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Abstract
We consider the extension problem for bend-minimal orthogonal drawings of planar graphs, which
is among the most fundamental geometric graph drawing representations. While the problem was
known to be NP-hard, it is natural to consider the case where the drawn part is connected and
only a small part of the graph is still to be drawn. Here, we prove the problem is in FPT when
parameterized by the size of the missing subgraph.
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1 Introduction

Drawing extension problems are motivated, for instance, by visualizing networks, in which
certain subgraphs represent important motifs that require a specific drawing, or by visual-
izing dynamic networks, in which new edges and vertices must be integrated in an existing,
stable drawing. Generally speaking, we are given a graph G and a (typically connected)
subgraph H of G with a drawing Γ(H), which is called a partial drawing of G. The drawing
Γ(H) satisfies certain topological or geometric properties, e.g., planarity, upward planarity,
or 1-planarity, and the goal of the corresponding extension problem is to extend Γ(H) to a
drawing Γ(G) of the whole graph G (if possible) by inserting the missing vertices and edges
into Γ(H) while maintaining the required drawing properties.

In this paper, we study the geometric drawing extension problem arising in the context
of one of the most fundamental graph drawing styles: orthogonal drawings [3, 4, 6, 10]. In a
planar orthogonal drawing, edges are represented as polylines comprised of (one or more)
horizontal and vertical segments, ideally with as few overall bends as possible, where edges
are not allowed to intersect except at common endpoints. Orthogonal drawings find appli-
cations in various domains from VLSI and printed circuit board (PCB) design, to schematic
network visualizations, e.g., UML diagrams in software engineering, argument maps, or flow
charts.

Given the above, a key optimization goal in orthogonal drawings is bend minimization.
This task is known to be NP-hard [8] when optimizing over all possible combinatorial em-
beddings of a given graph, but can be solved in polynomial time for a fixed combinatorial
embedding using the network flow model of Tamassia [11].

Despite the general popularity of planar orthogonal graph drawings, the corresponding
extension problem has only been considered recently by Angelini et al. [1]. While they
showed that the existence of a planar orthogonal extension can be decided in linear time,
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Figure 1 An orthogonal drawing of (a) a graph G and (b) a subgraph H of G.

the orthogonal bend-minimal drawing extension problem in general is easily seen to be NP-
hard as it generalizes the case in which the pre-drawn part of the graph is empty [8]. Our
paper addresses the parameterized complexity of the bend-minimal extension problem for
planar orthogonal graph drawings under the most natural parameterization of the problem,
which is the size of the subgraph that is still missing from the drawing.

Problem Statement. Let G be a planar graph and H be a connected subgraph of G. We
call the complement X = V (G)\V (H) the missing vertex set of G, and EX = E(G)\E(H)
the missing edge set. Let Γ(H) be a planar orthogonal drawing of H. A planar orthogonal
drawing Γ(G) extends Γ(H) if its restriction to the vertices and edges of H coincides with
Γ(H). Moreover, Γ(G) is a β-extension of Γ(H) if it extends Γ(H) and the total number of
bends along the edges of EX is at most β, for some β ∈ N. For example, Figure 1a shows a
7-extension Γ(G) of the drawing Γ(H) in Figure 1b, with the missing vertices drawn in red.

Bend-Minimal Orthogonal Extension (BMOE)
Input: (G,H,Γ(H)), integer β
Problem: Is there a β-extension Γ(G) of Γ(H)?

Our parameter of interest, denoted by κ, is the number of vertices and edges missing
from H, i.e., κ = |V (G) \ V (H)|+ |E(G) \ E(H)|.

Contributions and overview. We establish the fixed-parameter tractability of BMOE
when parameterized by κ. While there have been numerous recent advances in the parame-
terized study of drawing extension problems [5,7,9], the specific drawing styles considered in
those papers were primarily topological in nature, while for bend minimization the geometry
of the instance is crucial. In order to overcome this difficulty, we develop a new set of tools
summarized below. We first apply an initial branching step to simplify the problem (Sec-
tion 2). This step allows us to reduce our target problem to Bend-Minimal Orthogonal
Extension on a Face (F-BMOE), where the missing edges and vertices are drawn only
in a marked face f and we have some additional information about how the edges are geo-
metrically connected. Next, we focus on solving an instance of F-BMOE (Section 3). We
show that certain parts of the marked face f are irrelevant and can be pruned away, and also
use an involved argument to reduce the case of f being the outer face to the case of f being
an inner face. Once that is done, we enter the centerpiece of our approach (Section 4), where
the aim is to obtain a suitable discretization of our instance. To this end, we split the face f
into so-called sectors, which group together points that have the same “bend distances” to all
of the connecting points on the boundary of f . Furthermore, we construct a sector-grid—a
point-set such that each sector contains a bounded number of points from this set, and every
bend-minimal extension can be modified to only use points from this set for all vertices and
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bends. While this latter result would make it easy to handle each individual sector by brute
force, the issue is that the number of sectors can be very large, hindering tractability. To
deal with this obstacle, we capture the connections between sectors via a sector graph whose
vertices are the sectors and whose edges represent geometric adjacencies between sectors.
Crucially, we show that the sector graph has treewidth bounded by a function of κ. Having
obtained this bound on the treewidth, the last step simply combines the already constructed
sector grid with dynamic programming to solve F-BMOE (and hence also BMOE).

Many technicalities and proofs have been omitted; see [2] for the full paper.

2 Initial Branching

Let 〈(G,H,Γ(H)), β〉 be an instance of BMOE. A vertex w ∈ V (H) is called an anchor if
it is incident to an edge in EX . For a missing edge vw ∈ EX incident to a vertex v ∈ V (H),
we will use “ports” to specify a direction that vw could potentially use to reach v in an
extension of Γ(H); we denote these directions as d, which is an element from {↓ (north), ↑
(south), ← (east), → (west)}. Formally, a port candidate for vw ∈ EX and v ∈ V (H) is a
pair (v, d). A port-function is an ordered set of port candidates which contains precisely one
port candidate for each vw ∈ EX , v ∈ V (H), ordered lexicographically by v and then by w.

Bend-Minimal Orthogonal Extension on a Face (F-BMOE)
Input: Planar graph Gf ; induced subgraph Hf of Gf with k = |Xf |, where Xf =
V (Gf ) \V (Hf ); drawing Γ(Hf ) of Hf consisting of a single inner face f ; port-function P.
Task: Compute the minimum β for which a β-extension of Γ(Hf ) exists s.t. (1) all missing
edges and vertices are drawn in face f , (2) each edge xa ∈ EX where a ∈ V (H) connects
to a via its port candidate defined by P, or determine that no such extension exists.

I Lemma 2.1. There is an algorithm that solves an instance I of BMOE in time 3O(κ) ·
T (|I|, k), where T (a, b) is the time required to solve an instance of F-BMOE with instance
size a and parameter value b.

The algorithm in [1] can be used to test whether an instance of F-BMOE admits some
β-extension. Hence, we will assume to be dealing with instances where such an extension
exists. We will call a β-extension minimizing the value of β a solution.

3 Preprocessing

The first two steps that will allow us to solve F-BMOE include pruning out certain parts
of the face which are provably irrelevant, and reducing the case of f being the outer face to
the case of f being an inner face.

Let Γ(G) be an orthogonal drawing of a graph G and let f be a face of Γ(G). A feature
point of Γ(G) is a point representing either a vertex or a bend of an edge. A reflex corner
p of f is a feature point that makes an angle larger than π inside f . Also, if p is an anchor,
then it is called an essential reflex corner. A projection ` of a reflex corner p is a horizontal
or vertical line-segment in the interior of f that starts at p and ends at its first intersection
with the boundary of f . Figure 2 (left) shows two projections `1 and `2 of a reflex corner p.

Observe that each projection ` of a reflex corner p divides the face f into two connected
regions. If p is not essential and one of the two regions contains no reflex corners of its own
and no anchors, we call the region redundant. Our aim will be to show that such regions
can be safely removed from the instance. Namely, we can prove the following, where a clean
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`2

Figure 2 Left: A reflex corner p and its projections `1 and `2. Middle: A face (striped) with all
its non-essential reflex corners and projections (anchor vertices have a gray filling while non-anchors
are solid). Right: The corresponding clean instance (dummy vertices are drawn as small squares).

instance is such that each projection of each non-essential reflex corner in f splits f into
two faces, each of which has at least one port on its boundary; see Figure 2 (right).

I Lemma 3.1. There is a polynomial-time algorithm that takes as input an arbitrary instance
of F-BMOE and outputs an equivalent instance which is clean.

Given Lemma 3.1, we will hereinafter assume that our instances of F-BMOE are clean.
Next, consider an instance of F-BMOE where the marked face is the outer face of Γ(Hf ),
and let us begin by constructing a rectangle that bounds Γ(Hf ) and will serve as a “frame”
for any solution. More formally, given an instance I of F-BMOE and a rectangle R that
contains Γ(Hf ) in its interior, one easily sees that I admits a solution that lies in the
interior of R. Based on this fact, we shall assume that any instance I is modified such
that the outer face of Γ(Hf ) is a rectangle R containing no anchors (e.g., with four dummy
vertices at its corners connected in a cycle). Notice that, while this ensures that f is no
longer the outer face, f now contains a hole (that is, Hf is not connected anymore). The goal
is now to remove this hole by connecting it to the boundary of R. To do so, let us consider
an arbitrary horizontal or vertical line-segment ζ that connects the boundary of R with an
edge-segment in the drawing Γ(Hf ) and intersects no other edge-segment of Γ(Hf ). Observe
that, w.l.o.g., we can assume that each edge-segment in a solution Γ(Gf ) only intersects ζ in
single points (and not in a line-segment); otherwise, one may shift ζ by a sufficiently small
ε to avoid such intersections. Roughly speaking, we can show that the instance I can be
“cut open” along ζ to construct an equivalent instance where the boundary of the polygon
includes R, and to branch in order to determine how the edges in a hypothetical solution
cross through ζ. However, to do so we need to ensure that there is a solution, in which the
number of such crossings through ζ is bounded. To summarize, we can prove the following.

I Lemma 3.2. There is an algorithm that takes as input an instance I of F-BMOE where f
is the outer face and solves it in time 2O(k2 log k) ·Q(|I|, k), where Q(a, b) is the time to solve
an instance of F-BMOE of size a and parameter value b such that f is the inner face.

4 The Sector Graph

For a point p ∈ f , the bend distance bd(p, (a, d)) to a port candidate (a, d) is the minimum
integer q such that there exists an orthogonal polyline with q bends connecting p and a in
the interior of f which arrives to a from direction d.

I Definition 4.1. Let P = ((a1, d1), . . . , (aq, dq)) be an ordered set of port candidates. For
each point p ∈ f , we define its bend-vector as the tuple vect(p) = (bd(p, (a1, d1)), . . . ,
bd(p, (aq, dq))).
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I Definition 4.2. Given an ordered set of port candidates P, a sector F is a maximal
connected set of points with the same bend-vector w.r.t. P.

When P is not specified explicitly, we will assume it to be the set of port candidates
provided by the considered instance of F-BMOE. The face f is now partitioned into a set
F of sectors. It is worth noting that sectors are connected regions in the face f , they do
not overlap, and they cover the whole interior of f . We further notice that a sector can
be degenerate, it may be a single point or a line-segment, and that pairs of (non-adjacent)
sectors may have the same bend-vectors. At this point, we can define a graph representation
capturing the adjacencies between the sectors in our instance; see Figure 3.

I Definition 4.3. Sectors A and B are adjacent if there exists a point p in A and a direction
d ∈ {↑, ↓,←,→} such that the first point outside of A hit by the ray starting from p in
direction d is in B.

(a1, d1)

(a2, d2)

(a3, d3)

(a1, d1)

(a2, d2)

(a3, d3)

Figure 3 Left: partioning a face f into a set F of sectors, with three anchors marked using white
circles. Right: the graph representation of F .

The sector graph G is the graph whose vertex set is the set of sectors F , and adjacencies of
vertices are defined via the adjacency of sectors. It is not difficult to observe that the sector
graph is a connected planar graph. Concerning its size, we observe that each sector contains
at least one intersection point between two projections and that any such intersection point
can be shared by at most nine sectors (four non-degenerate sectors plus five degenerate
sectors). Hence the number of vertices in G is upper-bounded by 9x2, where x is the number
of feature points in Γ(Hf ).

We now construct a “universal” point-set with the property that there exists a solu-
tion which places feature points only on these points, and where the intersection of the
point-set with each sector is upper-bounded by a function of the parameter. Namely, let
gridsize(k) = c · k8 (for some constant c ≈ 106). Then we can prove the following:

I Lemma 4.4. Given an instance I of F-BMOE we can construct a point-set (called a
sector grid) in time O(|I|) with the following properties: (1) I admits a solution whose
feature points all lie on the sector grid, and (2) each sector contains at most gridsize(k)
points of the sector grid.

To complete the proof of our fixed-parameter tractability result we proceed by first
showing that the sector graphs in fact have treewidth bounded by a function of the parameter
k, and then by using this fact to design a dynamic programming algorithm solving F-BMOE.

I Theorem 4.5. Let G be a sector graph of a face f of the drawing Γ(G). Then tw(G) ≤
(4+4k)4k. Based on this, there is an algorithm that solves F-BMOE in time 2kO(1) ·|V (Gf )|.

By combining Theorem 4.5 with Lemma 2.1, we conclude:

I Corollary 4.6. BMOE can be solved in time 2κO(1) · n, where n is the number of feature
points of Γ(H).
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