
Bend-minimum Orthogonal

Drawings in Quadratic Time

Walter
Didimo

3
Giuseppe

Liotta
Maurizio

Patrignani

The problem

Problem: planar 3-graph

6

2

3

45

1

7

6

2 3

4

5

1

7

4 5 3

1 2

7 6

plane 3-graph bend-min orthogonal drawing
(fixed embedding)

bend-min orthogonal drawing
(variable embedding)

4 bends 3 bends

bend

planar bend-minimum orthogonal drawing

A bit of history

Bend-min orthogonal drawings: fixed embedding

• plane 4-graphs
–O(n2 log n) [Tamassia (1987)]

–O(n7/4 log n) [Garg and Tamassia (2001)]
–O(n1.5) [Cornelsen and Karrenbauer (2011)]

• plane 3-graphs
O(n) [Rahman and Nishizeki (2002)]

based on
min-cost flow

not based on
flow techniques

A bit of history

Bend-min orthogonal drawings: variable embedding

• planar 4-graphs: NP-hard [Garg and Tamassia (2001)]

• planar 3-graphs

O(n5 log n)
Di Battista-Liotta-

Vargiu

1998
2011

O(n4.5)
consequence of

Cornelsen-Karrenbauer

O(n2.43 logk n)
Chang and Yen

2017
2018

O(n2)
our result

Can we do
better?

?

Our result

Theorem. Let G be an n-vertex (simple) planar 3-graph. There
exists an O(n2)-time algorithm that computes a bend-minimum
orthogonal drawing of G, with at most two bends per edge.

P. S. the algorithm takes O(n) time if we require that a prescribed
edge of G is on the external face

General strategy for biconnected graphs

input: G biconnected planar 3-graph with n vertices

output: bend-min orthogonal drawing  of G

• for each edge e of G
– e min-bend orthogonal drawing of G with e on the external face

• return min-bends {e}

e is computed in linear time

Strategy for the linear-time algorithm

• Incremental construction of e

1. bottom-up visit of the SPQR-tree + orthogonal spirality
(similar to Di Battista, Liotta, Vargiu 1998)

2. new properties of bend-min orthogonal drawings of planar 3-graphs

3. non-flow based computation of bend-min orthogonal drawings for the
rigid components

\begin{SPQR-trees}

SPQR-trees
P

S S

R

S

P

S

P

S S

(1,2) (2,3) (9,14)

(3,4) (3,8) (4,9) (8,9)

(4,5) (7,8)

(5,7)

(5,6) (6,7)

(1,10) (13,14)

(10,11) (11,13) (10,12) (12,13)

(1,14)

6

8

5

7

1

2

14

13

11 12

103

4

9

reference
edge

root

P

S

R

Q-node

parallel

series

rigid

[Di Battista and Tamassia '90]

SPQR-trees
P

S S

R

S

P

S

P

S S

(1,2) (2,3) (9,14)

(3,4) (3,8) (4,9) (8,9)

(4,5) (7,8)

(5,7)

(5,6) (6,7)

(1,10) (13,14)

(10,11) (11,13) (10,12) (12,13)

(1,14)

6

8

5

7

1

2

14

13

11 12

103

4

9

P

S

R

Q-node

parallel

series

rigid

14

1

SPQR-trees
P

S S

R

S

P

S

P

S S

(1,2) (2,3) (9,14)

(3,4) (3,8) (4,9) (8,9)

(4,5) (7,8)

(5,7)

(5,6) (6,7)

(1,10) (13,14)

(10,11) (11,13) (10,12) (12,13)

(1,14)

6

8

5

7

1

2

14

13

11 12

103

4

9

P

S

R

Q-node

parallel

series

rigid

14

1

skeleton

poles

pertinent graph
(P-component)



G

pertinent graph
(S-component)

SPQR-trees
P

S S

R

S

P

S

P

S S

(1,2) (2,3) (9,14)

(3,4) (3,8) (4,9) (8,9)

(4,5) (7,8)

(5,7)

(5,6) (6,7)

(1,10) (13,14)

(10,11) (11,13) (10,12) (12,13)

(1,14)

6

8

5

7

1

2

14

13

11 12

103

4

9

P

S

R

Q-node

parallel

series

rigid

skeleton

poles

14

12
3

9

(1,10)

pertinent graph
(R-component)

SPQR-trees
P

S S

R

S

P

S

P

S S

(1,2) (2,3) (9,14)

(3,4) (3,8) (4,9) (8,9)

(4,5) (7,8)

(5,7)

(5,6) (6,7)

(13,14)

(10,11) (11,13) (10,12) (12,13)

(1,14)

6

8

5

7

1

2

14

13

11 12

103

4

9

P

S

R

Q-node

parallel

series

rigid

skeleton

3

9
8

4

Changing the embedding
P

S S

P

S

P

S S

(1,2) (2,3) (9,14)

(3,4) (3,8) (4,9) (8,9)

(4,5) (7,8)

(5,7)

(5,6) (6,7)

(1,10) (13,14)

(10,11) (11,13) (10,12) (12,13)

(1,14)

6

8

5

7

1

2

14

13

11 12

103

4

9

14

1

R

S

Changing the embedding
P

S S

P

S

P

S S

(1,2) (2,3) (9,14)

(3,4) (3,8) (4,9) (8,9)

(4,5) (7,8)

(5,7)

(5,6) (6,7)

(1,10) (13,14)

(10,11) (11,13) (10,12) (12,13)

(1,14)

13

11 12

10

6

8

5

7

2

3

4

9

14

1

1

14

R

S

(1,10)

Changing the embedding
P

S S

R

S

P

S

P

S S

(1,2) (2,3) (9,14)

(3,4) (3,8) (4,9) (8,9)

(4,5) (7,8)

(5,7)

(5,6) (6,7)

(13,14)

(10,11) (11,13) (10,12) (12,13)

(1,14)

skeleton

3

9
8

413

11 12

10

6

8

5

7

2

3

4

9

1

14

(1,10)

Changing the embedding
P

S S

R

S

P

S

P

S S

(1,2) (2,3) (9,14)

(3,4) (3,8) (4,9) (8,9)

(4,5) (7,8)

(5,7)

(5,6) (6,7)

(13,14)

(10,11) (11,13) (10,12) (12,13)

(1,14)

skeleton

3

9
4

813

11 12

10

2

6

8

5

7

3

4

9

1

14

SPQR-trees
P

S S

R

S

P

S

P

S S

(1,2) (2,3) (9,14)

(3,4) (3,8) (4,9) (8,9)

(4,5) (7,8)

(5,7)

(5,6) (6,7)

(1,10) (13,14)

(10,11) (11,13) (10,12) (12,13)

(1,14)

6

8

5

7

1

2

14

13

11 12

103

4

9

root

root child

inner
nodes

P

S

R

Q-node

parallel

series

rigid

\end{SPQR-trees}

Orthogonal representations

orthogonal representation = equivalence class of orthogonal
drawings with the same vertex angles and the same sequence of
bends along the edges

• a drawing of an orthogonal representation can be computed in
linear time [Tamassia '97]

orthogonal component = orthogonal representation Hof a
component G

Orthogonal components: example

6

8

5

7

1

2

14

13

11 12

103

4

9

8 7 5 4 11 10 1

6

3

9

13 12

14

2

G H

Orthogonal components: examples

6

8

5

7

1

2

14

13

11 12

103

4

9

8 7 5 4 11 10 1

6

3

9

13 12

14

2

G H

G

H

Series (orthogonal) component

Orthogonal components: examples

6

8

5

7

1

2

14

13

11 12

103

4

9

8 7 5 4 11 10 1

6

3

9

13 12

14

2

G H

G

H

Rigid (orthogonal) component

Orthogonal components: examples

6

8

5

7

1

2

14

13

11 12

103

4

9

8 7 5 4 11 10 1

6

3

9

13 12

14

2

G H

G
H

Parallel (orthogonal) component

Turn number and contour paths

Hpl pr

 = node of the SPQR-tree

contour paths

t(pl) = 0

t(pr) = 2

t(p) = turn number = |#left turns – # right turns| (along p)

Gp
p

H

L

L

R

D

P- and R-components: shapes

 = P-node or R-node

H is D-shaped  t(pl) = 0 and t(pr) = 2 or vice versa

H is X-shaped  t(pl) = t(pr) = 1 X

Inner S-components: spirality

 = inner S-node

Lemma. All paths between the poles of an orthogonal component
H have the same turn number

H

Inner S-components: spirality

 = inner S-node

Lemma. All paths between the poles of a H have the same turn
number

t(p1) = t(p2) = 2

p1 p2

t(p) = k

H is k-spiral

Hhas spirality k

H

Equivalent orthogonal components

• H and H' = two distinct orthogonal representations of G

• H and H' are equivalent if:
– is a P- or an R-node and H , H' are both D-shaped or both X-shaped

– is an S-node and H , H' have the same spirality

Equivalent orthogonal components

Theorem (substitution). Equivalent orthogonal components are
interchangeable

H

H'

D-shaped components

Equivalent orthogonal components

Theorem (substitution). Equivalent orthogonal components are
interchangeable

H

H'

H'

Equivalent orthogonal components

Theorem (substitution). Equivalent orthogonal components are
interchangeable

H'

H

1-spiral components

Equivalent orthogonal components

Theorem (substitution). Equivalent orthogonal components are
interchangeable

H'

H

Key lemma

Key-Lemma. Every biconnected planar 3-graph with a given edge e
admits a bend-min orthogonal representation with e on the
external face such that:

O1. every edge has at most two bends

O2. every inner P- or R-component is D- or X-shaped

O3. every inner S-component has spirality at most 4

Key lemma

Key-Lemma. Every biconnected planar 3-graph with a given edge e
admits a bend-min orthogonal representation with e on the
external face such that:

O1. every edge has at most two bends

O2. every inner P- or R-component is D- or X-shaped

O3. every inner S-component has spirality at most 4

proof: based on a characterization of no-bend orthogonal
representations [Rahman, Nishizeki, Naznin 2003]

Key lemma: consequence

Key-Lemma. Every biconnected planar 3-graph with a given edge e
admits a bend-min orthogonal representation with e on the
external face such that:

O1. every edge has at most two bends

O2. every inner P- or R-component is D- or X-shaped

O3. every inner S-component has spirality at most 4

Consequence: we can restrict our algorithm to search for a
bend-min representation that satisfies O1, O2, and O3.

Algorithm

• input: biconnected planar 3-graph G with a reference edge e

• output: bend-min representation H of G with e on the external face

1. compute the SPQR-tree T of G with respect to e

2. visit the nodes  of T bottom-up:
–  inner node store in  a set of candidate bend-min representations of G-

one for each distinct equivalence class, thanks to the substitution theorem

–  the root child construct H by suitably merging e with the candidate
representations stored at the children of ; consider {0, 1, 2} bends for e,
thanks to O1 of the key-lemma

Candidate sets of inner nodes

• Q-node: a representation for each number of bends in {0, 1, 2}

– thanks to O1 of the key-lemma

• P/R-node: the cheapest D-shaped and the cheapest X-shaped representations

– thanks to O2 of the key-lemma

• S-node: the cheapest representation for each value of spirality in {0, 1, 2, 3, 4}

– thanks to O3 of the key-lemma

Candidate set of an inner P-node

P

S S

P

S 0-spiral 2-spiral

1-spiral 1-spiral

O(1) time

D-shaped

X-shaped

P

SR

NO

 

Candidate set of an inner R-node

Each child of an R-node is either a Q- or an S-node

S S

YES
R

…

NO

P

R

…

Candidate set of an inner R-node

6

8

5

7

3

4

9

8

3

4

9

8 4

3

9

8 4

3

9

7 5

6

O(n)-time
variant of
[RNN'99]

min-bend
3-connected
cubic (with
constraints)

min-bend
D-shaped

G skel()

O(n) time

constrained
min-bend of

skel()

Candidate set of an inner S-node

skeleton component skeleton component

YES NO

Candidate set of an inner S-node

O(n) time

min

min

min

min

min

min

min

min

2-spiral0-spiral 1-spiral 3-spiral

min

min

4-spiral

#(extra bends) = max{0, spirality – (#D-shaped + #Q-nodes – 1)}

D

X

Open problems

• Problem 1. Is there a subquadratic-time algorithm to compute a bend-
minimum orthogonal drawing of a planar 3-graph?

O(n2)
our result

Can we do
better?

Open problems: even more prehistoric

• Problem 2. Is there a linear-time algorithm to compute a bend-minimum
orthogonal drawing of a plane 4-graph (in the fixed embedding setting)?

Thank you!

3
Giuseppe

Liotta
Maurizio

Patrignani

