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Abstract
Storyline visualizations are a popular way of visualizing characters and their interactions over time:
Characters are drawn as x-monotone curves and interactions are visualized through close proximity
of the corresponding character curves in a vertical strip. Existing methods to generate storylines
assume a total ordering of the interactions, although real-world data often do not contain such a
total order. Instead, multiple interactions are often grouped into coarser time intervals such as years.
We exploit this grouping property by introducing a new model called storylines with time intervals
and present two methods to minimize the number of crossings and horizontal space usage. We then
evaluate these algorithms on a small benchmark set to show their effectiveness.
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1 Introduction

Storyline visualizations are a popular way of visualizing characters and their interactions
through time. They were popularized by Munroe’s xkcd comic [13] (see Fig. 1 for a storyline
describing a movie as a series of scenes through time, in which the characters participate). A
character is drawn using an x-monotone curve, and the vertical ordering of the character curves
varies from left to right. A scene is represented by closely gathering the curves of characters
involved in said scene at the relevant spot on the x-axis, which represents time. Storylines
attracted significant interest in visualization research, especially the question of designing
automated methods to create storylines adhering to certain quality criteria [12,14,15].

Figure 1 The xkcd comic showing a storyline of the Star Wars movie.

While different design optimization goals can be specified, most theoretical research
has been focused on crossing minimization [8, 11] and variants like block crossing mini-
mization [16,17]. This problem is NP-hard [11,16] and is commonly solved using ILP and
SAT formulations [8, 17]; it has many similarities with the metro line crossing minimization
problem [1–3,5]. Recently a new model for storylines was proposed by Di Giacomo et al. [7]
that allows for one character to be part of multiple interactions at the same point in time,
by modeling each character as a tree rather than a curve. Using this model, it is possible to
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Figure 2 (a) A classic storyline with blue character lines. Interactions are shown in gray, they
happen on specific timestamps and have a duration. (b) A time interval storyline. The horizontal
orange segment shows a slice, every interaction on this segment has the same timestamp. A layer is
highlighted in red, containing two interactions with the same timestamp but not sharing a character.

represent data sets which have a more loosely defined ordering of interactions. Furthermore,
authorship networks have been a popular application for storylines visualizations [7, 10]. In
this paper we introduce time interval storylines, an alternative approach to visualize data
sets with less precise temporal attributes. In the time interval model, a set of discrete, totally
ordered timestamps is given, which serve to label disjoint time intervals (e.g., the timestamp
2021 represents all interactions occurring between January and December of the year 2021).
Each interval is represented in a storyline as a horizontal section in which all interactions with
the same timestamp occur. The horizontal ordering within this section, however, does not
correspond to a temporal ordering anymore (see Fig. 2). For example, an authorship network
often sorts publications by year. In a traditional storyline model, the complete temporal
ordering of the interactions must be provided. Previous models like the one by van Dijk et
al. [17] can place multiple disjoint interactions in the same vertical layer, but the assignment of
interactions to the totally ordered set of layers must be given as input. Unlike the traditional
model, we have no pre-specified assignment of interactions to layers, but interactions with
the same timestamp can be assigned to any layer within the time interval of this timestamp.

Problem setting. We are given a triple S = (C, I, T ), of characters C = {c1, . . . , cn},
interactions I = {I1, . . . , Im}, and totally ordered timestamps T = {t1, . . . , tp} as input.
Each interaction (Cj , t) = Ij ∈ I consists of a set Cj ⊆ C of characters involved in the
interaction and a timestamp t ∈ T at which the interaction Ij occurred, respectively denoted
by char(Ij) = Cj and time(Ij) = t. A subset of interactions can form a layer ℓ, when for
every pair of interactions I, I ′ in ℓ, time(I) = time(I ′). A time interval storyline is composed
of a sequence of layers to which interactions are assigned. Intuitively, a layer represents a
column in the storyline visualization, in which interactions are represented as vertical stacks.
Thus, to each layer we associate a vertical ordering of C. Consider the set S containing all
interactions with timestamp t, we call the union of layers containing S a slice.

Characters are represented with curves passing through each layer at most once. To
represent an interaction I = (C, t) in a layer ℓ, the ordering of the characters in ℓ must
be such that the characters of C appear consecutively in that ordering. For a pair I, I ′ of
interactions in the same layer, it must hold that char(I) ∩ char(I ′) = ∅.

For a layer ℓ, we denote the set of interactions by inter(ℓ) and the timestamp of a layer by
time(ℓ) (with slight abuse of notation). We focus on combinatorial storylines, as opposed to
geometric storylines, meaning that our algorithm should output a (horizontal) ordering oL(S)
of layers, and for each layer ℓ, a (vertical) ordering oc(ℓ) of the characters, and all interactions
must occur in some layer. For two interactions I, I ′ such that time(I) < time(I ′), let ℓ and
ℓ′ be the layers of I and I ′, respectively. Then ℓ must be before ℓ′ in oL(S). A character
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is active in a layer if it appears in the character ordering for that layer. A character must
be active in a contiguous range of layers including the first and last interaction it is involved
in. A character is active in a layer if it appears in the character ordering for that layer.

Contributions. In this paper we introduce the time interval storylines model, as well as
two methods to compute layer and character orderings. In Section 2.1 we introduce an
algorithmic pipeline based on ILP formulations and heuristics that computes time interval
storylines. We further present an ILP formulation that outputs a crossing-minimal time
interval storyline in Section 2.2. Lastly in Section 3, we experimentally evaluate our pipeline
and ILP formulation. Due to space constraints, some details are omitted and can be found
in the full version of the paper [4].

2 Computing combinatorial storylines

2.1 A pipeline heuristic
As the traditional storyline crossing minimization problem is a restricted version of the time
interval formulation, our problem is immediately NP-hard [11]. Thus, we first aim to design
an efficient heuristic to generate time interval storylines, which consists of the following
stages.

(i) Initially, we assign each interaction to a layer,
(ii) then, we compute a horizontal ordering oL(S) of the layers obtained in step (i), and
(iii) finally, we compute a vertical ordering oc(ℓ) of the characters for each layer ℓ ∈ oL(S).

For step (i), the assignment is obtained using graph coloring. For each t ∈ T , we create
a conflict graph Gt = (It, E) where It ⊆ I and I ∈ It if and only if time(I) = t. Two
interactions are connected by an edge if they share at least one character. Each color class
then corresponds to a set of interactions which share no characters and can appear together
in a layer. We solve this problem using a straightforward ILP formulation based on variables
xv,c = 1 if color c is assigned to vertex v and 0 otherwise. We can choose to limit the size of
each color class by adding an upper bound on the number of interactions assigned to each
color, which forces fewer interactions per layer. While this allows us to limit the height of
each slice, it likely results in more layers.

To compute a horizontal ordering of the layers in step (ii), we use a traveling salesperson
(TSP) model. Concretely, for the slice corresponding to the timestamp t, we create a complete
weighted graph G = (L, E), where L corresponds to all the layers ℓ such that time(ℓ) = t.
For each edge e between a pair of layers ℓ and ℓ′ in L, we associate a weight we, estimating
the number of crossings that may occur if the two layers are consecutive as follows.

Minimizing the crossings of the curves representing the characters is NP-complete [6, 11],
thus we propose two heuristics to estimate the number of crossings. First, we propose to use
set similarity measures to describe how similar the interactions in two layers ℓ and ℓ′ are: If
ℓ and ℓ′ both have an interaction that contains the same set of characters, then no crossing
should be induced by the curves corresponding to those characters, when these two layers
are consecutive (see Fig. 3a). Second, we consider pattern matching methods that guess how
many crossings could be induced by a certain ordering of the characters. There are certain
patterns of interactions between two layers for which a crossing is unavoidable (see Fig. 3b).
We count how many of these patterns occur between each pair of layers in G and set the
weight of the corresponding edge to that crossing count. More details on these heuristics can
be found in the full version [4].
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Figure 3 (a) The orange and light green characters are together in two interactions, which
increases similarity between ℓ and ℓ′, but the two blue characters are once together and once apart,
which decreases similarity. (b) An example of an unavoidable crossing pattern.

To finish step (ii), we solve the path formulation of the TSP problem on G and find a
horizontal ordering of the layers for each time slice. We have now obtained a traditional
storyline, in which each interaction belongs to a specific layer, and all layers are totally
ordered. Thus, we can solve step (iii) using the state-of-the-art crossing minimization ILP by
Gronemann et al. [8].

We call the pipeline variants Ps and Pp, when using the set similarity heuristic and the
pattern matching heuristic in step (ii), respectively.

2.2 An ILP formulation
Crossing minimization in storylines is generally solved using ILP formulations [8, 16]. We
propose two formulations to handle slices, which build on the ideas of Gronemann et al. [8].
Both formulations will give us an assignment of interactions to layers, that are already totally
ordered, and an ordering of characters per layer. For each timestamp t ∈ T , let Lt be a set of
|{I | time(I) = t}| layers corresponding the number of interactions at t, and let L =

⋃
t∈T Lt.

In the first formulation we assume that a character c is active in all layers between the first
timestamp and last timestamp, inclusively, where there exists an interaction I such that
c ∈ char(I). In the second formulation we will introduce additional variables that model
whether a character really needs to be active, since, in fact, character curves do not need
to be active before their first interaction or after their last interaction. In contrast to the
pipeline approach, the presented ILP formulations are able to find the crossing-minimal
solution for the explored search space.

First formulation. Let Cℓ be the characters that appear in layer ℓ ∈ L, as discussed before.
First we introduce for each t ∈ T the binary variables yℓ,I for ℓ ∈ Lt and I ∈ I where
time(I) = t. These should be one iff interaction I is assigned to layer ℓ. This is realized by
constraints of type (1). If two different interactions I and I ′ share a character they cannot
be in the same layer, realized by type (2) constraints.∑

ℓ∈Lt

yℓ,I = 1 t ∈ T, I ∈ I, time(I) = t (1)

yℓ,I + yℓ,I′ ≤ 1 time(I) = time(I ′) = t, char(I) ∩ char(I ′) ̸= ∅, ℓ ∈ Lt (2)

Next we introduce binary ordering variables xℓ,ci,cj
for each layer ℓ ∈ L and ci, cj ∈ Cℓ with

i < j. Variable xℓ,ci,cj should be one iff ci comes before cj on layer ℓ. Standard transitivity
constraints (3) (see e.g. [9]) ensure that the binary variables induce a total order.

0 ≤ xℓ,ch,ci + xℓ,ci,cj − xℓ,ch,cj ≤ 1 ci, cj , ch ∈ Cℓ, i < j < h (3)
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Figure 4 A storyline for a dataset corresponding to the first chapter of Anna Karenina created by
ILP1. The x-axis is labeled by the scenes of the book, which are separated by dashed gray lines and
correspond to the timestamps. Interactions are visualized with black vertical bars and correspond to
the characters in the book interacting with each other shown as x-monotone curves. The storyline
contains 58 layers, 34 timestamps, and 23 crossings.

The crux is now to model the assignment of some interaction I to some layer ℓ, linking the x-
and y-variables together. This is done with so-called tree-constraints [8]: Let ℓ ∈ Lt, I ∈ I
with time(I) = t and ci, cj , ck ∈ Cℓ such that i < j, ci, cj ∈ char(I), and ck ̸∈ char(I). If
i < j < k we add constraints (4) and (5), which ensure that ck is either before or after both
ci and cj . We elaborate on the analogous cases k < i < j and i < k < j in the full version [4].

xℓ,ci,ck
≤ xℓ,cj ,ck

+ 1 − yℓ,I (4)
xℓ,cj ,ck

≤ xℓ,ci,ck
+ 1 − yℓ,I (5)

Lastly, to optimize the number of crossings we have to provide an objective function. For
this we introduce binary variables zℓ,ci,cj for all layers ℓ but the rightmost one and all
ci, cj ∈ Cℓ ∩ Cℓ′ where ℓ′ is the adjacent layer of ℓ to the right. Variable zℓ,ci,cj

should be one
iff the character lines of ci and cj cross between layers ℓ and ℓ′. Linking variables zℓ,ci,cj is
done by introducing the constraints corresponding to setting zℓ,ci,cj

≥ xℓ,ci,cj
⊕xℓ′,ci,cj

(see
the full version [4]) where x⊕y denotes the exclusive-or relation of two binary variables x and
y. The objective is then to simply minimize

∑
zℓ,ci,cj

. A solution to the ILP model is then
transformed into a storyline realization of the input. We call this formulation ILP1. Figure 4
shows a storyline visualization that was computed with ILP1 and a simple post-processing
method that assigns x- and y-coordinates (refer to the full version [4] for more information).

Extensions and Second Formulation In the above formulation we have one layer for each
interaction, which does not utilize the potential of having multiple interactions in one layer.
We can, however, minimize the number of layers beforehand, using the graph coloring problem
as in Section 2.1. If we need q colors for timestamp t, we let Lt only consist of q layers. This
can of course result in more crossings in the end. We call this adapted formulation ILP1ML.

Additionally, in the above model a character was contained in all layers of the first and
last timestamp that contains an interaction, in which the character appears. By introducing
further variables and adapting the constraints given in ILP1, this can be relaxed, so that a
character’s active range actually only spans from the first to the last interaction it appears in.
This new formulation is given in the full version [4] and is referred to as ILP2. We can then
introduce the fewest possible number of layers as above, resulting in formulation ILP2ML.

3 Evaluation

We evaluated our six algorithms on seven instances that were used in previous work on
storylines. The number of layers that could be saved by the coloring pipeline-step, the number
of crossings, and the runtimes are reported in the full paper [4] together with the complete
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description of instances, experimental setup, and evaluation. It also contains visualizations of
storylines produced by our algorithms. Generally, the layer-minimization step of the pipeline,
using graph coloring, reduces the number of layers for all but one instance, in one case even
by 50%. The ILP-formulations perform better than the pipeline-approaches w.r.t. crossings,
if they do not time out (3600 s). And even if they time out, the best feasible solution found
by the solver is sometimes better than the solution provided by the pipeline-approaches.
The ILP-approaches perform far worse w.r.t. runtime and three of the four instances timed
out for all ILP-approaches. It has to be mentioned that, by construction, optimal solutions
for ILP2 will always have the least crossings, and optimal solutions for ILP2ML will always
have fewer crossings than all other algorithms minimizing layers. We think though, that our
ILP-formulations can be further optimized for scalability.
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