Bend-minimum Orthogonal Drawings in Quadratic Time

The problem

Problem: planar 3-graph \Longleftrightarrow planar bend-minimum orthogonal drawing

plane 3-graph

bend-min orthogonal drawing (fixed embedding)

bend-min orthogonal drawing (variable embedding)

A bit of history

Bend-min orthogonal drawings: fixed embedding

- plane 4-graphs

```
-O(n2 log n) [Tamassia (1987)]
-O(n/4}\sqrt{}{\operatorname{log}n})[Garg and Tamassia (2001)
-O(n}\mp@subsup{n}{}{1.5})\quad[Cornelsen and Karrenbauer (2011)
```

- plane 3-graphs O(n)
not based on
flow techniques

A bit of history

Bend-min orthogonal drawings: variable embedding

- planar 4-graphs: NP-hard [Garg and Tamassia (2001)]
- planar 3-graphs

O $\left(\mathrm{n}^{5} \log \mathrm{n}\right)$ Di Battista-Liotta- Vargiu	$\mathrm{O}\left(\mathrm{n}^{4.5}\right)$ consequence of Cornelsen-Karrenbauer	$\mathrm{O}\left(\mathrm{n}^{2.43} \log ^{\mathrm{k}} \mathrm{n}\right)$ Chang and Yen
our result		

Our result

Theorem. Let G be an n-vertex (simple) planar 3-graph. There exists an $O\left(n^{2}\right)$-time algorithm that computes a bend-minimum orthogonal drawing of G , with at most two bends per edge.
P. S. the algorithm takes $\mathrm{O}(\mathrm{n})$ time if we require that a prescribed edge of G is on the external face

General strategy for biconnected graphs

input: G biconnected planar 3-graph with n vertices
output: bend-min orthogonal drawing Γ of G

- for each edge e of G
$-\Gamma_{e} \leftarrow$ min-bend orthogonal drawing of G with e on the external face
- return $\Gamma \leftarrow$ min-bends $\left\{\Gamma_{\mathrm{e}}\right\}$
Γ_{e} is computed in linear time

Strategy for the linear-time algorithm

- Incremental construction of Γ_{e}

1. bottom-up visit of the SPQR-tree + orthogonal spirality (similar to Di Battista, Liotta, Vargiu 1998)
2. new properties of bend-min orthogonal drawings of planar 3-graphs
3. non-flow based computation of bend-min orthogonal drawings for the rigid components
\begin\{SPQR-trees\} }

 SPQR-trees

SPQR-trees

SPQR-trees

SPQR-trees

Changing the embedding

Changing the embedding

Changing the embedding

Changing the embedding

\end\{SPQR-trees\} }

Orthogonal representations

orthogonal representation = equivalence class of orthogonal drawings with the same vertex angles and the same sequence of bends along the edges

- a drawing of an orthogonal representation can be computed in linear time [Tamassia '97]
orthogonal component = orthogonal representation H_{μ} of a component G_{μ}

Orthogonal components: example

Orthogonal components: examples

Orthogonal components: examples

Orthogonal components: examples

Parallel (orthogonal) component

Turn number and contour paths

$$
\mu=\text { node of the SPQR-tree }
$$

$$
\mathrm{t}(\mathrm{p})=\text { turn number }=\mid \# \text { left turns }-\# \text { right turns } \mid \text { (along p) }
$$

P- and R-components: shapes

$$
\mu=\text { P-node or R-node }
$$

H_{μ} is D-shaped $\Leftrightarrow t\left(p_{1}\right)=0$ and $t\left(p_{r}\right)=2$ or vice versa

$$
H_{\mu} \text { is } X \text {-shaped } \Leftrightarrow t\left(p_{1}\right)=t\left(p_{r}\right)=1
$$

Inner S-components: spirality

$\mu=$ inner S-node
Lemma. All paths between the poles of an orthogonal component H_{μ} have the same turn number

Inner S-components: spirality

$\mu=$ inner S-node
Lemma. All paths between the poles of a H_{μ} have the same turn number

$t(p)=k$
H_{μ} is k-spiral
H_{μ} has spirality k

Equivalent orthogonal components

- H_{μ} and $\mathrm{H}_{\mu}^{\prime}=$ two distinct orthogonal representations of G_{μ}
- H_{μ} and $\mathrm{H}_{\mu}^{\prime}$ are equivalent if:
$-\mu$ is a P - or an R -node and $\mathrm{H}_{\mu}, \mathrm{H}_{\mu}^{\prime}$ are both D-shaped or both X-shaped
$-\mu$ is an S-node and $H_{\mu}, \mathrm{H}_{\mu}^{\prime}$ have the same spirality

Equivalent orthogonal components

Theorem (substitution). Equivalent orthogonal components are interchangeable

Equivalent orthogonal components

Theorem (substitution). Equivalent orthogonal components are interchangeable

Equivalent orthogonal components

Theorem (substitution). Equivalent orthogonal components are interchangeable

Equivalent orthogonal components

Theorem (substitution). Equivalent orthogonal components are interchangeable

Key lemma

Key-Lemma. Every biconnected planar 3-graph with a given edge e admits a bend-min orthogonal representation with e on the external face such that:

O1. every edge has at most two bends
O2. every inner P - or R-component is D - or X -shaped
O3. every inner S-component has spirality at most 4

Key lemma

Key-Lemma. Every biconnected planar 3-graph with a given edge e admits a bend-min orthogonal representation with e on the external face such that:

O1. every edge has at most two bends
O2. every inner P - or R-component is D - or X -shaped
O3. every inner S-component has spirality at most 4
proof: based on a characterization of no-bend orthogonal representations [Rahman, Nishizeki, Naznin 2003]

Key lemma: consequence

Key-Lemma. Every biconnected planar 3-graph with a given edge e admits a bend-min orthogonal representation with e on the external face such that:

O1. every edge has at most two bends
O2. every inner P - or R-component is D - or X -shaped
O3. every inner S-component has spirality at most 4

Consequence: we can restrict our algorithm to search for a bend-min representation that satisfies $\mathrm{O} 1, \mathrm{O} 2$, and O 3.

Algorithm

- input: biconnected planar 3-graph G with a reference edge e
- output: bend-min representation H of G with e on the external face

1. compute the SPQR-tree T of G with respect to e
2. visit the nodes μ of T bottom-up:
$-\mu$ inner node \Rightarrow store in μ a set of candidate bend-min representations of G_{μ} one for each distinct equivalence class, thanks to the substitution theorem
$-\mu$ the root child \Rightarrow construct H by suitably merging e with the candidate representations stored at the children of μ; consider $\{0,1,2\}$ bends for e, thanks to 01 of the key-lemma

Candidate sets of inner nodes

- Q-node: a representation for each number of bends in $\{0,1,2\}$
-thanks to O 1 of the key-lemma

- P/R-node: the cheapest D-shaped and the cheapest X-shaped representations -thanks to O 2 of the key-lemma
- S-node: the cheapest representation for each value of spirality in $\{0,1,2,3,4\}$
-thanks to O3 of the key-lemma

Candidate set of an inner P-node

X-shaped

O(1) time

Candidate set of an inner R-node

Each child of an R-node is either a Q-or an S-node

Candidate set of an inner R-node

Candidate set of an inner S-node

Candidate set of an inner S-node

\#(extra bends) $=\max \{0$, spirality $-(\# D-$ shaped + \#Q-nodes -1$)\}$
$O\left(n_{\mu}\right)$ time

Open problems

- Problem 1. Is there a subquadratic-time algorithm to compute a bendminimum orthogonal drawing of a planar 3-graph?

Open problems: even more prehistoric

- Problem 2. Is there a linear-time algorithm to compute a bend-minimum orthogonal drawing of a plane 4-graph (in the fixed embedding setting)?

Thank you!

