Bend-minimum Orthogonal Drawings in Quadratic Time

Problem: planar **3-graph** \implies planar **bend-minimum** orthogonal drawing

plane 3-graph

bend-min orthogonal drawing (fixed embedding) bend-min orthogonal drawing (variable embedding)

Bend-min orthogonal drawings: fixed embedding

plane 4-graphs

 −O(n² log n)
 −O(n^{7/4} √log n)
 □Garg and Tamassia (2001)]
 −O(n^{1.5})
 □Cornelsen and Karrenbauer (2011)]

based on min-cost flow

plane 3-graphs
 O(n) [Rahman and Nishizeki (2002)]

not based on flow techniques

Bend-min orthogonal drawings: variable embedding

• planar 4-graphs: NP-hard [Garg and Tamassia (2001)]

Theorem. Let G be an n-vertex (simple) planar 3-graph. There exists an $O(n^2)$ -time algorithm that computes a bend-minimum orthogonal drawing of G, with at most two bends per edge.

P. S. the algorithm takes O(n) time if we require that a prescribed edge of G is on the external face

input: G biconnected planar 3-graph with n vertices **output**: bend-min orthogonal drawing Γ of G

- for each edge *e* of G
 - $\ \Gamma_e \leftarrow \text{min-bend} \ \text{orthogonal} \ \text{drawing of G} \ \text{with} \ e \ \text{on the external face}$
- return $\Gamma \leftarrow \min$ -bends $\{\Gamma_e\}$

 Γ_e is computed in linear time

Strategy for the linear-time algorithm

- Incremental construction of Γ_e
 - bottom-up visit of the SPQR-tree + orthogonal spirality (similar to Di Battista, Liotta, Vargiu 1998)
 - 2. new properties of bend-min orthogonal drawings of planar 3-graphs
 - 3. non-flow based computation of bend-min orthogonal drawings for the rigid components

\begin{SPQR-trees}

\end{SPQR-trees}

orthogonal representation = equivalence class of orthogonal drawings with the same vertex angles and the same sequence of bends along the edges

• a drawing of an orthogonal representation can be computed in linear time [Tamassia '97]

orthogonal component = orthogonal representation H_{μ} of a component G_{μ}

Η

1

Η

t(p) = turn number = |#left turns – # right turns| (along p)

 μ = P-node or R-node

 H_{μ} is D-shaped $\Leftrightarrow t(p_{I}) = 0$ and $t(p_{r}) = 2$ or vice versa

$$H_{\mu}$$
 is X-shaped $\Leftrightarrow t(p_{I}) = t(p_{r}) = 1$

 μ = inner S-node

Lemma. All paths between the poles of an orthogonal component H_{μ} have the same turn number

 μ = inner S-node

Lemma. All paths between the poles of a ${\rm H}_{\mu}$ have the same turn number

t(p) = k

$$H_{\mu}$$
 is k-spiral
 H_{μ} has spirality k

Equivalent orthogonal components

- H_{μ} and H'_{μ} = two distinct orthogonal representations of G_{μ}
- H_{μ} and H'_{μ} are equivalent if: $-\mu$ is a P- or an R-node and H_{μ} , H'_{μ} are both D-shaped or both X-shaped $-\mu$ is an S-node and H_{μ} , H'_{μ} have the same spirality

Key-Lemma. Every biconnected planar 3-graph with a given edge *e* admits a bend-min orthogonal representation with *e* on the external face such that:

- **O1.** every edge has at most two bends
- **O2.** every inner P- or R-component is D- or X-shaped
- **O3.** every inner S-component has spirality at most 4

Key-Lemma. Every biconnected planar 3-graph with a given edge *e* admits a bend-min orthogonal representation with *e* on the external face such that:

O1. every edge has at most two bends
O2. every inner P- or R-component is D- or X-shaped
O3. every inner S-component has spirality at most 4

proof: based on a characterization of no-bend orthogonal representations [Rahman, Nishizeki, Naznin 2003]

Key-Lemma. Every biconnected planar 3-graph with a given edge *e* admits a bend-min orthogonal representation with *e* on the external face such that:

O1. every edge has at most two bends
O2. every inner P- or R-component is D- or X-shaped
O3. every inner S-component has spirality at most 4

Consequence: we can restrict our algorithm to search for a bend-min representation that satisfies O1, O2, and O3.

Algorithm

- **input**: biconnected planar 3-graph G with a reference edge *e*
- **output**: bend-min representation H of G with *e* on the external face

- 1. compute the SPQR-tree T of G with respect to *e*
- 2. visit the nodes μ of T bottom-up:
 - $-\mu$ inner node \Rightarrow store in μ a set of candidate bend-min representations of G_{μ} -one for each distinct equivalence class, thanks to the substitution theorem
 - $-\mu$ the root child \Rightarrow construct H by suitably merging *e* with the candidate representations stored at the children of μ ; consider {0, 1, 2} bends for *e*, thanks to O1 of the key-lemma

Candidate sets of inner nodes

- **P/R-node:** the cheapest D-shaped and the cheapest X-shaped representations -thanks to O2 of the key-lemma
- S-node: the cheapest representation for each value of spirality in {0, 1, 2, 3, 4} -thanks to O3 of the key-lemma

O(1) time

Each child of an R-node is either a Q- or an S-node

Candidate set of an inner R-node ${\sf G}_\mu$ skel(μ) constrained 9 min-bend min-bend of 8 8 **D**-shaped skel(μ) O(n)-time 9 9 variant of 6 [RNN'99] 6 5 (8)4 5 8 4 min-bend 3 3 3-connected 3 3 cubic (with constraints) $O(n_{\mu})$ time

Candidate set of an inner S-node

#(extra bends) = max{0, spirality - (#D-shaped + #Q-nodes - 1)}

• **Problem 1.** Is there a subquadratic-time algorithm to compute a bendminimum orthogonal drawing of a planar 3-graph?

Open problems: even more prehistoric

• **Problem 2.** Is there a <u>linear-time algorithm</u> to compute a bend-minimum orthogonal drawing of a <u>plane 4-graph</u> (in the *fixed embedding setting*)?

Thank you!

