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Ortho-polygon Visibility representations (OPVRs) of embedded graphs

Embedding preserved

a

b

c

α

β

γ

δ
d

a b

cd

α
β

γδ

• Input: graph + embedding (pairs of crossing edges + circular order
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Edges → Horizontal/Vertical visibilities

• Output: OPVR
Vertices → Orthogonal polygons
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Rectangle Visibility Representations

OPVRS introduced by Di Giacomo et al. as a generalization of
rectangle visibility representations [Di Giacomo, Didimo, Evans, Liotta,

Mejer, M., Wismath 2016]

Rectangle Visibility representation (RVR) of embedded graphs:
Vertices → Axis-aligned rectangles
Edges → Horizontal/Vertical visibilities
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Vertex complexity

Vertex complexity of an OPVR Γ = maximum number of reflex
corners of a polygon in Γ
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vertex complexity = 1

→ RVR = OPVR with vertex complexity 0



Related work and motivation

• Deciding if a graph has an embedding that can be
drawn as a RVR is NP-complete [Shermer 1996]
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Related work and motivation

• Deciding if a graph has an embedding that can be
drawn as a RVR is NP-complete [Shermer 1996]

• Deciding if an embedded graph has a RVR is
polynomial [Biedl, Liotta, M. 2016]

• Deciding if an embedded graph has an OPVR is
polynomial [Di Giacomo et al. 2016]

• Algorithm to compute an OPVR with minimum

vertex complexity in O(n
5
2 log

3
2 n) time

[Di Giacomo et al. 2016]
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Related work and motivation

An embedded graph is 1-plane if it
has at most one crossing per edge.

• A 1-plane graph admits a RVR if and only
if it does not contain any B-, W-, and
T-configuration as a subgrpah
[Biedl, Liotta, M. 2016]

• Every 1-plane graph G has an OPVR. An OPVR of G with
minimum vertex complexity can be computed in O(n

7
4 log

√
n) time

[Di Giacomo, Didimo, Evans, Liotta, Mejer, M., Wismath 2016]
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Related work and motivation

• There are 2-connected 1-plane graphs
such that any OPVR has vertex
complexity Ω(n) [Di Giacomo et al. 2016]

• There are 3-connected 1-plane
graphs such that any OPVR has
vertex complexity at least 2
[Di Giacomo et al. 2016]

• Every 3-connected 1-plane graph
has an OPVR with vertex complexity
at most 12 [Di Giacomo et al. 2016]
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Contribution

• There are 3-connected 1-plane graphs such that any OPVR has
vertex complexity at least 4

• Every 3-connected 1-plane graph has an OPVR with vertex
complexity at most 5, which can be computed in Õ(n

10
7 ) time

• Lower bound increased from 2 to 4

• Upper bound reduced from 12 to 5

• Running time reduced by using recent results on the min-cost
flow problem (not in this talk)



Proving the Lower Bound

Theorem 1 There exists an infinite family G of 3-connected 1-plane
graphs, such that for any G ∈ G and for any OPVR Γ of G, the vertex
complexity of Γ is at least 4.
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Proving the lower bound

Insert a vertex in each white face and add dummy edges
to make the graph 3-connected (and still 1-planar)
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Proving the lower bound

• The resulting graph G has:

• 3n− 6 B-configurations

• n− 2 T-configurations

The red vertices
are the poles of

the configurations

• Each B-/T-configuration requires a reflex corner on one of its poles
and in its interior region (light blue background) [Biedl, Liotta, M. 2016]

• G contains 4n− 8 configurations with n poles and whose interior
regions are pairwise disjoint

• At least one pole has at least 4 reflex corners (if n > 8) �



Proving the Upper Bound

Theorem 2 Every 3-connected 1-plane graph has an OPVR with
vertex complexity at most 5.
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Sketch of the proof

At high-level, the proof works as follows (G = 3-conn. 1-plane graph):

• Compute a special set F of B-/W-/T-configurations from G

• Assign each configuration of this set to one of its poles such that
each pole is assigned with at most 5 configurations

• Remove the configurations and compute a RVR

• Reinsert the configurations by attaching spokes to the rectangles
representing the matched poles
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Some definitions

Two configurations that do not share any crossing are called
independent, or dependent otherwise

Two dependent
configurations

Two independent
configurations



Some definitions

Two configurations that do not share any crossing are called
independent, or dependent otherwise

A set F of configurations of a 3-connected 1-plane graph G is
non-redundant if it contains:
• All B-configurations of G;
• All T-configurations of G that are independent of B-configurations.
• The W-configuration, if any.

Two dependent
configurations

Two independent
configurations



A special case

A T-configuration is separating if it contains a pole of another
configuration in its interior region

The T-configuration with poles
{u, v, w} is separating as it contains
another T-configuration in its
interior region
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A special case

A T-configuration is separating if it contains a pole of another
configuration in its interior region

Lemma 1 If G has no separating T-configurations and no
W-configurations, then |F | ≤ 4|P | − 8. Also, |F | = 4|P | − 8 if and
only if β = 3|P | − 6 and τ = |P | − 2

G: 3-connected 1-plane graph with set of poles P
F : non-redundant set of configurations of G
β: number of B-configurations in G
τ : number of T-configurations in G

The T-configuration with poles
{u, v, w} is separating as it contains
another T-configuration in its
interior region
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We construct an auxiliary graph GA from G:
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A special case: sketch of proof

We construct an auxiliary graph GA from G:

Remove everything except the poles

For each pair of crossing edges in a
configuration of F , draw a crossing-free
edge (close to the removed edges)

GA

• GA has nA = |P | vertices by construction

• GA has an edge for each B-configuration and 3 edges for each
T-configuration of G, which are all independent → β + 3τ = mA

• GA is plane and it has at most 2 parallel edges for each pair of
adjacent vertices by 3-connectivity → β + 3τ ≤ 6|P | − 12

• No two B-configurations can share the same pair of poles by
3-connectivity → β ≤ 3|P | − 6
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A special case

Thus, we have:
1. |F | = β + τ
2. β + 3τ ≤ 6|P | − 12
3. β ≤ 3|P | − 6

For a fixed value of |P |, we can study the function f(β, τ) = β + τ
in the domain D defined by inequalities 2. and 3.
→ f(β, τ) ≤ 4|P | − 8 in all points of D
→f(β, τ) = 4|P | − 8 only in the point β = 3|P | − 6 and τ = |P | − 2

By using induction on the number of separating T-configurations,
we can show that, in general, |F | ≤ 5|P |

By Hall’s theorem, there is a 5-matching from F into P , as
desired.

More in general:
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Open Problems

1. There is still a gap between the upper (5) and the lower (4)
bound on the vertex complexity of 3-connected 1-plane graphs

2. Is 5|P | a tight bound on the number of non-redundant
configurations in a 3-connected 1-plane graph with |P | poles?

3. Can we compute OPVRs of 3-connected 1-plane graphs with
vertex complexity at most 5 in O(n) time?

THANK YOU!


