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Abstract
A graph is 2-degenerate if every subgraph contains a vertex of degree at most 2. We show that every
2-degenerate graph can be drawn with straight lines such that the drawing decomposes into 4 plane
forests. Therefore, the geometric arboricity, and hence the geometric thickness, of 2-degenerate
graphs is at most 4. On the other hand, we show that there are 2-degenerate graphs that do not
admit any straight-line drawing with a decomposition of the edge set into 2 plane graphs. That is,
there are 2-degenerate graphs with geometric thickness, and hence geometric arboricity, at least 3.
This answers two questions posed by Eppstein [Separating thickness from geometric thickness. In
Towards a Theory of Geometric Graphs, vol. 342 of Contemp. Math., AMS, 2004].
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1 Introduction

A graph is planar if it can be drawn without crossings on a plane. Planar graphs exhibit
many nice properties, which can be exploited to solve problems for this class more efficiently
compared to general graphs. However, in many situations, graphs cannot be assumed to be
planar even if they are sparse. It is therefore desirable to define graph classes which extend
planar graphs. Several approaches for extending planar graphs have been established over the
last years [3, 12]. Often these classes are defined via drawings, for which the types of crossings
and/or the number of crossings are restricted. A natural way to describe how close a graph
is to being a planar graph is provided by the graph parameter thickness. The thickness of a
graph G is the smallest number θ(G) such that the edges of G can be partitioned into θ(G)
planar subgraphs of G. Related graph parameters are geometric thickness and book thickness.
Geometric thickness was introduced by Kainen under the name real linear thickness [15].
The geometric thickness θ̄(G) of a graph G is the smallest number of colors that is needed to
find an edge-colored geometric drawing (i.e., one with edges drawn as straight-line segments)
of G with no monochromatic crossings. For the book thickness bt(G), we only consider
geometric drawings with vertices in convex position.

An immediate consequence from the definitions of thickness, geometric thickness and
book thickness is that for every graph G we have θ(G) ≤ θ̄(G) ≤ bt(G). Eppstein shows that
the three thickness parameters can be arbitrarily “separated”. Specifically, for any number
k there exists a graph with geometric thickness 2 and book thickness at least k [9] as well
as a graph with thickness 3 and geometric thickness at least k [10]. The latter result is
particularly notable since any graph of thickness k admits a k-edge-colored drawing of G
with no monochromatic crossings if edges are not required to be straight lines. This follows
from a result by Pach and Wenger [20], stating that any planar graph can be drawn without
crossings on arbitrary vertex positions with polylines.

Related to the geometric thickness is the geometric arboricity ā(G) of a graph G, in-
troduced by Dujmović and Wood [5]. It denotes the smallest number of colors among all
edge-colored geometric drawings of G without monochromatic crossings where every color
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class is acyclic. As every such plane forest is a plane graph, we have θ̄(G) ≤ ā(G). Moreover,
every plane graph can be decomposed into three forests [22], and therefore 3θ̄(G) ≥ ā(G).

Bounds on the geometric thickness are known for several graph classes. Due to Dillencourt
et al. [4] we have n

5.646 + 0.342 ≤ θ̄(Kn) ≤ n
4 for the complete graph Kn. Graphs with

bounded degree can have arbitrarily high geometric thickness. In particular, as shown by
Barárt et al. [1], there are d-regular graphs with n vertices and geometric thickness at least
c
√
dn1/2−4/d−ε for every ε > 0 and some constant c. However, due to Duncan et al. [7], if

the maximum degree of a graph is 4, its geometric thickness is at most 2. For graphs with
treewidth t, Dujmović and Wood [5] showed that the maximum geometric thickness is dt/2e.
Hutchinson et al. [13] showed that graphs with n vertices and geometric thickness 2 can have
at most 6n− 18 edges. As shown by Durocher et al. [8], there are n-vertex graphs for any
n ≥ 9 with geometric thickness 2 and 2n− 19 edges. In the same paper, it is proven that it
is NP-hard to determine if the geometric thickness of a given graph is at most 2. Computing
thickness [16] and book thickness [2] are also known to be NP-hard problems. For bounds
on the thickness for several graph classes, we refer to the survey of Mutzel et al. [17]. An
overview on bounds for book thickness is given on the webpage of Pupyrev [21].

A graph G is d-degenerate if every subgraph contains a vertex of degree at most d. So we
can repeatedly find a vertex of degree at most d and remove it, until no vertices remain. The
reversal of this vertex order (known as a degeneracy order) yields a construction sequence
for G that adds vertex by vertex and each new vertex is connected to at most d previously
added vertices (called its predecessors). Adding a vertex with exactly two predecessors is also
known as a Henneberg 1 step [11]. In particular, any 2-degenerate graph is a subgraph of a
so-called Laman graph, however not every Laman graph is 2-degenerate. Laman graphs are
the generically minimal rigid graphs and they are exactly those graphs constructable from a
single edge by some sequence of Henneberg 1 and Henneberg 2 steps (the latter step consists
of subdividing an arbitrary existing edge and adding a new edge between the subdivision
vertex and an arbitrary, yet non-adjacent vertex). All d-degenerate graphs are (d, `)-sparse,
for any

(
d+1

2
)
≥ ` ≥ 0, that is, every subgraph on n vertices has at most dn− ` edges.

Our Results. In this paper, we study the geometric thickness of 2-degenerate graphs. Due
to the Nash-Williams theorem [18, 19], every 2-degenerate graph can be decomposed into 2
forests and hence has arboricity at most 2 and therefore thickness at most 2. On the other
hand, as observed by Eppstein [9], 2-degenerate graphs can have unbounded book thickness.
Eppstein’s examples of graphs with thickness 3 and arbitrarily high geometric thickness are
3-degenerate graphs [10]. Eppstein asks whether the geometric thickness of 2-degenerate
graphs is bounded by a constant from above and whether there are 2-degenerate graphs with
geometric thickness greater than 2. The currently best upper bound of O(logn) follows from
a result by Duncan for graphs with arboricity 2 [6]. We improve this bound and answer both
of Eppstein’s questions with the following two theorems.

I Theorem 1. For each 2-degenerate graph G we have θ̄(G) ≤ ā(G) ≤ 4.

I Theorem 2. There is a 2-degenerate graph G with ā(G) ≥ θ̄(G) ≥ 3.

We give proof ideas for these theorems in Sections 2 and 3, respectively.

2 The upper bound

In this section, we outline the proof of Theorem 1. We describe, for any 2-degenerate graph,
a construction for a straight-line drawing such that the edges can be colored using four colors,
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Figure 1 Left: For each vertex v in a feasible drawing, there are no other vertices on the vertical
and the horizontal line through v. Moreover, v is h-open to the right and v-open to the bottom.
Right: All vertices in the highest level (of height k) are placed to the right of all vertices of smaller
height. Each vertex in that level is incident to one edge of color h and one edge of color hs.

avoiding monochromatic crossings and monochromatic cycles. This shows that 2-degenerate
graphs have geometric arboricity, and hence geometric thickness, at most four.

For a graph G we denote its edge set with E(G) and its vertex set with V (G). Consider
a 2-degenerate graph G with a given, fixed degeneracy order. We define the height of a
vertex v in G as the length t of a longest path u0 · · ·ut with ut = v such that for each i, with
1 ≤ i ≤ t, the vertex ui−1 is a predecessor of ui. The height of G is the largest height among
its vertices. The set of vertices of the same height is called a level of G.

Our construction process embeds G level by level with increasing height. The levels are
placed alternately either strictly below or strictly to the right of the already embedded part of
the graph. If a level is placed below, then we use specific colors v and vs (short for “vertical”
and “vertical slanted”, respectively) for all edges between this level and levels of smaller
height. Similarly, we use specific colors h and hs (short for “horizontal” and “horizontal
slanted”, respectively) if a level is placed to the right. See Figure 1 (right).

To make our construction work, we need several additional constraints to be satisfied
in each step which we will describe next. For a point p in the plane, we use the notation
x(p) and y(p) to refer to the x- and y-coordinates of p, respectively. Consider a drawing D of
a 2-degenerate graph G together with a coloring of the edges with colors {h, hs, v, vs}. For
the remaining proof, we assume that each vertex of G has either 0 or exactly 2 predecessors.
If not, we add a dummy vertex without predecessors to the graph and make it the second
predecessor of all those vertices which originally only had 1 predecessor. Let k denote the
height of G. We say that D is feasible if it satisfies the following constraints:
(C1) For each vertex in G the edges to its predecessors are colored differently. If k > 0, then

each vertex of height k in G is incident to edges of colors h and hs only.
(C2) There exists some xD ∈ R such that for each vertex v ∈ V (G) we have x(v) > xD if

and only if v is of height k in G.
(C3) There is no monochromatic crossing.
(C4) No two vertices of G lie on the same horizontal or vertical line.
(C5) Each v ∈ V (G) is h-open to the right, that is, the horizontal ray emanating at v directed

to the right avoids all h-edges.
(C6) Each v ∈ V (G) is v-open to the bottom, that is, the vertical ray emanating at v directed

downwards avoids all v-edges.
These constraints are schematized in Figure 1. We now show how to construct a feasible
drawing for G. We prove this using induction on the height of the graph. The base case
k = 0 is trivial, as there are no edges in the graph. Assume that k ≥ 1 and the theorem is
true for all 2-degenerate graphs with height k − 1. Let H denote the subgraph of G induced
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by vertices with height less than k. By induction, there is a feasible drawing D of H.
As a first step, we reflect the drawing D at the straight line y = −x. Additionally,

we swap the colors hs and vs as well as the colors h and v. Let D′ denote the resulting
drawing. From now on, all appearing coordinates of vertices refer to coordinates in D′. By
construction, D′ satisfies (C3–C6). Applying (C1) to D shows that in D′ each vertex of
height k − 1 is incident to one edge of color v and one edge of color vs. Applying (C2) to D
shows that there exists yD′ ∈ R such that for each vertex v ∈ V (H) we have y(v) < yD′ in
D′ if and only if v is of height k − 1.

As the second (and last) step, we place the points of height k of G such that the resulting
drawing is feasible. We only give a rough description of this placement here and refer to the
full version of this paper [14, Section 2] for a precise formulation. Let Lk denote the set of
these vertices and let xD′ denote the largest x-coordinate among all vertices in D′. We choose
a sufficiently small, positive slope m such that for any distinct u, v ∈ V (H) with y(u) < y(v),
the horizontal line through v and the straight line through u with slope m intersect at a
point p with x(p) > xD′ . For each vertex w ∈ Lk let u and v be the two predecessors of w in
H with y(u) < y(v) and let pw denote the intersection point of the straight line of slope m
passing through u (called a slanted line) and the horizontal line passing through v. We place
w at point pw and connect w to v using an edge of color h and we connect w to u using an
edge of color hs. Then (C1), (C2) and (C6) are clearly satisfied. However, this placement
comes with some issues: Several vertices in Lk might have the same predecessors and, hence,
are placed on the same point, new edges of the same color with a common endpoint in H
overlap (along a horizontal or slanted line), and (C3–C5) might not be satisfied, yet. To
address these issues, we use a small perturbation, moving each point w ∈ Lk slightly to
the bottom-right (along a straight line of slope −1/m through pw) such that all vertices
w ∈ Lk are placed at different distances to their respective point pw. In the full version of
this paper [14, Section 2] we describe such a perturbation which yields a feasible drawing of
G. This eventually shows that the geometric arboricity, and hence the geometric thickness,
of G is at most four.

3 The lower bound

In this section, we shall describe a 2-degenerate graph with geometric thickness at least 3.
For a positive integer n let G(n) denote the graph constructed as follows. Start with a vertex
set Λ0 of size n and for each pair of vertices from Λ0 add one new vertex adjacent to both
vertices from the pair. Let Λ1 denote the set of vertices added in the last step. For each pair
of vertices from Λ1 add 89 new vertices, each adjacent to both vertices from the pair. Let Λ2
denote the set of vertices added in the last step. For each pair of vertices from Λ2 add one
new vertex adjacent to both vertices from the pair. Let Λ3 denote the set of vertices added in
the last step. This concludes the construction. Observe that for each i = 1, 2, 3, each vertex
in Λi has exactly two neighbors in Λi−1. Hence, G(n) is 2-degenerate. We claim that for
sufficiently large n the graph G(n) has geometric thickness at least 3. Due to limited space
we briefly sketch of our arguments here. A complete proof is provided in the full version of
this paper [14, Section 3].

Consider a geometric drawing of G(n), for large n, and assume that there is a partition
of its edge set into two plane subgraphs A and B. In the first step, we find a large, and
particularly nice grid structure (called a tidy grid) formed by edges between Λ0 and Λ1
where many disjoint A-edges cross many disjoint B-edges. We additionally ensure that
there is a large subset Λ′1 ⊆ Λ1 spread out over many cells of this grid. Next, we consider
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Figure 2 Left: Sketch of the graph G(n). Middle: A tidy grid. Right: The situation leading to a
contradiction in the proof of Theorem 2 with x, x′ ∈ Λ1, Y ⊆ Λ2, and y1, y2, y3, y4 ∈ Λ3.

the connections of vertices from Λ′1 via the edges towards Λ2. We show that the drawing
restrictions imposed by the surrounding grid edges force many of the edges between Λ′1 and
Λ2 to stay within the grid. In particular, this gives a large subset Λ′2 ⊆ Λ2 spread out over
many cells of the grid. Similarly to the previous argument, we then find many of the edges
between Λ′2 and Λ3 staying within the grid. We eventually arrive at a situation depicted in
Figure 2 (right): A cell with a set Y of five vertices from Λ2 with the same predecessors in
Λ1, such that for each y ∈ Y there are four vertices y1, . . . , y4 ∈ Λ2 (one from the bottom-left,
one from the bottom-right, one from the top-right, and one from the top-left part of the grid)
and for each i the common neighbor of y and yi from Λ3 lies in the grid. It turns out, that
each y ∈ Y either has an A-edge to the left and an A-edge to the right or it has a B-edge to
the top and a B-edge to the bottom (using directions from Figure 2). As this is impossible to
realize for all five vertices in Y simultaneously, the geometric thickness of G(n) is at least 3.
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