices \rightarrow Axis-aligned rectangles

Edges → Horizontal/Vertical visibilities

Vertex complexity

Vertex complexity of an OPVR $\Gamma=$ maximum number of reflex corners of a polygon in Γ

 \rightarrow RVR = OPVR with vertex complexity 0

• Deciding if a graph has an embedding that can be VARIABLE drawn as a RVR is NP-complete [Shermer 1996]

• Deciding if a graph has an embedding that can be VARIABLE drawn as a RVR is NP-complete [Shermer 1996]

FIXED EMBEDDING

- Deciding if an embedded graph has a RVR is polynomial [Biedl, Liotta, M. 2016]
- Deciding if an embedded graph has an OPVR is polynomial [Di Giacomo et al. 2016]
- Algorithm to compute an OPVR with minimum vertex complexity in $O(n^{\frac{5}{2}}\log^{\frac{3}{2}}n)$ time [Di Giacomo et al. 2016]

An embedded graph is 1-plane if it has at most one crossing per edge.

An embedded graph is 1-plane if it has at most one crossing per edge.

FORBIDDEN CONFIGURATIONS

В

W

• A 1-plane graph admits a RVR if and only if it does not contain any B-, W-, and T-configuration as a subgrpah [Biedl, Liotta, M. 2016]

An embedded graph is 1-plane if it has at most one crossing per edge.

FORBIDDEN CONFIGURATIONS

 A 1-plane graph admits a RVR if and only if it does not contain any B-, W-, and T-configuration as a subgrpah [Biedl, Liotta, M. 2016]

• Every 1-plane graph G has an OPVR. An OPVR of G with minimum vertex complexity can be computed in $O(n^{\frac{7}{4}} \log \sqrt{n})$ time [Di Giacomo, Didimo, Evans, Liotta, Mejer, M., Wismath 2016]

ullet There are 2-connected 1-plane graphs such that any OPVR has vertex complexity $\Omega(n)$ [Di Giacomo et al. 2016]

ullet There are 2-connected 1-plane graphs such that any OPVR has vertex complexity $\Omega(n)$ [Di Giacomo et al. 2016]

• There are 3-connected 1-plane graphs such that any OPVR has vertex complexity at least 2 [Di Giacomo et al. 2016]

ullet There are 2-connected 1-plane graphs such that any OPVR has vertex complexity $\Omega(n)$ [Di Giacomo et al. 2016]

• There are 3-connected 1-plane graphs such that any OPVR has vertex complexity at least 2 [Di Giacomo et al. 2016]

• Every 3-connected 1-plane graph has an OPVR with vertex complexity at most 12 [Di Giacomo et al. 2016]

Contribution

- There are 3-connected 1-plane graphs such that any OPVR has vertex complexity at least 4
 - Lower bound increased from 2 to 4

Contribution

- There are 3-connected 1-plane graphs such that any OPVR has vertex complexity at least 4
 - Lower bound increased from 2 to 4
- Every 3-connected 1-plane graph has an OPVR with vertex complexity at most 5, which can be computed in $\tilde{O}(n^{\frac{10}{7}})$ time
 - ullet Upper bound reduced from 12 to 5
 - Running time reduced by using recent results on the min-cost flow problem (not in this talk)

Theorem 1 There exists an infinite family \mathcal{G} of 3-connected 1-plane graphs, such that for any $G \in \mathcal{G}$ and for any $OPVR \Gamma$ of G, the vertex complexity of Γ is at least 4.

Start with a nested triangle graph with n vertices

Color blue n-2 faces s.t. no 2 of them share an edge

Color blue n-2 faces s.t. no 2 of them share an edge

Insert a T-configuration in each blue face and a B-configuration along each edge

Insert a T-configuration in each blue face and a B-configuration along each edge

Insert a vertex in each white face and add dummy edges to make the graph 3-connected (and still 1-planar)

ullet The resulting graph G has:

• 3n-6 B-configurations

The red vertices are the poles of the configurations

ullet The resulting graph G has:

ullet 3n-6 B-configurations

 \bullet n-2 T-configurations

The red vertices are the poles of the configurations

• Each B-/T-configuration requires a reflex corner on one of its poles and in its interior region (light blue background) [Biedl, Liotta, M. 2016]

ullet The resulting graph G has:

 \bullet 3n-6 B-configurations

 \bullet n-2 T-configurations

The red vertices are the poles of the configurations

- Each B-/T-configuration requires a reflex corner on one of its poles and in its interior region (light blue background) [Biedl, Liotta, M. 2016]
- ullet G contains 4n-8 configurations with n poles and whose interior regions are pairwise disjoint
 - ullet At least one pole has at least 4 reflex corners (if n>8) \square

Proving the Upper Bound

Theorem 2 Every 3-connected 1-plane graph has an OPVR with vertex complexity at most 5.

At high-level, the proof works as follows (G = 3-conn. 1-plane graph):

ullet Compute a special set F of B-/W-/T-configurations from G

- ullet Compute a special set F of B-/W-/T-configurations from G
- ullet Assign each configuration of this set to one of its poles such that each pole is assigned with at most 5 configurations

- ullet Compute a special set F of B-/W-/T-configurations from G
- ullet Assign each configuration of this set to one of its poles such that each pole is assigned with at most 5 configurations
- Remove the configurations and compute a RVR

- ullet Compute a special set F of B-/W-/T-configurations from G
- ullet Assign each configuration of this set to one of its poles such that each pole is assigned with at most 5 configurations
- Remove the configurations and compute a RVR
- Reinsert the configurations by attaching at most 5 spokes to the rectangles representing the matched poles

- ullet Compute a special set F of B-/W-/T-configurations from G
- ullet Assign each configuration of this set to one of its poles such that each pole is assigned with at most 5 configurations
- Remove the configurations and compute a RVR
- Reinsert the configurations by attaching at most 5 spokes to the rectangles representing the matched poles
- Remove some reflex corners when not needed

Sketch of the proof

At high-level, the proof works as follows (G = 3-conn. 1-plane graph):

- ullet Compute a special set F of B-/W-/T-configurations from G
- ullet Assign each configuration of this set to one of its poles such that each pole is assigned with at most 5 configurations
- Remove the configurations and compute a RVR
- Reinsert the configurations by attaching spokes to the rectangles representing the matched poles
- Remove some reflex corners when not needed

Some definitions

Two configurations that do not share any crossing are called independent, or dependent otherwise

Two dependent configurations

Two independent configurations

Some definitions

Two configurations that do not share any crossing are called independent, or dependent otherwise

Two dependent configurations

Two independent configurations

A set F of configurations of a 3-connected 1-plane graph G is non-redundant if it contains:

- All B-configurations of *G*;
- ullet All T-configurations of G that are independent of B-configurations.
- The W-configuration, if any.

A T-configuration is separating if it contains a pole of another configuration in its interior region

The T-configuration with poles $\{u,v,w\}$ is separating as it contains another T-configuration in its interior region

A T-configuration is separating if it contains a pole of another configuration in its interior region

The T-configuration with poles $\{u,v,w\}$ is separating as it contains another T-configuration in its interior region

G: 3-connected 1-plane graph with set of poles P

F: non-redundant set of configurations of G

 β : number of B-configurations in G

au: number of T-configurations in G

Lemma 1 If G has no separating T-configurations and no W-configurations, then $|F| \leq 4|P|-8$. Also, |F|=4|P|-8 if and only if $\beta=3|P|-6$ and $\tau=|P|-2$

We construct an auxiliary graph G_A from G:

We construct an auxiliary graph G_A from G:

Remove everything except the poles

We construct an auxiliary graph G_A from G:

Remove everything except the poles

We construct an auxiliary graph G_A from G:

Remove everything except the poles

For each pair of crossing edges in a configuration of F, draw a crossing-free edge (close to the removed edges)

• G_A has $n_A = |P|$ vertices by construction

We construct an auxiliary graph G_A from G:

Remove everything except the poles

- G_A has $n_A = |P|$ vertices by construction
- G_A has an edge for each B-configuration and 3 edges for each T-configuration of G, which are all independent $\to \beta + 3\tau = m_A$

We construct an auxiliary graph G_A from G:

Remove everything except the poles

- G_A has $n_A = |P|$ vertices by construction
- G_A has an edge for each B-configuration and 3 edges for each T-configuration of G, which are all independent $\to \beta + 3\tau = m_A$
- G_A is plane and it has at most 2 parallel edges for each pair of adjacent vertices by 3-connectivity $\rightarrow \beta + 3\tau \le 6|P| 12$

We construct an auxiliary graph G_A from G:

Remove everything except the poles

- G_A has $n_A = |P|$ vertices by construction
- G_A has an edge for each B-configuration and 3 edges for each T-configuration of G, which are all independent $\to \beta + 3\tau = m_A$
- G_A is plane and it has at most 2 parallel edges for each pair of adjacent vertices by 3-connectivity $\rightarrow \beta + 3\tau \le 6|P| 12$
- \bullet No two B-configurations can share the same pair of poles by 3-connectivity $\to \beta \le 3|P|-6$

Thus, we have:

1.
$$|F| = \beta + \tau$$

2.
$$\beta + 3\tau \le 6|P| - 12$$

3.
$$\beta \le 3|P| - 6$$

Thus, we have:

- 1. $|F| = \beta + \tau$
- 2. $\beta + 3\tau \le 6|P| 12$
- 3. $\beta \le 3|P| 6$

For a fixed value of |P|, we can study the function $f(\beta, \tau) = \beta + \tau$ in the domain D defined by inequalities 2. and 3.

- $\rightarrow f(\beta, \tau) \leq 4|P| 8$ in all points of D
- $\rightarrow f(\beta, \tau) = 4|P| 8$ only in the point $\beta = 3|P| 6$ and $\tau = |P| 2$

Thus, we have:

- 1. $|F| = \beta + \tau$
- 2. $\beta + 3\tau \le 6|P| 12$
- 3. $\beta \le 3|P| 6$

For a fixed value of |P|, we can study the function $f(\beta, \tau) = \beta + \tau$ in the domain D defined by inequalities 2. and 3.

- $\rightarrow f(\beta, \tau) \leq 4|P| 8$ in all points of D
- $\rightarrow f(\beta, \tau) = 4|P| 8$ only in the point $\beta = 3|P| 6$ and $\tau = |P| 2$

More in general:

By using induction on the number of separating T-configurations, we can show that, in general, $|F| \leq 5|P|$

Thus, we have:

- 1. $|F| = \beta + \tau$
- 2. $\beta + 3\tau \le 6|P| 12$
- 3. $\beta \le 3|P| 6$

For a fixed value of |P|, we can study the function $f(\beta, \tau) = \beta + \tau$ in the domain D defined by inequalities 2. and 3.

- $\rightarrow f(\beta, \tau) \leq 4|P| 8$ in all points of D
- $\rightarrow f(\beta, \tau) = 4|P| 8$ only in the point $\beta = 3|P| 6$ and $\tau = |P| 2$

More in general:

By using induction on the number of separating T-configurations, we can show that, in general, $|F| \leq 5|P|$

By Hall's theorem, there is a 5-matching from F into P, as desired.

1. There is still a gap between the upper (5) and the lower (4) bound on the vertex complexity of 3-connected 1-plane graphs

- 1. There is still a gap between the upper (5) and the lower (4) bound on the vertex complexity of 3-connected 1-plane graphs
- 2. Is 5|P| a tight bound on the number of non-redundant configurations in a 3-connected 1-plane graph with |P| poles?

- 1. There is still a gap between the upper (5) and the lower (4) bound on the vertex complexity of 3-connected 1-plane graphs
- 2. Is 5|P| a tight bound on the number of non-redundant configurations in a 3-connected 1-plane graph with |P| poles?
- 3. Can we compute OPVRs of 3-connected 1-plane graphs with vertex complexity at most 5 in O(n) time?

- 1. There is still a gap between the upper (5) and the lower (4) bound on the vertex complexity of 3-connected 1-plane graphs
- 2. Is 5|P| a tight bound on the number of non-redundant configurations in a 3-connected 1-plane graph with |P| poles?
- 3. Can we compute OPVRs of 3-connected 1-plane graphs with vertex complexity at most 5 in O(n) time?

THANK YOU!