

Pole Dancing: 3D Morphs for tree Drawings

Elena Arseneva, Prosenjit Bose, Pilar Cano, Anthony D'Angelo, Vida Dujmović, Fabrizio Frati, Stefan Langerman, and Alessandra Tappini

Pole Dancing: 3D Morphs for tree Drawings

Elena Arseneva, Prosenjit Bose, Pilar Cano, Anthony D'Angelo, Vida Dujmović, Fabrizio Frati, Stefan Langerman, and Alessandra Tappini

Graph drawing

Straight-line drawing

Non-crossing straight-line drawing

Planar straight-line drawing

Planar drawings: topologically equivalent or not

Planar drawings: topologically equivalent or not

 \cong

Planar drawings: topologically equivalent or not

A morph of two steps

A morph of two steps

A morph of two steps

Is it true that, for any two topologically equivalent planar drawings, there exists a morph in the plane from one to the other?

Is it true that, for any two topologically equivalent planar drawings, there exists a morph in the plane from one to the other?

Is it true that, for any two topologically equivalent planar drawings, there exists a morph in the plane from one to the other?

YES

In how many steps?

Is it true that, for any two topologically equivalent planar drawings, there exists a morph in the plane from one to the other?

YES

In how many steps?

[Alamdari et al., 2017]:

In O(n) steps

Is it true that, for any two topologically equivalent planar drawings, there exists a morph in the plane from one to the other?

YES

In how many steps?

What about trees?

• Any two crossing-free straight-line 3D drawings of an n-vertex tree can be morphed into each other in O(n) steps.

• Any two crossing-free straight-line 3D drawings of an n-vertex tree can be morphed into each other in O(n) steps.

• Sometimes $\Theta(n)$ steps are necessary.

• Any two crossing-free straight-line 3D drawings of an n-vertex tree can be morphed into each other in O(n) steps.

• Sometimes $\Theta(n)$ steps are necessary.

• For any two planar straight-line drawings of the same n-vertex tree, there is a crossing-free 3D morph between them of $O(\log n)$ steps.

Can we find a 3D non-crossing morph for any two 3D drawings of the same tree?

Can we find a 3D non-crossing morph for any two 3D drawings of the same tree?

... in O(n) steps

Theorem. For any two crossing-free straight-line 3D drawings of an n-vertex tree, there exists a crossing-free 3D morph between them of O(n) steps.

Main idea: contract edges one by one

Theorem. For any two crossing-free straight-line 3D drawings of an n-vertex tree, there exists a crossing-free 3D morph between them of O(n) steps.

Can we do better?

Theorem. For any two crossing-free straight-line 3D drawings of an n-vertex tree, there exists a crossing-free 3D morph between them of O(n) steps.

Can we do better?

Theorem. There exist two crossing-free straight-line 3D drawings Γ, Γ' of an n-vertex path P such that any crossing-free 3D morph from Γ to Γ' consists of $\Omega(n)$ steps.

Theorem. There exist two crossing-free straight-line 3D drawings Γ, Γ' of an n-vertex path P such that any crossing-free 3D morph from Γ to Γ' consists of $\Omega(n)$ steps.

Main idea: look at the LINKING NUMBER of each drawing

Theorem. For any two planar straight-line drawings Γ and Γ' of an n-vertex path P, there exists a crossing-free 3D morph with 2 steps.

Theorem. For any two planar straight-line drawings Γ and Γ' of an n-vertex path P, there exists a crossing-free 3D morph with 2 steps.

Theorem. For any two planar straight-line drawings Γ and Γ' of an n-vertex path P, there exists a crossing-free 3D morph with 2 steps.

Canonical 3D drawing of a tree

Step 1: Set the pole

Step 2: Lift the subtrees

Step 3: RECURSE AT EACH SUBTREE LIFTED

Step 4: "Rotate" clockwise

Step 4: "Rotate" clockwise

Step 4: "Rotate" clockwise

Step 4: "Rotate" clockwise

Step 5: Go down

Step 5: Go down

Step 5: Go down

Step 6: Go left

Step 6: Go left

Step 6: Go left

Step 6: Go left

Theorem. For any two plane straight-line drawings Γ, Γ' of an n-vertex tree T, there exists a crossing-free 3D morph from Γ to Γ' with $O(\log n)$ steps.

Theorem. For any two plane straight-line drawings Γ, Γ' of an n-vertex tree T, there exists a crossing-free 3D morph from Γ to Γ' with $O(\log n)$ steps.

Why do not you use the rooted pathwidth decomposition instead of the heavy-path decomposition?

Theorem. For any two plane straight-line drawings Γ, Γ' of an n-vertex tree T, there exists a crossing-free 3D morph from Γ to Γ' with $O(\log n)$ steps. O(p) steps, where p is the pathwidth of T.

Why do not you use the rooted pathwidth decomposition instead of the heavy-path decomposition?

• Any two crossing-free straight-line 3D drawings of an n-vertex tree can be morphed into each other in O(n) steps.

• Sometimes $\Theta(n)$ steps are necessary.

• For any two planar straight-line drawings of the same n-vertex tree, there is a crossing-free 3D morph between them of $O(\log n)$ steps.

• Any two crossing-free straight-line 3D drawings of an n-vertex tree can be morphed into each other in O(n) steps.

OPEN: generalize

• Sometimes $\Theta(n)$ steps are necessary.

OPEN: bounded size of coordinates

• For any two planar straight-line drawings of the same n-vertex tree, there is a crossing-free 3D morph between them of $O(\log n)$ steps.

• Any two crossing-free straight-line 3D drawings of an n-vertex tree can be morphed into each other in O(n) steps.

• Sometimes $\Theta(n)$ steps are necessary.

• For any two planar straight-line drawings of the same n-vertex tree, there is a crossing-free 3D morph between them of $O(\log n)$ steps.

THANK YOU!