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[Papadimitrou, Ratajczak]
Drawing greedy⇔ cell(v) empty ∀v

cell

Drawing greedy⇒ convex Assume representation given
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generative scheme:

{1,2,3,4}-reflex vertex addition:

start with rectangle

flat vertex addition:

universal greedy⇔ no conflicts

All universal greedy rectilinear graphs can be generated
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i j i j
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>and
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x- and y-conflicts independent

resolve x-conflicts resolve y-conflicts

x-coord.

y-coord.
⇒ only consider x-conflicts

greedy!
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ALL conflicts?

i j

dominates
Nothing dominates is dominating⇒
Dominating conflicts are consecutive in st-order

At most 1 dominating conflict per vertex
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good st-orders⇔ rectilinear greedy

compute drawing with min. area
in O(n2) time

find good st-order?

(area can be exp.)
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Conclusion

good st-order: for every interval i, . . . , j:

– no 3 conn. comp. – if 2 conn. comp., then disjoint

hor. and vert. st-digraphs

Test and gen. all universal greedy rectilinear graphs in O(n) time

find good st-order?

compute drawing with min. area in O(n2) time (area can be exp.)

good st-orders⇔ rectilinear greedy

st-digraph series-parallel⇒ find good st-order in O(n) time


