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T The problem

Problem: planar 3-graph = planar bend-minimum orthogonal drawing
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plane 3-graph bend-min orthogonal drawing bend-min orthogonal drawing
(fixed embedding) (variable embedding)



o0 A bit of history

N\

Bend-min orthogonal drawings: fixed embedding

* plane 4-graphs
—0(n? log n)
—0(n”’*log n)
_O(nl.S)

* plane 3-graphs
O(n)

‘Tamassia (1987)]
‘Garg and Tamassia (2001)]

[Cornelsen and Karrenbauer (2011)]

[Rahman and Nishizeki (2002)]

based on
min-cost flow

not based on

flow techniques



>0 A bit of history

p\—

Bend-min orthogonal drawings: variable embedding

* planar 4-graphs: NP-hard [Garg and Tamassia (2001)]

* planar 3-graphs 2018

P A |

O(n° log n) O(n*?) O(n%43logkn) O(n?) Can we do
Di Battista-Liotta- consequence of Chang and Yen our result better?
Vargiu Cornelsen-Karrenbauer




P99 Our result

N\

Theorem. Let G be an n-vertex (simple) planar 3-graph. There
exists an O(n?%)-time algorithm that computes a bend-minimum
orthogonal drawing of G, with at most two bends per edge.

P. S. the algorithm takes O(n) time if we require that a prescribed
edge of G is on the external face



80! General strategy for biconnected graphs

N\

input: G biconnected planar 3-graph with n vertices
output: bend-min orthogonal drawing I of G

 for each edge e of G
— I', < min-bend orthogonal drawing of G with e on the external face

* return I' - min-bends{I .}

', is computed in linear time



o0 Strategy for the linear-time algorithm

p\—

* Incremental construction of I,

1. bottom-up visit of the SPQR-tree + orthogonal spirality
(similar to Di Battista, Liotta, Vargiu 1998)

2. new properties of bend-min orthogonal drawings of planar 3-graphs

3. non-flow based computation of bend-min orthogonal drawings for the
rigid components



\begin{SPQR-trees}
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\end{SPQR-trees}



80! Orthogonal representations

N\

orthogonal representation = equivalence class of orthogonal
drawings with the same vertex angles and the same sequence of
bends along the edges

* a drawing of an orthogonal representation can be computed in
linear time [Tamassia '97]

orthogonal component = orthogonal representation H  of a
component GM



80! Orthogonal components: example




>¢ ¢ Orthogonal components: examples




>¢ ¢ Orthogonal components: examples

Rigid (orthogonal) component



>¢ ¢ Orthogonal components: examples
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e Turn number and contour paths
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28 P- and R-components: shapes

u = P-node or R-node

H, is D-shaped < t(p,) = 0 and t(p,) = 2 or vice versa ﬂ

H, is X-shaped & t(p)=t(p,) =1 D




B8 Inner S-components: spirality

N\

L =inner S-node

Lemma. All paths between the poles of an orthogonal component
H,, have the same turn number




T Inner S-components: spirality

N\

L =inner S-node

Lemma. All paths between the poles of a H , have the same turn

number
— t(p) =k
Ty H. is k-spiral
0, 0, . 1 k-spira
v H, has spirality k

o tpq) =t(p,) =2



88 Equivalent orthogonal components

N\

*H, and H'H = two distinct orthogonal representations of G,

*H, and H' are equivalent if:
—pisaP-oranR-nodeand H,, H' are both D-shaped or both X-shaped
—pisan S-node and H,, H' , have the same spirality



>¢ ¢ Equivalent orthogonal components
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Theorem (substitution). Equivalent orthogonal components are
interchangeable
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>¢ ¢ Equivalent orthogonal components
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Theorem (substitution). Equivalent orthogonal components are
interchangeable
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88 Equivalent orthogonal components

N\
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>¢ ¢ Equivalent orthogonal components

N\

Theorem (substitution). Equivalent orthogonal components are
interchangeable
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70 Key lemma

N\

Key-Lemma. Every biconnected planar 3-graph with a given edge e
admits a bend-min orthogonal representation with e on the
external face such that:

O1. every edge has at most two bends
0O2. every inner P- or R-component is D- or X-shaped
03. every inner S-component has spirality at most 4



70 Key lemma

N\

Key-Lemma. Every biconnected planar 3-graph with a given edge e
admits a bend-min orthogonal representation with e on the
external face such that:

O1. every edge has at most two bends
0O2. every inner P- or R-component is D- or X-shaped
03. every inner S-component has spirality at most 4

proof: based on a characterization of no-bend orthogonal
representations [Rahman, Nishizeki, Naznin 2003]



70 Key lemma: consequence

N\

Key-Lemma. Every biconnected planar 3-graph with a given edge e
admits a bend-min orthogonal representation with e on the

external face such that:
O1. every edge has at most two bends
0O2. every inner P- or R-component is D- or X-shaped
03. every inner S-component has spirality at most 4

Consequence: we can restrict our algorithm to search for a
bend-min representation that satisfies O1, 02, and O3.



80! Algorithm

N\

* input: biconnected planar 3-graph G with a reference edge e
e output: bend-min representation H of G with e on the external face

compute the SPQR-tree T of G with respectto e

2. visit the nodes p of T bottom-up:

—pinner node = store in p a set of candidate bend-min representations of G-
one for each distinct equivalence class, thanks to the substitution theorem

— 1 the root child = construct H by suitably merging e with the candidate
representations stored at the children of u; consider {0, 1, 2} bends for e,
thanks to O1 of the key-lemma



80! Candidate sets of inner nodes

N\

* Q-node: a representation for each number of bends in {0, 1, 2}
—thanks to O1 of the key-lemma
I l—@ —0
_O

* P/R-node: the cheapest D-shaped and the cheapest X-shaped representations
—thanks to O2 of the key-lemma

* S-node: the cheapest representation for each value of spirality in {0, 1, 2, 3, 4}
—thanks to O3 of the key-lemma



> Candidate set of an inner P-node

Q 0 D-shaped

A - A O-spiral 2-spiral
NO
1-spiral D 1-spiral
R A X-shaped

O(1) time




80! Candidate set of an inner R-node

N\

Each child of an R-node is either a Q- or an S-node

YES NO
R R

BN >




80! Candidate set of an inner R-node

skel(p)

constrained
min-bend of min-bend
O(n)-time skel(p) D-shaped

variant of
[RNN'99]

e
:‘> ) R (8 ﬂ.e (4

" min-bend
3-connected
cubic (with
constraints)

O(n,) time



80! Candidate set of an inner S-node

YES ?

skeleton I component

g




O-spiral Q 1-spiral 2-spiral
O— O
D | min
O— ( —0O
O——4 . :
min min
@) O——- O— |
X | min ,
O : .
min min

O
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#(extra bends) = max{0, spirality — (#D-shaped + #Q-nodes — 1)}



o9 Open problems
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* Problem 1. Is there a subquadratic-time algorithm to compute a bend-
minimum orthogonal drawing of a planar 3-graph?

O(n?) Can we do
our result better?



o2 Open problems: even more prehistoric

p\—

* Problem 2. Is there a linear-time algorithm to compute a bend-minimum
orthogonal drawing of a plane 4-graph (in the fixed embedding setting)?
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