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The problem

Problem: planar 3-graph 
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A bit of history

Bend-min orthogonal drawings: fixed embedding

• plane 4-graphs
–O(n2 log n) [Tamassia (1987)]

–O(n7/4 log n) [Garg and Tamassia (2001)]
–O(n1.5) [Cornelsen and Karrenbauer (2011)]

• plane 3-graphs
O(n) [Rahman and Nishizeki (2002)]

based on 
min-cost flow

not based on 
flow techniques



A bit of history

Bend-min orthogonal drawings: variable embedding

• planar 4-graphs: NP-hard [Garg and Tamassia (2001)]

• planar 3-graphs

O(n5 log n)
Di Battista-Liotta-

Vargiu

1998
2011

O(n4.5)
consequence of 

Cornelsen-Karrenbauer

O(n2.43 logk n)
Chang and Yen

2017
2018

O(n2)
our result

Can we do 
better?

?



Our result

Theorem. Let G be an n-vertex (simple) planar 3-graph. There 
exists an O(n2)-time algorithm that computes a bend-minimum 
orthogonal drawing of G, with at most two bends per edge. 

P. S. the algorithm takes O(n) time if we require that a prescribed 
edge of G is on the external face



General strategy for biconnected graphs

input: G biconnected planar 3-graph with n vertices

output: bend-min orthogonal drawing  of G

• for each edge e of G
– e min-bend orthogonal drawing of G with e on the external face

• return min-bends {e}

e is computed in linear time



Strategy for the linear-time algorithm

• Incremental construction of e

1. bottom-up visit of the SPQR-tree + orthogonal spirality
(similar to Di Battista, Liotta, Vargiu 1998)

2. new properties of bend-min orthogonal drawings of planar 3-graphs

3. non-flow based computation of bend-min orthogonal drawings for the 
rigid components 



\begin{SPQR-trees}
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pertinent graph 
(S-component)
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Changing the embedding
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\end{SPQR-trees}



Orthogonal representations

orthogonal representation =  equivalence class of orthogonal 
drawings with the same vertex angles and the same sequence of 
bends along the edges

• a drawing of an orthogonal representation can be computed in 
linear time [Tamassia '97]

orthogonal component =  orthogonal representation Hof a 
component G



Orthogonal components: example
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Orthogonal components: examples
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Orthogonal components: examples
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Orthogonal components: examples
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Turn number and contour paths

Hpl pr

 = node of the SPQR-tree

contour paths

t(pl) = 0

t(pr) = 2

t(p) = turn number = |#left turns – # right turns| (along p)

Gp
p

H

L

L

R



D

P- and R-components: shapes

 = P-node or R-node

H is D-shaped  t(pl) = 0 and t(pr) = 2 or vice versa

H is X-shaped  t(pl) = t(pr) = 1 X



Inner S-components: spirality

 = inner S-node

Lemma. All paths between the poles of an orthogonal component 
H have the same turn number

H



Inner S-components: spirality

 = inner S-node

Lemma. All paths between the poles of a H have the same turn 
number

t(p1) = t(p2) = 2

p1 p2

t(p) = k

H is k-spiral

Hhas spirality k

H



Equivalent orthogonal components

• H and H' = two distinct orthogonal representations of G

• H and H' are equivalent if:
– is a P- or an R-node and H , H' are both D-shaped or both X-shaped

– is an S-node and H , H' have the same spirality



Equivalent orthogonal components

Theorem (substitution). Equivalent orthogonal components are 
interchangeable

H

H'

D-shaped components



Equivalent orthogonal components

Theorem (substitution). Equivalent orthogonal components are 
interchangeable
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Equivalent orthogonal components

Theorem (substitution). Equivalent orthogonal components are 
interchangeable

H'

H

1-spiral components



Equivalent orthogonal components

Theorem (substitution). Equivalent orthogonal components are 
interchangeable

H'

H



Key lemma

Key-Lemma. Every biconnected planar 3-graph with a given edge e
admits a bend-min orthogonal representation with e on the 
external face such that:

O1. every edge has at most two bends

O2. every inner P- or R-component is D- or X-shaped

O3. every inner S-component has spirality at most 4



Key lemma

Key-Lemma. Every biconnected planar 3-graph with a given edge e
admits a bend-min orthogonal representation with e on the 
external face such that:

O1. every edge has at most two bends

O2. every inner P- or R-component is D- or X-shaped

O3. every inner S-component has spirality at most 4

proof: based on a characterization of no-bend orthogonal 
representations [Rahman, Nishizeki, Naznin 2003]



Key lemma: consequence

Key-Lemma. Every biconnected planar 3-graph with a given edge e
admits a bend-min orthogonal representation with e on the 
external face such that:

O1. every edge has at most two bends

O2. every inner P- or R-component is D- or X-shaped

O3. every inner S-component has spirality at most 4

Consequence: we can restrict our algorithm to search for a 
bend-min representation that satisfies O1, O2, and O3.



Algorithm

• input: biconnected planar 3-graph G with a reference edge e

• output: bend-min representation H of G with e on the external face 

1. compute the SPQR-tree T of G with respect to e

2. visit the nodes  of T bottom-up: 
–  inner node store in  a set of candidate bend-min representations of G-

one for each distinct equivalence class, thanks to the substitution theorem

–  the root child construct H by suitably merging e with the candidate 
representations stored at the children of ; consider {0, 1, 2} bends for e, 
thanks to O1 of the key-lemma



Candidate sets of inner nodes

• Q-node: a representation for each number of bends in {0, 1, 2}

– thanks to O1 of the key-lemma

• P/R-node: the cheapest D-shaped and the cheapest X-shaped representations

– thanks to O2 of the key-lemma

• S-node: the cheapest representation for each value of spirality in {0, 1, 2, 3, 4}

– thanks to O3 of the key-lemma



Candidate set of an inner P-node
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Candidate set of an inner R-node

Each child of an R-node is either a Q- or an S-node
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Candidate set of an inner R-node
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Candidate set of an inner S-node

skeleton component skeleton component
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Candidate set of an inner S-node

O(n) time
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min
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#(extra bends) = max{0, spirality – (#D-shaped + #Q-nodes – 1)} 
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Open problems

• Problem 1. Is there a subquadratic-time algorithm to compute a bend-
minimum orthogonal drawing of a planar 3-graph?

O(n2)
our result

Can we do 
better?



Open problems: even more prehistoric

• Problem 2. Is there a linear-time algorithm to compute a bend-minimum 
orthogonal drawing of a plane 4-graph (in the fixed embedding setting)?
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