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Abstract
The notion of local separators for computing curve skeletons stems from the recent algorithm
by Bærentzen and Rotenberg in [ACM Tran. Graphics’21]. Here the computation of such local
separators plays an intrinsic role, with expensive computation becoming prohibitive for practical
application to larger inputs.

In this work, we dive into these computations, examining and analysing in greater detail the
individual steps, to clarify what bottlenecks exist for theoretical and empirical running times.

We give a simple modification to a phase of the computation, asymptotically improving the
running time, and present empirical results that demonstrate the increase in practical performance.

1 Introduction

Curve skeletons are simplified, stick-like representations of shapes, that can be used for a
wide variety of applications [7, 17, 4, 14, 20], and can be computed through a wide variety of
approaches [8, 16, 3, 19, 13, 22, 15, 21, 1, 6, 11].

J.A. Bærentzen and E. Rotenberg propose in [2] a new algorithm for computing a curve
skeleton using local separators, which we will refer to as the Local Separator Skeletonization
algorithm, or simply LSS. The LSS algorithm seemingly generates output of high quality,
while making relatively little assumptions about the input, requiring it only to be a spatially
embedded graph. It works by a three phased approach, as seen in Figure 1, in which first a
number of minimal local separators are computed, then a set of non-overlapping separators
are selected, and finally a skeleton is extracted.

Figure 1 Visualisation of the three phases of the LSS algorithm. From left to right: A shaded
render of the input, a number of computed minimal separators, a non-overlapping subset of the
separators, and the resulting skeleton after extraction.

The LSS algorithm has the drawback that finding minimal local separators is computa-
tionally costly, requiring the input to be simplified in order for the running time not to be
prohibitive. In this paper we give a brief analysis of the cost of computing local separators,
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examine practical bottlenecks, and propose a simple modification that we show improves the
running time of LSS, without altering the output.

1.1 Preliminaries

We consider a spatially embedded straight line graph, G = ⟨V, E⟩, with no assumptions
about the origin of the graph, such as whether it is sampled from the surface of a manifold,
created from a point cloud, or otherwise. If G is not connected, we simply run our algorithms
on each component separately, thus we assume G to be connected.

In graph theory, an induced subgraph G[V ′], is the graph G′ = ⟨V ′, E′⟩ where E′ is a
subset of E that contains any edge where both endpoints are in V ′. We define the closed
neighbourhood of a vertex, v ∈ V , denoted N(v), to be set of vertices adjacent to v and v

itself. For a set of vertices, S ⊆ V , we define the neighbourhood as N(S) =
⋃

N(s), s ∈ S.
A vertex separator is a subset of vertices whose removal disconnects the graph. A minimal

vertex separator is a separator where no proper subset is itself a separator. In [2], this
notion is extended to local separators, defined as a subset of vertices, S ⊂ V , that is a vertex
separator of G[N(S)]. Intuitively, we cannot remove a vertex from a minimal local separator
without the remaining set ceasing to be a local separator. Formally we define a minimal local
separator as S ⊂ V s.t. S is a separator of G[N(S)] and there exists no subset S′ ⊂ S s.t.
S′ is a separator of G[N(S′)]. We note that S′ does not need to separate the same induced
subgraph as S.

2 Computing Local Separators

We recall the local separator construction algorithm of LSS, and supply a theoretical analysis
of the worst case running time. With this in mind we then perform an empirical examination,
detailing how the running time is distributed amongst the phases of computation in practice.
Finally, we use this analysis to show our improvement to the running time of the algorithm,
both asymptotically and empirically.

The algorithm for computing local separators is a heuristic algorithm that, intuitively,
captures structural features of the input. It works in two phases. First, given a vertex v ∈ V ,
a local separator is constructed as follows (Figure 2): we maintain a candidate separator Σ,
and what is called the front F = N(Σ) \ Σ. Additionally, we maintain some bounding sphere
B(Σ) that contains Σ (and possibly other vertices in V ).

Initially, Σ contains v, F contains the vertices adjacent to v, and the bounding sphere
has its centre at v and radius 0. We then iteratively pick, from F , the vertex closest to the
centre of the bounding sphere, say s, and add it to Σ. We also remove it from F and add all
neighbours of s not in Σ to F , and then update the bounding sphere to encapsulate s.

This procedure is repeated until the graph induced by F consists of more than one
connected component (i.e. Σ is a local separator of G[N(Σ)]). The process is visualised in
Figure 2, with (A) showing the initial configuration, (B-E) showing the iterative growing of
the separator, and (F) showing the final separator after disconnecting the front.

We subsequently elaborate on shrinking a separator that has been constructed in the
previous phase. First the vertices of Σ are ordered from high to low according to the distance
from the centre of B(Σ) to each vertex, after performing a Laplacian smoothing of Σ. We
then perform a pass over Σ and move any vertices that are adjacent to exactly one component
of F , but whose removal from Σ would not reconnect F , to that adjacent component. After
such a linear scan over Σ, we restart the process (as removing vertices later in the order,
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Figure 2 The process of growing a separator. Red vertices are those currently in the separator,
orange vertices and edges are those currently in the front, and green vertices are the vertices of the
front that are closest to the centre of the bounding sphere, which is indicated by the dotted circle.
This figure is heavily inspired by Figure 6 of [2].

may make vertices earlier in the order eligible for removal), until no vertices are able to be
removed (i.e. Σ is a minimal local separator).

We finally analyse the complexity of computing a local separator. Let VF , EF denote the
vertices and edges of the F respectively, and consider each iteration of the growing phase:

1. Find closest v ∈ F to B(Σ) O(|VF |) by linear scan through VF

2. Move v to Σ and update B(Σ) O(1)
3. Add N(v) \ Σ to VF O(deg(v))
4. Check if F is connected O(|EF |) by breadth first search through F

Let Σ∗ denote the result of the growing phase. We spend |Σ∗| iterations growing, and in the
worst case Σ∗ and F are proportional to G s.t. |Σ∗| = O(|V |), |VF | = O(|V |), |EF | = O(|E|).
Thus we spend a total of O(|V |2) time on step 1, O(|V |) time on step 2, O(|E|) time on step
3, and O(|V ||E|) on step 4. The total running time spent in the growing phase, in the worst
case, is then O(|V |2 + |E||V |).

To shrink the separator we compute a smoothing of positions, by considering for each
vertex the positions of its neighbours, and order the vertices accordingly. Having smoothed
and sorted Σ∗, the procedure then iterates over Σ∗ and removes vertices until Σ∗ is minimal:

5. Compute smoothing of Σ∗ O(deg(s)) for all s ∈ Σ∗ totalling O(E)
6. Order Σ∗ according to smoothed positions O(|Σ∗| log |Σ∗|)
7. Iterate over s ∈ Σ∗ in their sorted order O(|Σ∗|) total time

Check if s is incident to exactly one connected component of F . O(1)
If it is, remove it from Σ∗ and inform N(v) ∩ Σ∗ O(deg(v)), uniquely charged to v.

8. Repeat step 7 until Σ∗ is minimal O(|Σ∗|) repetitions

In the worst case we remove only a constant number of vertices in each iteration of step
7, requiring O(|Σ∗|) passes over O(|Σ∗|) vertices, totalling O(|Σ∗|2) time. When removing a
vertex v from Σ∗ we inform the neighbours in Σ∗ that they are now adjacent to the connected
component of F that v was moved to. This incurs at most a cost of O(deg(s)) for all s ∈ Σ∗

totalling O(E). The worst case running time for shrinking is then O(|V |2 + |E|), and the
total time to compute a minimal local separator, including both growing and shrinking, in
the worst case, is then O(|V |2 + |V ||E|).
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In order to further our understanding of what makes the computation slow in practice,
we perform a series of measurements that also include details about how time is spent in
each step.

Input Vertices Edges Step 1 (s) Step 3 & 4 (s) Step 5 & 6 (s) Step 7 & 8 (s)
wsm0.25 4946 14856 0.29 19.1 2.11 0.33
wsm0.5 9898 29712 1.38 89.9 10.3 1.17
wsm1 19803 59427 9.19 589.4 89.9 5.7
wsv60 6166 63136 1.50 193.6 17.8 1.2
wsv90 20966 233615 34.9 4372.9 478.9 14.4
Table 1 Measurements of the phases of computing a separator on a small sample of increasingly

simplified meshes (wsm*) and voxel grids (wsv*) all constructed from the wooden_statue.

From our resulting measurements, shown in Table 1, we see that the dominating is step
4 (checking for connectivity), making it the most fitting candidate for optimisation. In
Figure 3 we show the wooden_statue used to generate wsm* and wsv* respectively, as well
as computed non-overlapping separators on both mesh and voxel grid.

Figure 3 Left: the wooden_statue input used to generate wsm* and wsv*. Centre: separators
computed on wsm1. Right: separators computed on wsv90.

3 Dynamic Connectivity

The simplest and most intuitive solution to the fully dynamic connectivity problem is the
use of augmented Euler Tour Trees [9]. These augmented trees give O(log |V |) insertions,
O(|V | log |V |) deletions and O(log |V |) connectivity queries.

In order to improve and bring into balance the update times, one can use the dynamic
connectivity data structure of Holm, de Lichtenberg and Thorup [10]. It is directly cited
in [2] as a suggestion, and it has been previously examined in practice [12]. We refer to this
data structure as the HLT data structure.

The HLT data structure maintains a hierarchical decomposition of forests of augmented
Euler Tour Trees, using the levels of the hierarchy to limit redundant searches when recon-
necting. This allows for updates in amortized O(log2 |V |) time [10].

To integrate the HLT data structure into our computations of local separators, we simply
maintain the front as part of the iterative growing. The complexity of growing is then:

1. Find closest v ∈ F to B(Σ) O(|VF |) by linear scan through VF
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2. Move v to Σ and update B(Σ) O(1)
3. Add N(v) \ Σ to F O(deg(v) log2 |VF |) amortized using HLT.
4. Check if F is connected O(1) by maintaining the number of components in HLT

The total time becomes O(|V |2 + |E| log2 |V |) by the same observations as previously.
In practice, it is suggested [12] to limit the height of the hierarchy of the dynamic

connectivity data structure, by not using the hierarchy, once forests reach small size. We have
implemented and integrated the structure into our computations, and measured that the
optimal threshold is one that is large enough to effectively eliminate the use of the hierarchy.

Figure 4 Time spent computing separators for a mesh (wsm1) and a voxel grid (wsv90) as a
function of threshold value for the dynamic connectivity data structure.

As shown in Figure 4, the running time decreases as the threshold increases up to a
certain point before flattening out. At this point, the threshold is large enough that the
hierarchy consists of a single level, essentially reducing the structure to simply an augmented
forest of Euler Tour Trees.

4 Empirical Results

Here we present our main result, showing how our variation compares to LSS in terms of
running time. All values shown are the medians of three runs on a HP Elitebook 840 G8
with an i7 processor. The source code is publicly available through the GEL repository [5]
and is compiled using O3 optimisations. In Figure 5, we compare the old method to the one
using dynamic connectivity (dyn), and find that for both meshes and voxels there is a large
improvement. It is worth noting that this improvement seems even greater for voxel grids.

However, we also examine running times on a more refined scale, in order to examine
how the relation between phases has changed, as seen in Table 2.

Of note is that not only has the check for connectivity been drastically reduced, especially
for voxel grids, but it also seems that the bottleneck has shifted in this case towards shrinking.

In addition to measuring on wooden_statue, we have also measured the time spent
checking connectivity on the Groningen Skeletonization Benchmark [18], the results of which
can be seen in Figure 6. We note that input for which the old method exceeded half an hour
was left out.

EuroCG’23



57:6 On Computing Local Separators for Skeletonization

Figure 5 Running times of local separator computations without (old) and with (dyn) the use of
dynamic connectivity. Left shows performance on meshes while right shows performance on voxels.

Input Vertices Edges Step 1 (s) Step 3 & 4 (s) Step 5 & 6 (s) Step 7 & 8 (s)
wsm0.25 4946 14856 0.21 4.28 1.43 0.22
wsm0.5 9898 29712 1.05 17.2 7.78 0.85
wsm1 19803 59427 8.68 109.1 80.8 5.08
wsv60 6166 63136 1.4 22.7 16.2 1.07
wsv90 20966 233615 21.9 214.7 313.9 9.75
Table 2 Measurements of the phases of computing a separator on a small sample of meshes

(wsm*) and voxel grids (wsv*) all of similar structure, using the dynamic connectivity data structure.
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Figure 6 Time spent checking connectivity on input from the Groningen Skeletonization Bench-
mark.
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