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Abstract
We devise a data structure that can answer shortest path queries for two query points in a polygonal
domain P on n vertices. For any ε > 0, the space complexity of the data structure is O(n10+ε) and
queries can be answered in O(log n) time. This is the first improvement upon a conference paper by
Chiang and Mitchell [8] from 1999. They present a data structure with O(n11) space complexity.
Furthermore, our main result can be extended to include a space-time trade-off. Specifically, we
devise data structures with O(n10+ε/ℓ5+O(ε)) space complexity and O(ℓ log n) query time for any
integer 1 ≤ ℓ ≤ n.

Related Version A full version of the paper is available at https://arxiv.org/abs/2303.00666.

1 Introduction

In the two-point shortest path problem, we are given a polygonal domain P with n vertices,
and we wish to store P so that given two query points s, t ∈ P we can compute their geodesic
distance d(s, t), i.e. the length of a shortest path fully contained in P , in O(log n) time.

The main motivation to study the two-point shortest path problem is that it is a very
natural problem. It is central in computational geometry, and forms a basis for many other
problems. The problem was solved optimally for simple polygons (polygonal domains without
holes) by Guibas and Hershberger [13], and turned out to be a key ingredient to solve many
other problems in simple polygons. A few noteworthy examples are data structures for
geodesic Voronoi diagrams [20], furthest point Voronoi diagram [25], k-th nearest neighbor
search [1, 11], and more [12, 19]. In real life situations, the environment is often less restricted
than a simple polygon. For example, consider a boat in the sea surrounded by a number
of islands (Figure 2). Finding the fastest route to an emergency, such as a sinking boat,
corresponds to finding the shortest path among obstacles, i.e. in a polygonal domain. This
is just one of many examples where finding the shortest path in a polygonal domain is a
natural model of a real life situation, which makes it an interesting problem to study.
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Figure 1 Given P and the query points s, t we want to compute the shortest path efficiently.
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Figure 2 Finding the shortest path among islands for a boat to an emergency.

Related Work. Chiang and Mitchell [8] announced a data structure for the two-point
shortest path problem in polygonal domains at SODA 1999. They use O(n11) space and
achieve a query time of O(log n). They also present another data structure that uses “only”
O(n10 log n) space but O(log2 n) query time. Since then, there have been no improvements
on the two-point shortest path problem in its general form. Instead, related and restricted
versions were considered. We briefly discuss the most relevant ones.

As mentioned before, when the domain is restricted to a simple polygon, there exists an
optimal linear size data structure with O(log n) query time by Guibas and Hershberger [13].

By parameterizing the query time by the number of holes h, Guo, Maheshwari, and
Sack [15] manage to build a data structure that uses O(n2) space and has query time O(h log n).

Bae and Okamoto [3] study the special case where both query points are restricted
to lie on the boundary of the polygonal domain. They present a data structure of size
O(n4λ66(n)) ≈ O(n5) that can answer queries in O(log n) time.

When we consider the algorithmic question of finding the shortest path between two
(fixed) points in a polygonal domain, the state-of-the-art algorithms build the so-called
shortest path map from the source s [14, 16]. Hershberger and Suri presented such an O(n)
space data structure that can answer shortest path queries from a fixed point s in O(log n)
time [13]. The construction takes O(n log n) time and space. This was recently improved by
Wang [26] to run in O(n + h log h) time and to use only O(n) working space.

Two other relaxations that were considered are approximation [5, 23], and using the
L1-norm [6, 7, 24].

Results. Our main result is the first improvement in more than two decades that achieves
optimal O(log n) query time.

▶ Theorem 1.1 (Main Theorem). Let P be a polygonal domain with n vertices. For any
constant ε > 0, we can build a data structure in O(n10+ε) space and expected time that can
answer two-point shortest path queries in O(log n) time. The shortest path of k vertices can
be returned in additional O(k) time.

One of the main downsides of the two-point shortest path data structure is the large space
complexity. One strategy to mitigate the space complexity is to allow for a larger query time.
For instance, Chiang and Mitchell presented a myriad of different space-time trade-offs. One
of them being O(n5+10δ+ε) space with O(n1−δ log n) query time for 0 < δ ≤ 1. Our methods
allow naturally for such a trade-off. We summarize our findings in the following theorem.
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Figure 3 The augmented shortest path map of a vertex v. The shortest path map edges are solid,
and the additional edges in the augmented shortest path map are dotted. Each region is bounded by
three curves, of which at least two are line segments. Two regions and their apices are highlighted.

▶ Theorem 1.2. Let P be a polygonal domain with n vertices. For any constant ε > 0 and
integer 1 ≤ ℓ ≤ n, we can build a data structure in O(n10+ε/ℓ5+O(ε)) space and expected time
that can answer two-point shortest path queries in O(ℓ log n) time.

For example, for ℓ = n4/5 we obtain an O(n6+ε) size data structure with query time
O(n4/5 log n), which improves the O(n7+ε) data structure with similar query time of [8].

Organization. In Section 2, we give an overview of our main data structure. A full version
of the paper is available [10].

2 Global Approach

Direct Visibility. As a first step, we build the visibility complex as described by Pocchiola
and Vegter [21]. It allows us to query in O(log n) time if s and t can see each other. If so,
the line segment connecting them is the shortest path. The visibility complex uses O(n2)
space and can be built in O(n2) time. So, in the remainder we assume that s and t cannot
see each other, hence their shortest path will visit at least one vertex of P .

Augmented Shortest Path Maps. In our approach, we build a data structure on the regions
provided by the augmented shortest path maps of all vertices of P . The shortest path map of
a point p ∈ P is a partition of P into maximal regions, such that for every point in a region
R the shortest path to p traverses the same vertices of P [17]. To obtain the augmented
shortest path map SPM (p), we connect each boundary vertex of R with the apex vR of the
region, i.e. the first vertex on the shortest path from any point in R towards p. See Figure 3
for an example. All regions in SPM (p) are “almost” triangles; they are bounded by three
curves, two of which are line segments, and the remaining is either a line segment or a piece
of a hyperbola. The (augmented) shortest path map has complexity O(n) [17]. Let T be
the multi-set of all augmented shortest path regions of all the vertices of P . As there are n

vertices in P , there are O(n2) regions in T .
Because we are only interested in shortest paths that contain at least one vertex, the

shortest path between two points s, t ∈ P consists of an edge from s to some vertex v of
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Figure 4 Two pairs of relevant regions in red and blue with the path whose length is fST (s, t).

P that is visible from s, a shortest path from v to a vertex u (possibly equal to v) that is
visible from t, and an edge from u to t. For two regions S, T ∈ T with s ∈ S and t ∈ T ,
we define fST (s, t) = ||svS || + d(vS , vT ) + ||vT t||. The distance d(s, t) between s and t is
realised by this function when vS = v and vT = u. As for any pair S, T with s ∈ S and t ∈ T

the function fST (s, t) corresponds to the length of some path between s and t in P , we can
obtain the shortest distance by taking the minimum over all of these functions, see Figure 4.
In other words, if we denote by Tp all regions that contain a point p ∈ P , we have

d(s, t) = min{fST (s, t) : S ∈ Ts, T ∈ Tt}.

Lower Envelope. Given two multi-sets A, B ⊆ T , we can construct a data structure of size
O(min{|A|, |B|, n}6+ε) that we can query at any point (s, t) with s ∈

⋂
A and t ∈

⋂
B to

find min{fST (s, t) : S ∈ A, T ∈ B} in O(log(min{|A|, |B|, n})) time as follows. We refer to
this as the Lower Envelope data structure.

The functions fST are four-variate algebraic functions of constant degree. Each such
function gives rise to a surface in R5, which is the graph of the function f . Koltun [18] shows
that the vertical decomposition of m such surfaces in R5 has complexity O(m6+ε), and can
be stored in a data structure of size O(m6+ε) so that we can query the value of the lower
envelope, and thus d(s, t), in O(log m) time. We limit the number of functions fST (s, t) by
using an observation of Chiang and Mitchell [8]. They note that we do not need to consider
all pairs S ∈ A, T ∈ B, but only min{|A|, |B|, n} relevant pairs. Two regions form a relevant
pair, if they belong to the same augmented shortest path map SPM (v), of some vertex v.
(To be specific, if v is any vertex on the shortest path from s to t, then the minimum is
achieved for S and T in the shortest path map of v.) We thus obtain a Lower Envelope
data structure by constructing the vertical decomposition of these min{|A|, |B|, n} functions.

Naively, to build a data structure that can answer shortest-path queries for any pair of
query points s, t, we would need to construct this data structure for all possible combinations
of Ts and Tt. The overlay of the n augmented shortest path maps has worst-case complexity
Ω(n4) [8], which implies that we would have to build Ω(n8) of the Lower Envelope
data structures. Indeed, this results in an O(n14+ε) size data structure, and is one of the
approaches Chiang and Mitchell consider [8]. Next, we describe how we use cuttings to
reduce the number of Lower Envelope data structures we construct.
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Figure 5 Overview of our data structure. The first level cutting tree (red) is built by recursively
constructing a cutting Ξ on the (orange) regions that intersect a cell ∆ (purple). For each cell ∆,
we store a second level cutting tree (blue). For each cell ∆′ in Ξ∆, we build a Lower Envelope
data structure on all regions that fully contain ∆ (dark red) and ∆′ (dark blue).

Cutting Trees. Now, we explain how to determine Ts more efficiently using cuttings and
cutting-trees. Suppose we have a set A of N (not necessarily disjoint) triangles in the plane.
A 1/r-cutting Ξ of A is then a subdivision of the plane into constant complexity cells, for
example triangles, such that each cell in Ξ is intersected by the boundaries of at most N/r

triangles in A [4]. There can thus still be many triangles that fully contain a cell, but only a
limited number whose boundary intersects a cell. In our case, the regions in T are almost
triangles, called Tarski cells [2]. As we explain in the appendix, we can always construct
such a cutting with only O(r2) cells for these types of regions efficiently.

Let Ξ be a 1/r-cutting of T . For s ∈ ∆ ∈ Ξ the regions R ∈ T that fully contain ∆ also
contain s. To be able to find the remaining regions in Ts, we recursively build cuttings on
the N/r regions whose boundary intersects ∆. This gives us a so-called cutting tree. The set
Ts is then the disjoint union of all regions obtained in a root to leaf path in the cutting tree.

The Multi-Level Data Structure. Our data structure is essentially a nested cutting tree,
as in [9]. See Figure 5 for an illustration. The first level is a cutting tree that is used to
find the regions that contain s, as described before. For each cell ∆ ∈ Ξ in a cutting Ξ, we
construct another cutting tree to find the regions containing t. Let A be the set of regions
fully containing ∆ and |A| = k, then the second-level cutting Ξ∆ is built on the O(kn)
candidate relevant regions. See Figure 6. We process the regions intersected by a cell in Ξ∆
recursively to obtain a cutting tree. Additionally, for each cell ∆′ ∈ Ξ∆, we construct the
Lower Envelope data structure on the sets A, B, where B is the set of regions that fully
contain ∆′. This allows us to obtain min fST (s, t) for S ∈ A and T ∈ B efficiently.

Queries. To query our data structure with two sites s, t, we first locate the cell ∆s containing
s in the cutting Ξ at the root. We compute min fST (s, t) for all regions S that intersect ∆s,
but do not fully contain ∆s, by recursively querying the child node corresponding to ∆s. To
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Figure 6 A sketch of the subproblem considered here, computing minS∈A,T ∈T fST (s, t). We
build a 1/r-cutting Ξ∆ (shown in purple) on the set of relevant regions in T (blue). The regions
Tt ⊆ T either fully contain the cell ∆′ ∈ Ξ∆ of the cutting that contains t (dark blue), or their
boundaries intersect ∆′ (light blue).

compute min fST (s, t) for all S that fully contain ∆s, we query its associated data structure.
To this end, we locate the cell ∆t containing t in Ξ∆s

, and use its lower envelope structure
to compute min fST (s, t) over all S that fully contain ∆s and all T that fully contain ∆t.
We recursively query the child corresponding to ∆t to find min fST (s, t) over all regions T

that intersect ∆t.

Sketch of the Analysis. By choosing r as nδ for some constant δ = O(ε), we can achieve
that each cutting tree has only constant height. The total query time is thus O(log n). Next,
we sketch the analysis to bound the space usage of the first-level cutting tree, under the
assumption that a second-level cutting tree, including the Lower Envelope data structures,
uses O(n2 min{k, n}6+ε) space. The analysis for the second-level cutting tree is similar.

To bound the space usage, we analyze the space used by the large levels, where the
number of regions is greater than n, and the small levels of the tree separately, see Figure 7.
There are only O(n2) large nodes in the tree. For these min{k, n} = n, so each stores a data
structure of size O(n8+ε). For the small nodes, the size of the second-level data structures
decreases in each step, as k becomes smaller than n. Therefore, the space of the root of a
small subtree, which is O(n8+ε), dominates the space of the other nodes in the subtree. As
there are O(n2) small root nodes, the resulting space usage is O(n10+ε).

3 Concluding remarks

The Lower Envelope data structure we use is actually more powerful than we require:
it allows us to perform point location queries in the vertical decomposition of the entire
arrangement, while we are only interested in lower envelope queries. The (projected) lower
envelope of m four-variate functions has a complexity of only O(m4+ε) [22]. However, it is
unclear if we can store this lower envelope in a data structure of size O(m4+ε) while retaining
the O(log m) query time. We are currently investigating if we can achieve such a bound
using kinetic Voronoi diagrams. This would then immediately improve the space usage of
our two-point shortest path data structure.
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Figure 7 We analyze the large levels, built on ≥ n regions, and the small levels, built on < n

regions, separately. The total space usage is O(n10+ε).
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