
Greedy Rectilinear Drawings

Philipp Kindermann
Cheriton School of Computer Science

University of Waterloo

Walter Didimo
Luca Grilli
Alessandra Tappini

Patrizio Angelini
Michael A. Bekos

Tamara Mchedlidze
Roman Prutkin

Antonios Symvonis



Greedy Rectilinear Drawings

Philipp Kindermann
Cheriton School of Computer Science

University of Waterloo

Walter Didimo
Luca Grilli
Alessandra Tappini

Patrizio Angelini
Michael A. Bekos

Antonios Symvonis Tamara Mchedlidze
Roman Prutkin





Greedy Rectilinear Drawings



Greedy Rectilinear Drawings



Greedy Rectilinear Drawings



Greedy Rectilinear Drawings



Greedy Rectilinear Drawings



Greedy Rectilinear Drawings



Greedy Rectilinear Drawings



Greedy Rectilinear Drawings



Greedy Rectilinear Drawings



Greedy Rectilinear Drawings

[Papadimitrou, Ratajczak]
Drawing greedy⇔ cell(v) empty ∀v



Greedy Rectilinear Drawings

[Papadimitrou, Ratajczak]
Drawing greedy⇔ cell(v) empty ∀v



Greedy Rectilinear Drawings

[Papadimitrou, Ratajczak]
Drawing greedy⇔ cell(v) empty ∀v



Greedy Rectilinear Drawings

[Papadimitrou, Ratajczak]
Drawing greedy⇔ cell(v) empty ∀v



Greedy Rectilinear Drawings

[Papadimitrou, Ratajczak]
Drawing greedy⇔ cell(v) empty ∀v



Greedy Rectilinear Drawings

[Papadimitrou, Ratajczak]
Drawing greedy⇔ cell(v) empty ∀v



Greedy Rectilinear Drawings

[Papadimitrou, Ratajczak]
Drawing greedy⇔ cell(v) empty ∀v



Greedy Rectilinear Drawings

[Papadimitrou, Ratajczak]
Drawing greedy⇔ cell(v) empty ∀v

cell



Greedy Rectilinear Drawings

[Papadimitrou, Ratajczak]
Drawing greedy⇔ cell(v) empty ∀v

cell



Greedy Rectilinear Drawings

[Papadimitrou, Ratajczak]
Drawing greedy⇔ cell(v) empty ∀v

cell



Greedy Rectilinear Drawings

[Papadimitrou, Ratajczak]
Drawing greedy⇔ cell(v) empty ∀v

cell



Greedy Rectilinear Drawings

[Papadimitrou, Ratajczak]
Drawing greedy⇔ cell(v) empty ∀v

cell



Greedy Rectilinear Drawings

[Papadimitrou, Ratajczak]
Drawing greedy⇔ cell(v) empty ∀v

cell



Greedy Rectilinear Drawings

[Papadimitrou, Ratajczak]
Drawing greedy⇔ cell(v) empty ∀v

cell



Greedy Rectilinear Drawings

[Papadimitrou, Ratajczak]
Drawing greedy⇔ cell(v) empty ∀v

cell



Greedy Rectilinear Drawings

[Papadimitrou, Ratajczak]
Drawing greedy⇔ cell(v) empty ∀v

cell



Greedy Rectilinear Drawings

[Papadimitrou, Ratajczak]
Drawing greedy⇔ cell(v) empty ∀v

cell



Greedy Rectilinear Drawings

[Papadimitrou, Ratajczak]
Drawing greedy⇔ cell(v) empty ∀v

cell



Greedy Rectilinear Drawings

[Papadimitrou, Ratajczak]
Drawing greedy⇔ cell(v) empty ∀v

cell



Greedy Rectilinear Drawings

[Papadimitrou, Ratajczak]
Drawing greedy⇔ cell(v) empty ∀v

cell



Greedy Rectilinear Drawings

[Papadimitrou, Ratajczak]
Drawing greedy⇔ cell(v) empty ∀v

cell

Drawing greedy⇒ convex



Greedy Rectilinear Drawings

[Papadimitrou, Ratajczak]
Drawing greedy⇔ cell(v) empty ∀v

cell

Drawing greedy⇒ convex Assume representation given



Conflicts



Conflicts



Conflicts



Conflicts



Conflicts



Conflicts



Conflicts



Conflicts



Conflicts



Conflicts



Conflicts

DAG Dx



Conflicts

DAG Dx

cx(v)



Conflicts

DAG Dx

cx(v)



Conflicts

DAG Dx

cx(v)



Conflicts

DAG Dx

cx(v)



Conflicts

DAG Dx

cx(v)



Conflicts

DAG Dx

cx(v)



Conflicts

DAG Dx

cx(v)



Conflicts

DAG Dx

cx(v)

cy(v)

DAG Dy



Conflicts

DAG Dx

cx(v)

cy(v)

DAG Dy

Conflict: no path in Dx or in Dy



Conflicts

DAG Dx

cx(v)

cy(v)

DAG Dy

Conflict: no path in Dx or in Dy

either



Universal Greedy Rectilinear

universal greedy: every drawing is greedy



Universal Greedy Rectilinear

universal greedy: every drawing is greedy

generative scheme:

universal greedy⇔ no conflicts



Universal Greedy Rectilinear

universal greedy: every drawing is greedy

generative scheme: start with rectangle

universal greedy⇔ no conflicts



Universal Greedy Rectilinear

universal greedy: every drawing is greedy

generative scheme:

{1,2,3,4}-reflex vertex addition:

start with rectangle

universal greedy⇔ no conflicts



Universal Greedy Rectilinear

universal greedy: every drawing is greedy

generative scheme:

{1,2,3,4}-reflex vertex addition:

start with rectangle

universal greedy⇔ no conflicts



Universal Greedy Rectilinear

universal greedy: every drawing is greedy

generative scheme:

{1,2,3,4}-reflex vertex addition:

start with rectangle

universal greedy⇔ no conflicts



Universal Greedy Rectilinear

universal greedy: every drawing is greedy

generative scheme:

{1,2,3,4}-reflex vertex addition:

start with rectangle

universal greedy⇔ no conflicts



Universal Greedy Rectilinear

universal greedy: every drawing is greedy

generative scheme:

{1,2,3,4}-reflex vertex addition:

start with rectangle

universal greedy⇔ no conflicts



Universal Greedy Rectilinear

universal greedy: every drawing is greedy

generative scheme:

{1,2,3,4}-reflex vertex addition:

start with rectangle

universal greedy⇔ no conflicts



Universal Greedy Rectilinear

universal greedy: every drawing is greedy

generative scheme:

{1,2,3,4}-reflex vertex addition:

start with rectangle

universal greedy⇔ no conflicts



Universal Greedy Rectilinear

universal greedy: every drawing is greedy

generative scheme:

{1,2,3,4}-reflex vertex addition:

start with rectangle

flat vertex addition:

universal greedy⇔ no conflicts



Universal Greedy Rectilinear

universal greedy: every drawing is greedy

generative scheme:

{1,2,3,4}-reflex vertex addition:

start with rectangle

flat vertex addition:

universal greedy⇔ no conflicts



Universal Greedy Rectilinear

universal greedy: every drawing is greedy

generative scheme:

{1,2,3,4}-reflex vertex addition:

start with rectangle

flat vertex addition:

universal greedy⇔ no conflicts



Universal Greedy Rectilinear

universal greedy: every drawing is greedy

generative scheme:

{1,2,3,4}-reflex vertex addition:

start with rectangle

flat vertex addition:

universal greedy⇔ no conflicts



Universal Greedy Rectilinear

universal greedy: every drawing is greedy

generative scheme:

{1,2,3,4}-reflex vertex addition:

start with rectangle

flat vertex addition:

universal greedy⇔ no conflicts



Universal Greedy Rectilinear

universal greedy: every drawing is greedy

generative scheme:

{1,2,3,4}-reflex vertex addition:

start with rectangle

flat vertex addition:

universal greedy⇔ no conflicts



Universal Greedy Rectilinear

universal greedy: every drawing is greedy

generative scheme:

{1,2,3,4}-reflex vertex addition:

start with rectangle

flat vertex addition:

universal greedy⇔ no conflicts



Universal Greedy Rectilinear

universal greedy: every drawing is greedy

generative scheme:

{1,2,3,4}-reflex vertex addition:

start with rectangle

flat vertex addition:

universal greedy⇔ no conflicts

All universal greedy rectilinear graphs can be generated



Resolving Conflicts



Resolving Conflicts



Resolving Conflicts



Resolving Conflicts



Resolving Conflicts



Resolving Conflicts



Resolving Conflicts



Resolving Conflicts

Conflict resolved: > >and



Resolving Conflicts

Conflict resolved: > >and



Resolving Conflicts

Conflict resolved: > >and



Resolving Conflicts

Conflict resolved: > >and



Resolving Conflicts

Conflict resolved: > >and



Resolving Conflicts

Conflict resolved: > >and



Resolving Conflicts

Conflict resolved: > >and



Resolving Conflicts

Conflict resolved: > >and



Resolving Conflicts

Conflict resolved: > >and



Resolving Conflicts

Conflict resolved: > >and



Resolving Conflicts

Conflict resolved: > >and



Resolving Conflicts

Conflict resolved: > >and



Resolving Conflicts

Conflict resolved: > >and



Resolving Conflicts

Conflict resolved: > >and



Resolving Conflicts

Conflict resolved: > >and



Resolving Conflicts

Conflict resolved: >

Need a good st-order:

>and



Resolving Conflicts

Conflict resolved: >

Need a good st-order:
for every interval i, . . . , j:

i j i j

>and



Resolving Conflicts

Conflict resolved: >

Need a good st-order:
for every interval i, . . . , j:
– no 3 conn. comp.

i j i j

>and



Resolving Conflicts

Conflict resolved: >

Need a good st-order:
for every interval i, . . . , j:
– no 3 conn. comp. – if 2 conn. comp., then disjoint

i j i j

>and



Resolving Conflicts

Conflict resolved: >

Need a good st-order:
for every interval i, . . . , j:
– no 3 conn. comp. – if 2 conn. comp., then disjoint

i j i j

sufficient?

>and



x- and y-conflicts independent



x- and y-conflicts independent



x- and y-conflicts independent



x- and y-conflicts independent



x- and y-conflicts independent



x- and y-conflicts independent

resolve x-conflicts



x- and y-conflicts independent

resolve x-conflicts



x- and y-conflicts independent

resolve x-conflicts resolve y-conflicts



x- and y-conflicts independent

resolve x-conflicts resolve y-conflicts



x- and y-conflicts independent

resolve x-conflicts resolve y-conflicts

x-coord.



x- and y-conflicts independent

resolve x-conflicts resolve y-conflicts

x-coord.

y-coord.



x- and y-conflicts independent

resolve x-conflicts resolve y-conflicts

x-coord.

y-coord.



x- and y-conflicts independent

resolve x-conflicts resolve y-conflicts

x-coord.

y-coord.

greedy!



x- and y-conflicts independent

resolve x-conflicts resolve y-conflicts

x-coord.

y-coord.
⇒ only consider x-conflicts

greedy!



ALL conflicts?

i j



ALL conflicts?

i j



ALL conflicts?

i j



ALL conflicts?

i j



ALL conflicts?

i j



ALL conflicts?

i j



ALL conflicts?

i j



ALL conflicts?

i j



ALL conflicts?

i j

dominates



ALL conflicts?

i j

dominates
Nothing dominates is dominating⇒



ALL conflicts?

i j

dominates
Nothing dominates is dominating⇒



ALL conflicts?

i j

dominates
Nothing dominates is dominating⇒



ALL conflicts?

i j

dominates
Nothing dominates is dominating⇒



ALL conflicts?

i j

dominates
Nothing dominates is dominating⇒



ALL conflicts?

i j

dominates
Nothing dominates is dominating⇒
Dominating conflicts are consecutive in st-order



ALL conflicts?

i j

dominates
Nothing dominates is dominating⇒
Dominating conflicts are consecutive in st-order

At most 1 dominating conflict per vertex



Constraints



Constraints



Constraints



Constraints



Constraints



Constraints



Constraints



Constraints



Constraints



Constraints



Constraints

x1,2

xi,i+1

Relation Graph



Constraints

x1,2

xi,i+1

Relation Graph



Constraints

x1,2

xi,i+1

Relation Graph



Constraints

x1,2

xi,i+1

Relation Graph



Constraints

x1,2

xi,i+1

Relation Graph



Constraints

x1,2

xi,i+1

Relation Graph



Constraints

x1,2

xi,i+1

Relation Graph



Constraints

x1,2

xi,i+1

xkx` xr

Relation Graph



Constraints

x1,2

xi,i+1

xkx` xr

xk,k+1 > ∑k−1
i=` xi,i+1

Relation Graph



Constraints

x1,2

xi,i+1

xkx` xr

xk,k+1 > ∑k−1
i=` xi,i+1

xk,k+1 > ∑r−1
i=k+1 xi,i+1

Relation Graph



Constraints

x1,2

xi,i+1

xkx` xr

xk,k+1 > ∑k−1
i=` xi,i+1

xk,k+1 > ∑r−1
i=k+1 xi,i+1

⇒ LP

Relation Graph



Constraints

x1,2

xi,i+1

xkx` xr

xk,k+1 > ∑k−1
i=` xi,i+1

xk,k+1 > ∑r−1
i=k+1 xi,i+1

⇒ LP

Relation Graph is acyclic



Constraints

x1,2

xi,i+1

xkx` xr

xk,k+1 > ∑k−1
i=` xi,i+1

xk,k+1 > ∑r−1
i=k+1 xi,i+1

⇒ LP

Relation Graph is acyclic

Topological Sort



Constraints

x1,2

xi,i+1

xkx` xr

xk,k+1 > ∑k−1
i=` xi,i+1

xk,k+1 > ∑r−1
i=k+1 xi,i+1

⇒ LP

Relation Graph is acyclic

Topological Sort

1 1 1 1 1 1 1 1 1



Constraints

x1,2

xi,i+1

xkx` xr

xk,k+1 > ∑k−1
i=` xi,i+1

xk,k+1 > ∑r−1
i=k+1 xi,i+1

⇒ LP

Relation Graph is acyclic

Topological Sort

1 1 1 1 1 1 1 1 1

2



Constraints

x1,2

xi,i+1

xkx` xr

xk,k+1 > ∑k−1
i=` xi,i+1

xk,k+1 > ∑r−1
i=k+1 xi,i+1

⇒ LP

Relation Graph is acyclic

Topological Sort

1 1 1 1 1 1 1 1 1

4 2



Constraints

x1,2

xi,i+1

xkx` xr

xk,k+1 > ∑k−1
i=` xi,i+1

xk,k+1 > ∑r−1
i=k+1 xi,i+1

⇒ LP

Relation Graph is acyclic

Topological Sort

1 1 1 1 1 1 1 1 1

4 2

5



Constraints

x1,2

xi,i+1

xkx` xr

xk,k+1 > ∑k−1
i=` xi,i+1

xk,k+1 > ∑r−1
i=k+1 xi,i+1

⇒ LP

Relation Graph is acyclic

Topological Sort

1 1 1 1 1 1 1 1 1

4 2

59



Constraints

Topological Sort

1 1 1 1 1 1 1 1 1

4 2

59



Constraints

Topological Sort

1 1 1 1 1 1 1 1 1

4 2

59



Constraints

Topological Sort

1 1 1 1 1 1 1 1 1

4 2

59



Constraints

Topological Sort

1 1 1 1 1 1 1 1 1

4 2

59



Constraints

Topological Sort

1 1 1 1 1 1 1 1 1

4 2

59



Constraints

Topological Sort

1 1 1 1 1 1 1 1 1

4 2

59

good st-orders⇔ rectilinear greedy



Constraints

Topological Sort

1 1 1 1 1 1 1 1 1

4 2

59

good st-orders⇔ rectilinear greedy

compute drawing with min. area
in O(n2) time



Constraints

Topological Sort

1 1 1 1 1 1 1 1 1

4 2

59

good st-orders⇔ rectilinear greedy

compute drawing with min. area
in O(n2) time (area can be exp.)



Constraints

Topological Sort

1 1 1 1 1 1 1 1 1

4 2

59

good st-orders⇔ rectilinear greedy

compute drawing with min. area
in O(n2) time

find good st-order?

(area can be exp.)



Conclusion

Test and gen. all universal greedy rectilinear graphs in O(n) time



Conclusion

hor. and vert. st-digraphs

Test and gen. all universal greedy rectilinear graphs in O(n) time



Conclusion

good st-order: for every interval i, . . . , j:

– no 3 conn. comp. – if 2 conn. comp., then disjoint

hor. and vert. st-digraphs

Test and gen. all universal greedy rectilinear graphs in O(n) time



Conclusion

good st-order: for every interval i, . . . , j:

– no 3 conn. comp. – if 2 conn. comp., then disjoint

hor. and vert. st-digraphs

Test and gen. all universal greedy rectilinear graphs in O(n) time

good st-orders⇔ rectilinear greedy



Conclusion

good st-order: for every interval i, . . . , j:

– no 3 conn. comp. – if 2 conn. comp., then disjoint

hor. and vert. st-digraphs

Test and gen. all universal greedy rectilinear graphs in O(n) time

compute drawing with min. area in O(n2) time (area can be exp.)

good st-orders⇔ rectilinear greedy



Conclusion

good st-order: for every interval i, . . . , j:

– no 3 conn. comp. – if 2 conn. comp., then disjoint

hor. and vert. st-digraphs

Test and gen. all universal greedy rectilinear graphs in O(n) time

find good st-order?

compute drawing with min. area in O(n2) time (area can be exp.)

good st-orders⇔ rectilinear greedy



Conclusion

good st-order: for every interval i, . . . , j:

– no 3 conn. comp. – if 2 conn. comp., then disjoint

hor. and vert. st-digraphs

Test and gen. all universal greedy rectilinear graphs in O(n) time

find good st-order?

compute drawing with min. area in O(n2) time (area can be exp.)

good st-orders⇔ rectilinear greedy

st-digraph series-parallel⇒ find good st-order in O(n) time


