Ortho-polygon Visibility

 Representations
of 3-connected 1-plane Graphs

Giuseppe Liotta, Fabrizio Montecchiani, and Alessandra Tappini

University of Perugia, Italy

GD 2018, September 26-28, 2018, Barcelona

Topic of this talk

Ortho-polygon Visibility representations (OPVRs) of embedded graphs

Topic of this talk

Ortho-polygon Visibility representations (OPVRs) of embedded graphs

- Input: graph + embedding (pairs of crossing edges + circular order of the edges around vertices and crossings + external face)

Topic of this talk

Ortho-polygon Visibility representations (OPVRs) of embedded graphs

- Input: graph + embedding (pairs of crossing edges + circular order of the edges around vertices and crossings + external face)
- Output: OPVR

Vertices \rightarrow Orthogonal polygons

Topic of this talk

Ortho-polygon Visibility representations (OPVRs) of embedded graphs

- Input: graph + embedding (pairs of crossing edges + circular order of the edges around vertices and crossings + external face)
- Output: OPVR

Vertices \rightarrow Orthogonal polygons
Edges \rightarrow Horizontal/Vertical visibilities

Topic of this talk

Ortho-polygon Visibility representations (OPVRs) of embedded graphs

- Input: graph + embedding (pairs of crossing edges + circular order of the edges around vertices and crossings + external face)
- Output: OPVR

Vertices \rightarrow Orthogonal polygons
Edges \rightarrow Horizontal/Vertical visibilities
Embedding preserved

Rectangle Visibility Representations

OPVRS introduced by Di Giacomo et al. as a generalization of rectangle visibility representations [Di Giacomo, Didimo, Evans, Liotta, Mejer, M., Wismath 2016]

Rectangle Visibility Representations

OPVRS introduced by Di Giacomo et al. as a generalization of rectangle visibility representations [Di Giacomo, Didimo, Evans, Liotta, Mejer, M., Wismath 2016]
Rectangle Visibility representation (RVR) of embedded graphs: Vertices \rightarrow Axis-aligned rectangles Edges \rightarrow Horizontal/Vertical visibilities

Vertex complexity

vertex complexity $=1$

Vertex complexity of an OPVR $\Gamma=$ maximum number of reflex corners of a polygon in Γ
\rightarrow RVR $=$ OPVR with vertex complexity 0

Related work and motivation

- Deciding if a graph has an embedding that can be 7 VARIABLE drawn as a RVR is NP-complete [Shermer 1996] EMBEDDING

Related work and motivation

- Deciding if a graph has an embedding that can be VARIABLE drawn as a RVR is NP-complete [Shermer 1996] EMBEDDING

FIXED EMBEDDING

-• Deciding if an embedded graph has a RVR is polynomial [Biedl, Liotta, M. 2016]

- Deciding if an embedded graph has an OPVR is polynomial [Di Giacomo et al. 2016]
- Algorithm to compute an OPVR with minimum vertex complexity in $O\left(n^{\frac{5}{2}} \log ^{\frac{3}{2}} n\right)$ time [Di Giacomo et al. 2016]

Related work and motivation

An embedded graph is 1-plane if it has at most one crossing per edge.

Related work and motivation

An embedded graph is 1-plane if it has at most one crossing per edge.

FORBIDDEN

CONFIGURATIONS

B

W

T

- A 1-plane graph admits a RVR if and only if it does not contain any $B-, W$-, and T-configuration as a subgrpah [Biedl, Liotta, M. 2016]

Related work and motivation

An embedded graph is 1-plane if it has at most one crossing per edge.

FORBIDDEN

CONFIGURATIONS

B

W

T

- A 1-plane graph admits a RVR if and only if it does not contain any B-, W-, and T-configuration as a subgrpah [Biedl, Liotta, M. 2016]
- Every 1-plane graph G has an OPVR. An OPVR of G with minimum vertex complexity can be computed in $O\left(n^{\frac{7}{4}} \log \sqrt{n}\right)$ time [Di Giacomo, Didimo, Evans, Liotta, Mejer, M., Wismath 2016]

Related work and motivation

- There are 2-connected 1-plane graphs such that any OPVR has vertex complexity $\Omega(n)$ [Di Giacomo et al. 2016]

Related work and motivation

- There are 2-connected 1-plane graphs such that any OPVR has vertex complexity $\Omega(n)$ [Di Giacomo et al. 2016]

- There are 3-connected 1-plane graphs such that any OPVR has vertex complexity at least 2
[Di Giacomo et al. 2016]

Related work and motivation

- There are 2-connected 1-plane graphs such that any OPVR has vertex complexity $\Omega(n)$ [Di Giacomo et al. 2016]

- There are 3-connected 1-plane graphs such that any OPVR has vertex complexity at least 2
[Di Giacomo et al. 2016]
- Every 3-connected 1-plane graph has an OPVR with vertex complexity \rightarrow at most 12 [Di Giacomo et al. 2016]

Contribution

- There are 3-connected 1-plane graphs such that any OPVR has vertex complexity at least 4
- Lower bound increased from 2 to 4

Contribution

- There are 3-connected 1-plane graphs such that any OPVR has vertex complexity at least 4
- Lower bound increased from 2 to 4
- Every 3-connected 1-plane graph has an OPVR with vertex complexity at most 5 , which can be computed in $\tilde{O}\left(n^{\frac{10}{7}}\right)$ time
- Upper bound reduced from 12 to 5
- Running time reduced by using recent results on the min-cost flow problem (not in this talk)

Proving the Lower Bound

Theorem 1 There exists an infinite family \mathcal{G} of 3-connected 1-plane graphs, such that for any $G \in \mathcal{G}$ and for any $O P V R \Gamma$ of G, the vertex complexity of Γ is at least 4 .

Proving the lower bound

Start with a nested triangle graph with n vertices

Proving the lower bound

Color blue $n-2$ faces s.t. no 2 of them share an edge

Proving the lower bound

Color blue $n-2$ faces s.t. no 2 of them share an edge

Proving the lower bound

Insert a T-configuration in each blue face and a B-configuration along each edge

Proving the lower bound

Insert a T-configuration in each blue face and a B-configuration along each edge

Proving the lower bound

Insert a vertex in each white face and add dummy edges to make the graph 3 -connected (and still 1-planar)

Proving the lower bound

- The resulting graph G has:
- $3 n-6$ B-configurations

- $n-2$ T-configurations

The red vertices are the poles of the configurations

Proving the lower bound

- The resulting graph G has:
- $3 n-6$ B-configurations
- $n-2$ T-configurations

The red vertices are the poles of the configurations

- Each B-/T-configuration requires a reflex corner on one of its poles and in its interior region (light blue background) [Biedl, Liotta, M. 2016]

Proving the lower bound

- The resulting graph G has:
- $3 n-6$ B-configurations
- $n-2$ T-configurations

The red vertices are the poles of the configurations

- Each B-/T-configuration requires a reflex corner on one of its poles and in its interior region (light blue background) [Biedl, Liotta, M. 2016]
- G contains $4 n-8$ configurations with n poles and whose interior regions are pairwise disjoint
- At least one pole has at least 4 reflex corners (if $n>8$) \square

Proving the Upper Bound

Theorem 2 Every 3-connected 1-plane graph has an OPVR with vertex complexity at most 5 .

Sketch of the proof

At high-level, the proof works as follows ($G=3$-conn. 1-plane graph):

Sketch of the proof

At high-level, the proof works as follows ($G=3$-conn. 1-plane graph):

- Compute a special set F of B-/W-/T-configurations from G

Sketch of the proof

At high-level, the proof works as follows ($G=3$-conn. 1-plane graph):

- Compute a special set F of B-/W-/T-configurations from G
- Assign each configuration of this set to one of its poles such that each pole is assigned with at most 5 configurations

Sketch of the proof

At high-level, the proof works as follows ($G=3$-conn. 1-plane graph):

- Compute a special set F of B-/W-/T-configurations from G
- Assign each configuration of this set to one of its poles such that each pole is assigned with at most 5 configurations
- Remove the configurations and compute a RVR

G

F

RVR

Sketch of the proof

At high-level, the proof works as follows ($G=3$-conn. 1-plane graph):

- Compute a special set F of B-/W-/T-configurations from G
- Assign each configuration of this set to one of its poles such that each pole is assigned with at most 5 configurations
- Remove the configurations and compute a RVR
- Reinsert the configurations by attaching at most 5 spokes to the rectangles representing the matched poles

G

F

OPVR

Sketch of the proof

At high-level, the proof works as follows ($G=3$-conn. 1-plane graph):

- Compute a special set F of B-/W-/T-configurations from G
- Assign each configuration of this set to one of its poles such that each pole is assigned with at most 5 configurations
- Remove the configurations and compute a RVR
- Reinsert the configurations by attaching at most 5 spokes to the rectangles representing the matched poles
- Remove some reflex corners when not needed

G

F

OPVR

Sketch of the proof

At high-level, the proof works as follows ($G=3$-conn. 1-plane graph):

- Compute a special set F of B-/W-/T-configurations from G
- Assign each configuration of this set to one of its poles such that each pole is assigned with at most 5 configurations
- Remove the configurations and compute a RVR
- Reinsert the configurations by attaching spokes to the rectangles representing the matched poles
- Remove some reflex corners when not needed

G

F

G^{\prime}

OPVR

Some definitions

Two configurations that do not share any crossing are called independent, or dependent otherwise

Two dependent configurations

Two independent configurations

Some definitions

Two configurations that do not share any crossing are called independent, or dependent otherwise

Two dependent configurations

Two independent configurations

A set F of configurations of a 3-connected 1-plane graph G is non-redundant if it contains:

- All B-configurations of G;
- All T-configurations of G that are independent of B-configurations.
- The W-configuration, if any.

A special case

A T-configuration is separating if it contains a pole of another configuration in its interior region

The T-configuration with poles $\{u, v, w\}$ is separating as it contains another T-configuration in its interior region

A special case

A T-configuration is separating if it contains a pole of another configuration in its interior region

The T-configuration with poles $\{u, v, w\}$ is separating as it contains another T -configuration in its interior region
G : 3-connected 1-plane graph with set of poles P
F : non-redundant set of configurations of G
β : number of B-configurations in G
τ : number of T-configurations in G
Lemma 1 If G has no separating T-configurations and no W-configurations, then $|F| \leq 4|P|-8$. Also, $|F|=4|P|-8$ if and only if $\beta=3|P|-6$ and $\tau=|P|-2$

A special case: sketch of proof

We construct an auxiliary graph G_{A} from G :

A special case: sketch of proof

We construct an auxiliary graph G_{A} from G :
Remove everything except the poles

A special case: sketch of proof

We construct an auxiliary graph G_{A} from G :
Remove everything except the poles
For each pair of crossing edges in a configuration of F, draw a crossing-free edge (close to the removed edges)

A special case: sketch of proof

We construct an auxiliary graph G_{A} from G :
Remove everything except the poles
For each pair of crossing edges in a configuration of F, draw a crossing-free edge (close to the removed edges)

- G_{A} has $n_{A}=|P|$ vertices by construction

A special case: sketch of proof

We construct an auxiliary graph G_{A} from G :
Remove everything except the poles
For each pair of crossing edges in a configuration of F, draw a crossing-free edge (close to the removed edges)

- G_{A} has $n_{A}=|P|$ vertices by construction
- G_{A} has an edge for each B-configuration and 3 edges for each T-configuration of G, which are all independent $\rightarrow \beta+3 \tau=m_{A}$

A special case: sketch of proof

We construct an auxiliary graph G_{A} from G :
Remove everything except the poles
For each pair of crossing edges in a configuration of F, draw a crossing-free edge (close to the removed edges)

- G_{A} has $n_{A}=|P|$ vertices by construction
- G_{A} has an edge for each B-configuration and 3 edges for each T-configuration of G, which are all independent $\rightarrow \beta+3 \tau=m_{A}$
- G_{A} is plane and it has at most 2 parallel edges for each pair of adjacent vertices by 3 -connectivity $\rightarrow \beta+3 \tau \leq 6|P|-12$

A special case: sketch of proof

We construct an auxiliary graph G_{A} from G :
Remove everything except the poles
For each pair of crossing edges in a configuration of F, draw a crossing-free edge (close to the removed edges)

- G_{A} has $n_{A}=|P|$ vertices by construction
- G_{A} has an edge for each B-configuration and 3 edges for each T-configuration of G, which are all independent $\rightarrow \beta+3 \tau=m_{A}$
- G_{A} is plane and it has at most 2 parallel edges for each pair of adjacent vertices by 3 -connectivity $\rightarrow \beta+3 \tau \leq 6|P|-12$
- No two B-configurations can share the same pair of poles by 3-connectivity $\rightarrow \beta \leq 3|P|-6$

A special case

Thus, we have:

1. $|F|=\beta+\tau$
2. $\beta+3 \tau \leq 6|P|-12$
3. $\beta \leq 3|P|-6$

A special case

Thus, we have:

1. $|F|=\beta+\tau$
2. $\beta+3 \tau \leq 6|P|-12$
3. $\beta \leq 3|P|-6$

For a fixed value of $|P|$, we can study the function $f(\beta, \tau)=\beta+\tau$ in the domain D defined by inequalities 2 . and 3 .
$\rightarrow f(\beta, \tau) \leq 4|P|-8$ in all points of D
$\rightarrow f(\beta, \tau)=4|P|-8$ only in the point $\beta=3|P|-6$ and $\tau=|P|-2$

A special case

Thus, we have:

1. $|F|=\beta+\tau$
2. $\beta+3 \tau \leq 6|P|-12$
3. $\beta \leq 3|P|-6$

For a fixed value of $|P|$, we can study the function $f(\beta, \tau)=\beta+\tau$ in the domain D defined by inequalities 2 . and 3 .
$\rightarrow f(\beta, \tau) \leq 4|P|-8$ in all points of D
$\rightarrow f(\beta, \tau)=4|P|-8$ only in the point $\beta=3|P|-6$ and $\tau=|P|-2$

More in general:
By using induction on the number of separating T-configurations, we can show that, in general, $|F| \leq 5|P|$

A special case

Thus, we have:

1. $|F|=\beta+\tau$
2. $\beta+3 \tau \leq 6|P|-12$
3. $\beta \leq 3|P|-6$

For a fixed value of $|P|$, we can study the function $f(\beta, \tau)=\beta+\tau$ in the domain D defined by inequalities 2 . and 3 .
$\rightarrow f(\beta, \tau) \leq 4|P|-8$ in all points of D
$\rightarrow f(\beta, \tau)=4|P|-8$ only in the point $\beta=3|P|-6$ and $\tau=|P|-2$

More in general:
By using induction on the number of separating T-configurations, we can show that, in general, $|F| \leq 5|P|$

By Hall's theorem, there is a 5 -matching from F into P, as desired.

Open Problems

Open Problems

1. There is still a gap between the upper (5) and the lower (4) bound on the vertex complexity of 3 -connected 1-plane graphs

Open Problems

1. There is still a gap between the upper (5) and the lower (4) bound on the vertex complexity of 3 -connected 1-plane graphs
2. Is $5|P|$ a tight bound on the number of non-redundant configurations in a 3 -connected 1-plane graph with $|P|$ poles?

Open Problems

1. There is still a gap between the upper (5) and the lower (4) bound on the vertex complexity of 3 -connected 1-plane graphs
2. Is $5|P|$ a tight bound on the number of non-redundant configurations in a 3 -connected 1-plane graph with $|P|$ poles?
3. Can we compute OPVRs of 3-connected 1-plane graphs with vertex complexity at most 5 in $O(n)$ time?

Open Problems

1. There is still a gap between the upper (5) and the lower (4) bound on the vertex complexity of 3 -connected 1-plane graphs
2. Is $5|P|$ a tight bound on the number of non-redundant configurations in a 3 -connected 1-plane graph with $|P|$ poles?
3. Can we compute OPVRs of 3-connected 1-plane graphs with vertex complexity at most 5 in $O(n)$ time?

THANK YOU!

