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Abstract
For any d ≤ 6 and for any n, we determine the maximum number of cells in the arrangement of
hyperplanes determined by n points in Rd. It is shown that this number can be expressed as a
polynomial in n of degree d2 for any fixed d, and exact formulas for the first d − 1 coefficients of
this polynomial are given.

1 Introduction

Arrangements of lines in the plane and their higher-dimensional generalization, arrangements
of hyperplanes in Rd, are a basic geometric structure. If a finite set of hyperplanes is
in general position, which means that the intersection of every k hyperplanes is (d − k)-
dimensional, k = 2, 3 . . . , d + 1, the arrangement is called simple. If the hyperplanes of
a hyperplane arrangement A are removed from Rd, the remaining part of Rd consists of
connected components called cells of A. The following proposition implies that the number
of cells of a simple arrangement of n hyperplanes in Rd is a function of n and d only, and is
thus independent of the arrangement.

I Proposition 1. The number of cells in a simple arrangement of n hyperplanes in Rd is

Φd(n) =
(
n

0

)
+
(
n

1

)
+ · · ·+

(
n

d

)
.

For d = 2, Proposition 1 says that n lines in general position in the plane partition
the plane into Φ2(n) =

(
n
0
)

+
(

n
1
)

+
(

n
2
)

= n2

2 + n
2 + 1 cells. This fact is well known also

outside of the discrete and computational geometry community due to the fact that it has
several elementary proofs which nicely demonstrate the principle of mathematical induction.
Proposition 1 for general d also has simple proofs using mathematical induction.

In this paper we consider arrangements of all hyperplanes in Rd determined by d-element
subsets of a given set of n points in general position in Rd. In particular, we are interested
in the (maximum) number of cells in such arrangements.

Let P be a set of n ≥ d points in general position in Rd. The affine hull of each d-tuple of
points of P is a hyperplane. We denote the arrangement of these

(
n
d

)
hyperplanes by A(P ),

or by A(p1, . . . , pn) if P = {p1, . . . , pn}.
We find it a very natural question to ask how many cells A(P ) can have. Surprisingly,

as far as we know, this question has been considered only in dimensions 2 and 3 so far. We
study this question for general d. If P is in a “sufficiently general” position, the number of
cells, denoted fd(n), depends only on n and d. By a computer assisted proof, we determine
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fd(n) for d ≤ 5 and any n ≥ d. We can also determine f6(n) using a result of Koizumi
et al. [3] who studied the so-called characteristic polynomial of hyperplane arrangements
in vector spaces. It turns out that Koizumi et al. compute the characteristic polynomial
of arrangements up to dimension six which are equivalent to A(P ). This is discussed in
more detail in the initial part of Section 3. We also show that for any fixed d, fd(n) can be
expressed as a polynomial in n of degree d2, and in Theorem 3.2 we give exact formulas for
the first two coefficients of this polynomial, which shows the growth rate of fd(n) for any
fixed d. In the second part of Theorem 3.2 we actually show a stronger result that for any
d, the first d− 1 coefficients of fd(n) and Φd(

(
n
d

)
) are equal.

When trying to find some results about the numbers fd(n), we found a discussion on
mathoverflow [2] where the question was asked by Min Wu in February 2020. Few days later
Richard Stanley outlined on the same place how to obtain f2(n) and f3(n). The computation
of f3(n) required some case distinction and relatively complicated formulas appeared in the
computation. Stanley wrote that there could be an error in the computation. It turns out
that his formula for f3(n) was not quite correct but the method works. We managed to
correct the formula and extend the method to higher dimensions.

We now prepare for the definition of the type of “sufficiently general” position which is
suitable for us. Let P be a set of n ≥ d points in general position in Rd. We say that a
hyperplane arrangement B is central if it has a non-empty intersection, i.e., if

⋂
H∈BH 6= ∅.

We associate with every central subarrangement B of A(P ) a poset PB of sets ordered by
inclusion defined as

PB := {F ⊆ P | ∃H ∈ B : ∩B ⊆ aff(F ) ⊆ H} .

In other words, PB contains all tuples of points from P spanning an affine space that
(i) contains the common intersection of B, and simultaneously (ii) is contained in some
hyperplane H ∈ B. Our definition of a “sufficiently general” position ensures that if a
subarrangement B of A(P ) is central then the intersection

⋂
B is given by the structure of

the minimal elements of PB. The support SB of B is the set system consisting of the minimal
elements of PB. If the sets in SB are denoted by S1, . . . , Sk, we have

⋂
B =

⋂k
i=1 aff(Si). It

follows from a basic result in linear algebra that, under the assumption that B is a central
arrangement, codim (

⋂
B) ≤

∑k
i=1 codim(aff(Si)). Intuitively, the previous inequality is

strict in case of certain degeneracy.
We say that P is in a very general position, if for any central subarrangement B ⊆ A(P )

with support {S1, . . . , Sk} we have

codim
(⋂
B
)

=
k∑

i=1
codim(aff(Si)), (1)

which is equivalent to

dim
(⋂
B
)

=
k∑

i=1
|Si|−(k − 1) · (d+ 1)− 1. (2)

An example of six points in general position in the plane which are not in very general
position is depicted in Figure 1, where the arrangement B of the three lines piqi, i = 1, . . . , 3,
intersecting in a common point has support SB = {{p1, q1}, {p2, q2}, {p3, q3}}, and it holds
that 2 = codim (

⋂
B) 6=

∑3
i=1 codim(aff(Si)) = 1 + 1 + 1 = 3.

In the full version of this paper, it is shown that any set in general position can be
perturbed to a set in a very general position. This proposition is used in the proof of the
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Figure 1 The lines given by pairs of points {pi, qi}, i = 1, 2, 3, have a common intersection.

main results, and it also easily implies that any hyperplane arrangement determined by a
set of n points in Rd has at most fd(n) cells. Indeed, if we slightly perturb any point set
to a set in general position and then to a set in very general position, the number of cells
cannot decrease and it reaches exactly the value of fd(n).

We were able to find the related sequences in the On-Line Encyclopedia of Integer
Sequences [7]. Sequence A055503 [6] corresponds to the number of cells in an arrange-
ment of lines determined by n points in very general position in the plane, i.e. f2(n).
Sequence A002817 [4] corresponds to the number of such cells which are bounded. Se-
quence A037255 [5] corresponds to the number of cells in an arrangement of lines determined
by a generic set of n points in the real projective plane. (The sequence for the real projective
plane can be obtained from the previous two sequences as the arithmetic mean of the two
sequences, since if we embed a real plane containing a line arrangement to a real projective
plane then each pair of opposite unbounded cells merges into a single cell.)

Open problems

A natural open problem is to determine or estimate the maximum number of k-faces in a
hyperplane arrangement determined by a set of n points in Rd. It is widely open if there is
a closed formula for fd(n) similar to the one given for Φd(n) in Proposition 1.

2 Warm-up: two-dimensional space

In this section, we count the number of cells in a line arrangement determined by a set P
of n points in very general position in the two-dimensional space. For each cell we assume
without loss of generality that the bottommost point is unique if it exists. Let P ′ be the
set of intersections between all pairs of lines given by

(
P
2
)
, and let Q = P ′ \ P . Each cell C

satisfies exactly one of the following three conditions:

1. the bottommost point of C belongs to P ,
2. the bottommost point of C belongs to Q,
3. C does not have a bottommost point.

In the first case, every point p ∈ P can be a bottommost point of a cell. There are n− 1
lines passing through p, so there are n− 2 cells with p as its bottommost point, see Figure 2
for an example. Thus, the number of cells satisfying condition 1. is

n · (n− 2). (3)
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p

Figure 2 There are five lines passing through p and only four regions with p as its bottommost
point.

In the second case, the cell C is given by a point q ∈ Q. The number of such points, and
in turn the number of cells satisfying condition 2. is

1
2 ·
(
n

2

)
·
(
n− 2

2

)
. (4)

To count the number of cells that are unbounded from below, consider a horizontal line `
which lies below all points of P ′. Then each unbounded cell is intersected by ` exactly once.
Let L be the set of lines given by all pairs of points of P , and let Q be the set of points
in which lines of L and ` intersect. Projecting each unbounded cell onto ` lets us count
the number of unbounded cells as the number of line segments on ` given by Q and two
additional cells are not bounded from either the left or the right. As such, the number of
unbounded cells is (

n

2

)
+ 1. (5)

By (3), (4), and (5) we have

f2(n) = n(n− 2) +
(
n

2

)(
1
2

(
n− 2

2

)
+ 1
)

+ 1. (6)

3 Computing the characteristic polynomial

In this section, we focus on computing the characteristic polynomial of the arrangement
using a mechanical method that can be implemented by a program. The number of cells as
well as the number of bounded cells can then easily be retrieved from the polynomial.

First, let us formally introduce the characteristic polynomial. Recall that a hyperplane
arrangement A is central if

⋂
H∈AH 6= ∅. The rank of A, denoted by rank(A), is the

dimension of the space spanned by the normals to the hyperplanes in A. For any cen-
tral arrangement A, we have rank(A) = codim(

⋂
A). The characteristic polynomial of a

hyperplane arrangement A, denoted by χA(t), is defined as

χA(t) =
∑
B⊆A
B central

(−1)|B|td−rank(B) =
∑
B⊆A
B central

(−1)|B|tdim(
⋂
B).

Note that the characteristic polynomial is typically defined using a so-called intersectional
lattice associated with A and its Möbius function. The equivalence of the definition above
is due to Whitney’s theorem [8, Lemma 2.3.8]. We chose to omit the standard definition as
our approach really boils down to computing the characteristic polynomial as a sum over all
central subarrangements of A. Note that this differs from the approach of Koizumi et al. [3]
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who compute the Möbius function of the intersection lattice and only subsequently recover
the polynomial via its more usual definition.

The connection between the characteristic polynomial and the number of cells of a hy-
perplane arrangement is a celebrated result by Zaslavsky [9]. The number of cells of an
hyperplane arrangement A in a real d-dimensional space is equal to (−1)dχA(−1), while the
number of bounded cells is obtained as (−1)rank(A)χA(1).

3.1 Algorithm for general d-dimensional space

Inspired by the approach used in Section 2, we devise an algorithm that computes the char-
acteristic polynomial of n points in very general position in d-dimensional space expressed
as a polynomial in both t and n.

I Theorem 3.1. There is an algorithm that receives an integer d ∈ N as input and outputs
a polynomial Q(t, n) such that for arbitrary integer n ≥ d and an arbitrary set of n points
Pn ⊂ Rd in very general position, we have Q(t, n) = χA(Pn)(t).

Now, we briefly try to sketch the basic idea behind the algorithm. Recall that we associate
with any subarrangement B a poset PB of sets ordered by inclusion defined in Section 1.
Furthermore, recall that we defined the support SB as the collection of all minimal sets
of PB. Our goal is to show how central arrangements with different supports contribute to
the characteristic polynomial.

We notice that there are only finitely many ways how the support of a central subar-
rangement can look like. We call these classes of isomorphic supports types. It is easy to
prove that there are only finitely many non-isomorphic types as each can contain at most d
sets. For example in three-dimensional space, a central arrangement B intersecting in a com-
mon line can have the following three possible types of support: (i) a single pair of points
{p, q} in the case when all the hyperplanes in B contain the line spanned by p and q, (ii) two
disjoint triples of points {p1, q1, r1}, {p2, q2, r2} in the case when B contains precisely the
two hyperplanes spanned by these triples, and (iii) two triples sharing one common point
{p, q1, r1}, {p, q2, r2} which again corresponds to an arrangement B containing precisely the
two hyperplanes.

The algorithm computes Q(t, n) by enumerating all possible support types and summing
the contributions of all central subarrangements with a given support type. However, we
remark that this is far from a full description of the algorithm since there is a great deal of
non-trivial care needed to handle overcounting.

3.2 Three-, four- and five-dimensional space

We were able to successfully compute the characteristic polynomials for d = 4 and d = 5
by implementing the algorithm of Subsection 3.1. We include below only the polynomials
f3(n), f4(n) and the first three terms of the polynomial f5(n) counting the number of cells
determined by the hyperplane arrangement determined by n points in very general position.
The full characteristic polynomials can be found in [1].
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f3(n) = 1
1296 n

9 − 1
144 n

8 − 1
27 n

7 + 61
72 n

6 − 2237
432 n5 + 2231

144 n4 − 14945
648 n3 + 41

3 n2

− 13
18 n+ 1

f4(n) = 1
7962624 n

16 − 1
331776 n

15 + 65
1990656 n

14 − 157
497664 n

13 + 1315
442368 n

12 − 923
124416 n

11

− 486709
1990656 n

10 + 198593
55296 n9 − 201042623

7962624 n8 + 108860747
995328 n7 − 103295189

331776 n6

+ 73347065
124416 n5 − 120791941

165888 n4 + 3824591
6912 n3 − 259219

1152 n2 + 531
16 n+ 1

f5(n) = 1
2985984000000 n

25 − 1
59719680000 n

24 + 47
119439360000 n

23 +O(n22)

3.3 Asymptotic behavior
Although we were unable to compute the exact number of cells fd(n) for d > 6, we can
use our techniques to obtain at least their asymptotic growth. It is not hard to deduce
that fd(n) must be a polynomial in n of degree d2. We can however precisely determine
its first d − 1 coefficients, which, somewhat surprisingly, are exactly the same as if the

(
n
d

)
hyperplanes of A(P ) were in a general position.

I Theorem 3.2. For every d ≥ 3

fd(n) = 1
(d! )d+1 · n

d2
+ d2 − d3

2 · (d! )d+1 · n
d2−1 +O(nd2−2).

In fact, the first d− 1 coefficients of Φd

((
n
d

))
and fd(n) are equal.
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