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Is it true that, for any two topologically equivalent planar
drawings, there exists a morph in the plane from one to

the other?

In how many steps?

YES

In Θ(n) steps

[Alamdari et al., 2017]:

State of the art
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Our results

• Any two crossing-free straight-line 3D drawings of an
n-vertex tree can be morphed into each other in O(n) steps.

• Sometimes Θ(n) steps are necessary.

• For any two planar straight-line drawings of the same
n-vertex tree, there is a crossing-free 3D morph between
them of O(log n) steps.
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Morphs of 3D drawings of trees

Theorem. For any two crossing-free straight-line 3D drawings
of an n-vertex tree, there exists a crossing-free 3D morph
between them of O(n) steps.

Main idea:
contract edges one by one
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Morphs of 3D drawings of trees

Theorem. There exist two crossing-free straight-line 3D
drawings Γ,Γ′ of an n-vertex path P such that any
crossing-free 3D morph from Γ to Γ′ consists of Ω(n) steps.



Morphs of 3D drawings of trees

Theorem. There exist two crossing-free straight-line 3D
drawings Γ,Γ′ of an n-vertex path P such that any
crossing-free 3D morph from Γ to Γ′ consists of Ω(n) steps.

Main idea:
look at the LINKING NUMBER
of each drawing
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Morphing two planar drawings of a path in 3D

Theorem. For any two planar straight-line drawings Γ and Γ′

of an n-vertex path P , there exists a crossing-free 3D morph
with 2 steps.
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Canonical 3D drawing of a tree
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to Γ′ with O(log n) steps.



Morphing two planar drawings of a
tree in 3D

Theorem. For any two plane straight-line drawings Γ,Γ′ of an
n-vertex tree T , there exists a crossing-free 3D morph from Γ
to Γ′ with O(log n) steps.

Why do not you use the rooted
pathwidth decomposition instead of
the heavy-path decomposition?



Morphing two planar drawings of a
tree in 3D

Theorem. For any two plane straight-line drawings Γ,Γ′ of an
n-vertex tree T , there exists a crossing-free 3D morph from Γ
to Γ′ with O(log n) steps.

Why do not you use the rooted
pathwidth decomposition instead of
the heavy-path decomposition?

——————– O(p) steps, where p is the
pathwidth of T .
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size of coordinates



Summary

• Any two crossing-free straight-line 3D drawings of an
n-vertex tree can be morphed into each other in O(n) steps.

• Sometimes Θ(n) steps are necessary.

• For any two planar straight-line drawings of the same
n-vertex tree, there is a crossing-free 3D morph between
them of O(log n) steps.

THANK YOU!


