

Philipp Kindermann **Cheriton School of Computer Science University of Waterloo**

Patrizio Angelini Walter Didimo Antonios Symvonis Tamara Mchedlidze Michael A. Bekos Luca Grilli Alessandra Tappini

Roman Prutkin

Philipp Kindermann **Cheriton School of Computer Science University of Waterloo**

Patrizio Angelini Walter Didimo Antonios Symvonis Tamara Mchedlidze Michael A. Bekos Luca Grilli Alessandra Tappini

Roman Prutkin

[Papadimitrou, Ratajczak]

[Papadimitrou, Ratajczak]

[Papadimitrou, Ratajczak]

[Papadimitrou, Ratajczak]

[Papadimitrou, Ratajczak]

[Papadimitrou, Ratajczak]

[Papadimitrou, Ratajczak]

[Papadimitrou, Ratajczak]

[Papadimitrou, Ratajczak]

[Papadimitrou, Ratajczak]

[Papadimitrou, Ratajczak]

[Papadimitrou, Ratajczak]

[Papadimitrou, Ratajczak]

[Papadimitrou, Ratajczak]

[Papadimitrou, Ratajczak]

[Papadimitrou, Ratajczak]

[Papadimitrou, Ratajczak]

[Papadimitrou, Ratajczak]

[Papadimitrou, Ratajczak]

[Papadimitrou, Ratajczak]

[Papadimitrou, Ratajczak]

Drawing greedy \Leftrightarrow cell(v) empty $\forall v$

Drawing greedy \Rightarrow convex

[Papadimitrou, Ratajczak]

Drawing greedy \Leftrightarrow cell(v) empty $\forall v$

Drawing greedy \Rightarrow convex

Assume representation given

Conflicts

Conflicts

Conflict: no path in D_x or in D_y

universal greedy: every drawing is greedy

universal greedy: every drawing is greedy

universal greedy ⇔ no conflicts

generative scheme:

universal greedy: every drawing is greedy

universal greedy \Leftrightarrow no conflicts

generative scheme: start with rectangle

universal greedy: every drawing is greedy

universal greedy \Leftrightarrow no conflicts

generative scheme: start with rectangle

universal greedy: every drawing is greedy

universal greedy \Leftrightarrow no conflicts

generative scheme: start with rectangle

universal greedy: every drawing is greedy

universal greedy \Leftrightarrow no conflicts

generative scheme: start with rectangle

universal greedy: every drawing is greedy

universal greedy \Leftrightarrow no conflicts

generative scheme: start with rectangle

universal greedy: every drawing is greedy

universal greedy \Leftrightarrow no conflicts

generative scheme: start with rectangle

universal greedy: every drawing is greedy

universal greedy \Leftrightarrow no conflicts

generative scheme: start with rectangle

universal greedy: every drawing is greedy

universal greedy \Leftrightarrow no conflicts

generative scheme: start with rectangle

universal greedy: every drawing is greedy

universal greedy \Leftrightarrow no conflicts

generative scheme: start with rectangle

universal greedy: every drawing is greedy

universal greedy \Leftrightarrow no conflicts

generative scheme: start with rectangle

universal greedy: every drawing is greedy

universal greedy \Leftrightarrow no conflicts

generative scheme: start with rectangle

universal greedy: every drawing is greedy

universal greedy \Leftrightarrow no conflicts

generative scheme: start with rectangle

universal greedy: every drawing is greedy

universal greedy \Leftrightarrow no conflicts

generative scheme: start with rectangle

universal greedy: every drawing is greedy

universal greedy \Leftrightarrow no conflicts

generative scheme: start with rectangle

universal greedy: every drawing is greedy

universal greedy \Leftrightarrow no conflicts

generative scheme: start with rectangle

Universal Greedy Rectilinear

universal greedy: every drawing is greedy

universal greedy \Leftrightarrow no conflicts

generative scheme: start with rectangle

{1,2,3,4}-reflex vertex addition: flat vertex addition:

All universal greedy rectilinear graphs can be generated

Conflict resolved: | > | and | > |

Need a *good st*-order: for every interval i, \ldots, j :

Conflict resolved: > and >

Need a *good st*-order: for every interval i, \ldots, j :

- no 3 conn. comp.

Conflict resolved: | > | and | >

Need a *good st*-order: for every interval i, \ldots, j :

- no 3 conn. comp.

– if 2 conn. comp., then disjoint

Conflict resolved: | > | and | > |

sufficient?

Need a *good st*-order: for every interval i, \ldots, j :

– no 3 conn. comp.

– if 2 conn. comp., then disjoint

dominates 🔲

dominates 🔲

dominates **d**

dominates 🔲

dominates 🔲

dominates 🔲

dominates **l**

Nothing dominates $\blacksquare \blacksquare \Rightarrow \blacksquare \blacksquare$ is *dominating*

Dominating conflicts are consecutive in *st*-order

dominates **[**

Nothing dominates $\blacksquare \blacksquare \Rightarrow \blacksquare \blacksquare$ is *dominating*

Dominating conflicts are consecutive in st-order

At most 1 dominating conflict per vertex

Relation Graph

 x_{ℓ} x_{k} x_{r}

Relation Graph

Relation Graph

Relation Graph

Relation Graph

Topological Sort

good st-orders \Leftrightarrow rectilinear greedy

good st-orders \Leftrightarrow rectilinear greedy

compute drawing with min. area in $O(n^2)$ time

good st-orders \Leftrightarrow rectilinear greedy

compute drawing with min. area in $O(n^2)$ time (area can be exp.)

good st-orders \Leftrightarrow rectilinear greedy

compute drawing with min. area in $O(n^2)$ time (area can be exp.)

find good *st*-order?

Test and gen. all universal greedy rectilinear graphs in O(n) time

Test and gen. all universal greedy rectilinear graphs in O(n) time

hor. and vert. st-digraphs

Test and gen. all universal greedy rectilinear graphs in O(n) time

hor. and vert. st-digraphs

good st-order: for every interval i, \ldots, j :

- no 3 conn. comp. - if 2 conn. comp., then disjoint

Test and gen. all universal greedy rectilinear graphs in O(n) time

hor. and vert. st-digraphs

good st-order: for every interval i, \ldots, j :

- no 3 conn. comp. - if 2 conn. comp., then disjoint

good st-orders \Leftrightarrow rectilinear greedy

Test and gen. all universal greedy rectilinear graphs in O(n) time

hor. and vert. st-digraphs

good st-order: for every interval i, \ldots, j :

- if 2 conn. comp. - if 2 conn. comp., then disjoint

good st-orders \Leftrightarrow rectilinear greedy

compute drawing with min. area in $O(n^2)$ time (area can be exp.)

Test and gen. all universal greedy rectilinear graphs in O(n) time

hor. and vert. st-digraphs

good st-order: for every interval i, \ldots, j :

- if 2 conn. comp. - if 2 conn. comp., then disjoint

good st-orders \Leftrightarrow rectilinear greedy

compute drawing with min. area in $O(n^2)$ time (area can be exp.)

find good st-order?

Test and gen. all universal greedy rectilinear graphs in O(n) time

hor. and vert. st-digraphs

good st-order: for every interval i, \ldots, j :

– no 3 conn. comp. – if 2 conn. comp., then disjoint

good st-orders \Leftrightarrow rectilinear greedy

compute drawing with min. area in $O(n^2)$ time (area can be exp.)

find good st-order?

st-digraph series-parallel \Rightarrow find good st-order in O(n) time