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Abstract
Cops and Robber is a family of two-player games played on graphs in which one player controls a
number of cops and the other player controls a robber. In alternating turns, each player moves (all)
their figures. The cops try to capture the robber while the latter tries to flee indefinitely. In this
paper we consider a variant of the game played on a planar graph where the robber moves between
adjacent vertices while the cops move between adjacent faces. The cops capture the robber if they
occupy all incident faces. We prove that a constant number of cops suffices to capture the robber
on any planar graph of maximum degree ∆ if and only if ∆ ≤ 4.

Related Version Full Version: https://arxiv.org/abs/2301.05514 [9]

1 Introduction

Cops and Robber is probably the most classical combinatorial pursuit-evasion game on
graphs. The robber models an intruder in a network that the cops try to capture. Two
players play with complete information on a fixed finite graph G = (V, E). The cop player
controls a set of k cops, each occupying a vertex of G (possibly several cops on the same
vertex), while the robber player controls a single robber that also occupies a vertex of G.
The players take alternating turns, where the cop player in his turn can decide for each cop
individually whether to stay at its position or move the cop along an edge of G onto an
adjacent vertex. Similarly, the robber player on her turn can leave the robber at its position
or move it along an edge of G. The cop player starts by choosing starting positions for his k

cops and wins the game as soon as at least one cop occupies the same vertex as the robber,
i.e., when the robber is captured. The robber player, seeing the cops’ positions, chooses the
starting position for her robber and wins if she can avoid capture indefinitely. The least
integer k for which, assuming perfect play on either side, k cops can always capture the
robber, is called the cop number of G, usually denoted by c(G).

In this paper, we introduce Primal-Dual Cops and Robber which is played on a plane
graph G, i.e., with a fixed plane embedding. Here, the cops occupy the faces of G and can
move between adjacent faces (i.e., faces that share an edge), while the robber still moves
along edges between adjacent vertices of G. In this game, the robber is captured if every
face incident to the robber’s vertex is occupied by at least one cop. Analogously, we call the
least integer k for which k cops can always capture the robber in the Primal-Dual Cops and
Robber game the primal-dual cop number of G and denote it by c∗(G).

An obvious lower bound for c∗(G) is the maximum number of faces incident to any
vertex in G: The robber can choose such a vertex as its start position and just stay there
indefinitely (note that there is no zugzwang, i.e., no obligation to move during one’s turn). In
particular, if G has maximum degree ∆(G) and there exists a vertex v with deg(v) = ∆(G),
which is not a cut-vertex, then c∗(G) ≥ ∆(G). E.g., c∗(K2,n) = ∆(K2,n) = n for any n ≥ 2.
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Our contribution. We investigate whether the primal-dual cop number c∗(G) is bounded
in terms of ∆(G) for all plane graphs G. The answer is ‘Yes’ if ∆(G) ≤ 4 and ‘No’ otherwise.

▶ Theorem 1.1. Each of the following holds.
1. For every plane graph G with ∆(G) ≤ 3 we have c∗(G) ≤ 3.
2. For every plane graph G with ∆(G) ≤ 4 we have c∗(G) ≤ 12.
3. For some n-vertex plane graphs G with ∆(G) = 5 we have c∗(G) = Ω

(√
log(n)

)
.

Related work. Let us just briefly mention that Cops and Robber was introduced by
Nowakowski and Winkler [11] and Quillot [13] for one cop and Aigner and Fromme [1] for k

cops 40 years ago. Since then numerous results and variants were presented, see e.g., [2, 3].
Perhaps most similar to our new variant are the recent surrounding variant of Burgess et
al. [5] with vertex-cops and the containment variant of Crytser et al. [6, 12] with edge-cops.
In these variants the robber is captured if every adjacent vertex, respectively every incident
edge, is occupied by a cop. The smallest number of cops that always suffices for any planar
graph G is 3 in the classical variant [1], 7 in the surrounding variant [4], 7∆(G) in the
containment variant [6] and 3 when both, cops and robber, move on edges [7].

2 Cops win always if the maximum degree is at most four

We start with an observation that simplifies the proofs of statements 1 and 2 in Theorem 1.1.

▶ Observation 2.1. Let the robber be on a vertex u with a neighbor v of degree 1. Then the
robber is never required to move to v to evade the cops.

This is true because the set of faces required to capture the robber at v is a subset of the
faces required to capture him at u. Further, his only possible moves at v are either staying
there or moving back to u. As there is no zugzwang, he could just stay at u all along.

In both of the following proofs we assume that the graph contains only degree-3-vertices
(respectively degree-4-vertices) and degree-1-vertices. This can always be achieved by adding
leaves to vertices not yet having the correct degree.

Proof of statement 1 in Theorem 1.1. We give a winning strategy for three cops c1, c2, c3
in a planar graph G with ∆(G) ≤ 3. First the cops choose arbitrary faces to start on. Then
the robber chooses its start vertex u, which we assume to be of degree 3 by Observation 2.1
(it is trivial to capture him if all vertices have degree 1). Let ∠u

1 ,∠u
2 ,∠u

3 be the three angles
incident to u. We denote the face containing an angle ∠ by f(∠) and define for each cop ci

a target face fi, i = 1, 2, 3. Initially we set fi = f(∠u
i ). The goal of each cop is to reach his

target face, thereby capturing the robber when all three cops arrive. If the robber moves,
each cop updates his target face. Our strategy guarantees that the total distance of all three
cops to their target faces decreases over time, so it reaches zero after finitely many turns.

Clearly, in every game the robber has to move at some point to avoid being captured.
Assume that the robber moves from vertex u to vertex v (both of degree 3 by Observa-
tion 2.1). Without loss of generality the angles around u and v are labeled as in Figure 1
with fi = f(∠u

i ) being the current target face of cop ci, i = 1, 2, 3.
First assume that c3 (or symmetrically c2) has not reached his target face yet. In this

case we assign the new target faces f1 = f(∠v
1), f2 = f(∠v

2) and f3 = f(∠v
3). Note that

for i = 1, 2 faces f(∠u
i ) and f(∠v

i ) are adjacent, so cop ci can keep his distance to his target
face unchanged (or even decrease it) during his next turn. Further note that f(∠u

3 ) = f(∠v
3),
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Figure 1 Labeling of the angles for a robber move from u to v (and possibly further to w).
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Figure 2 A vertex cop and its four accompanying face-cops moving from u to v.

so cop c3 can even decrease his distance by one during the next turn. Thus the total distance
of the three cops to their target faces decreased by at least one.

It remains the case that c2 and c3 have already reached their target faces (but c1 has not,
as the game would be over otherwise). In this case we move c1 one step towards his target
face f1 = f(∠u

1 ) and c2, c3 both to f(∠v
2). Now its the robber’s turn again. If she does not

move, we assign target faces fi = f(∠v
i ), i = 1, 2, 3, and the total distance decreases after

the cops’ next turn. If she moves back to u, we assign target faces fi = f(∠u
i ), i = 1, 2, 3,

and the total distance decreases after the cops’ next turn. The last possibility for the robber
is to move towards another neighbor w of v, see Figure 1. Then we assign f1 = f(∠v

1)
and f2, f3 to be the faces containing the other two angles at w. In their next turn, c2 and
c3 can again reach their target faces, while c1 can decrease his distance to his target face
f(∠v

1) by one compared to the initial situation with the robber at vertex u. Again, the total
distance is decreased, which concludes the proof. ◀

To prove statement 2 in Theorem 1.1, we reduce our Primal-Dual Cops and Robber to
the classical Cops and Robber with cops on vertices of G and then use a result from the
literature.

▶ Lemma 2.2. In a plane graph G with ∆(G) ≤ 4, four face-cops can simulate a vertex-cop.

Proof. Let c be a vertex-cop starting at a vertex u ∈ V (G) with up to four incident angles ∠u
i

(for i ∈ {1, 2, 3, 4}). We place four face-cops on the (up to) four faces f(∠u
i ). If the vertex-

cop moves to an adjacent vertex v, the four face cops around it can in one step also move to
faces containing the angles incident to v, see Figure 2 for the case that u and v both have
degree 4. For vertices of degree less then 4 it only gets easier for the face-cops. ◀

An immediate corollary of Lemma 2.2 is that c∗(G) ≤ 4 · c(G) for planar graphs G

with ∆(G) ≤ 4. With c(G) ≤ 3 for all planar graphs G [1], statement 2 in Theorem 1.1
follows.

3 Robber wins sometimes if the maximum degree is at least five

In this section we prove statement 3 in Theorem 1.1, i.e., that c∗(G) = Ω
(√

log(n)
)

for
some n-vertex plane graphs G with ∆(G) ≥ 5. We utilize a result of Nisse and Suchan [10]
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Figure 3 G4,2,2: An n × n grid with each edge subdivided four times and two rings. Faces are
colored according to their closest grid vertex. Deep and shallow faces are light and dark, respectively.

about the cop number cp,q(G) for a different variant of Cops and Robber for any graph G

and positive integers p and q. Here (as in the classical variant) the cops and the robber are
on the vertices of G. However, in each turn the cops may traverse up to p edges of G, while
the robber may traverse up to q edges of G. We refer to p and q as the velocities of the cops
and the robber, respectively.

▶ Theorem 3.1 ([8, 10]). Let Gn be the n × n grid graph, p be the velocity of the cops and q

be the velocity of the robber. If p < q, then cp,q(Gn) = Ω
(√

log(n)
)
.

The idea to prove statement 3 in Theorem 1.1 is to construct a “grid-like” graph Gn,s,r

for positive integers n, s, r in which the robber in the primal-dual variant can move around
faster than the cops. Then she can simulate the evasion strategy of the robber in the variant
of Nisse and Suchan.

We start with the n × n grid graph Gn, n ≥ 3, with a planar embedding such that the
4-faces are the inner faces. We call the vertices of Gn the grid vertices. Then, each edge
of Gn is subdivided by 2s new vertices, called subdivision vertices, to obtain Gn,s. Two grid
vertices are called neighboring if they are adjacent in Gn. Further, inside each inner face of
Gn,s we add r nested cycles, called rings, of length 12s each and call their vertices the ring
vertices. Between any two consecutive rings we add a planar matching of 12s edges. Each
inner face of Gn,s has 8s subdivision vertices on its boundary and 12s ring vertices on its
outermost ring. At last, we add (in a crossing-free way) three edges from each subdivision
vertex to the outermost ring vertices in the two incident faces of Gn,s such that two edges
go to one ring, the third edge to the other ring, and every ring vertex receives exactly one
such edge. Along the 2s vertices of each subdivision path in Gn,s the side with two edges
to the ring should always switch. Thus each inner face of Gn,s receives 12s edges which are
connected to the 12s vertices of the outermost ring such that the drawing remains planar.

Call the resulting graph Gn,s,r and note that ∆(Gn,s,r) = 5. See also Figure 3. We
shall use a robber strategy in which she only focuses on grid vertices and moves between
these through the paths of subdivision vertices, i.e., only plays on Gn,s. The purpose of the
additional rings in Gn,s,r is to slow down the cops and force them to stay close to grid and
subdivision vertices, too, thereby simulating the game of Nisse and Suchan on Gn.

Formally, we call an inner face of Gn,s,r shallow if it is incident to some subdivision
vertex, and deep otherwise. Lemma 3.2 below implies that, due to the number of rings, cops
should not use deep faces. Omitted proofs of statements marked with (⋆) can be found in
the full version [9].
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▶ Lemma 3.2 (⋆). Let a1, a2 be two shallow faces of Gn,s,r inside the same inner face A

of Gn. If r > 3s, then any cop moving from a1 to a2 along a shortest path without leaving A

uses only shallow faces.

We have to hinder the cops from taking shortcuts through the outer face f0 of Gn,s,r.
To this end let G′

n,s,r be a copy of Gn,s,r with outer face f ′
0. Change the outer face of G′

n,s,r

such that f ′
0 is an inner face (while not changing the cyclic ordering of the edges around the

vertices) and define Gn,s,r to be the graph obtained from gluing Gn,s,r into face f ′
0 of G′

n,s,r

and identifying corresponding vertices. The robber will always stay on vertices of Gn,s,r and
whenever a cop uses a vertex v′ of G′

n,s,r she acts as if he was on the corresponding vertex v

of Gn,s,r. Without loss of generality, we can therefore assume below that the game is played
on Gn,s,r with the cops being prohibited to enter the outer face.

For a face f ∈ F , we denote by vf the grid vertex closest to f , breaking ties arbitrarily.

▶ Lemma 3.3 (⋆). Let a, b be two shallow faces whose closest grid vertices va, vb have
distance d in Gn. If r > 3s, then in Gn,s,r the robber moving from va to vb needs at
most (2s + 1)d steps, while any cop moving from a to b needs at least 3s(d − 4) steps.

Proof of statement 3 in Theorem 1.1. Nisse and Suchan [10] (see also [8] for the omitted
proofs) describe an evasion strategy for a robber with velocity q that requires Ω

(√
log(n)

)
vertex-cops with velocity p to capture him in Gn, provided q > p; see Theorem 3.1. We
describe how a robber with velocity 1 in Gn,s,r (for sufficiently large n, s, r) can simulate
this strategy against face-cops with velocity 1.

We choose p = 15, q = 16 and consider the game of Nisse and Suchan for these velocities.
For their graph Gn in which the robber can win against k = Ω

(√
log(n)

)
vertex-cops, we

then consider Gn,s,r with s = 16 and r = 3s + 1 = 49. Now we copy the evasion strategy S
for the robber as follows: Whenever it is the robber’s turn and the face-cops occupy faces
f1, f2, . . . , fk in Gn,s,r, consider the corresponding situation in Gn where the vertex-cops
occupy vf1 , vf2 , . . . , vfk

. Based on these positions, S tells the robber to go to a vertex v at
distance d ≤ q = 16 from the current position of the robber in Gn. By Lemma 3.3, the
robber in Gn,r,s can go to v in at most (2s + 1)d ≤ (2 · 16 + 1) · 16 = 528 turns.

In the meantime, each face-cop also makes up to 528 moves in Gn,r,s, traveling from some
face a to some face b, which is interpreted in Gn as the corresponding vertex-cop traveling
from va to vb. For va and vb to be at distance d′ ≥ 16 in Gn, by Lemma 3.2 the face-cop
needs at least 3s(d′ − 4) ≥ 3 · 16 · 12 = 576 turns, which is strictly more than 528. Thus,
after 528 turns, each vertex-cop made at most p = 15 steps in Gn, as required for strategy S.

Hence, the robber can evade k face-cops in Gn,s,r, proving c∗(Gn,s,r) > k. Since Gn,s,r

for s, r ∈ O(1) has O(n2) vertices, this completes the proof. ◀

4 Conclusions

Let c∗
∆ denote the largest primal-dual cop number among all plane graphs with maximum

degree ∆. We have shown that c∗
3 = 3, c∗

4 ≤ 12 (this bound is certainly not optimal), and
c∗

5 = ∞, while it is easy to see that c∗
1 = 1, c∗

2 = 2, and c∗
∆ = ∞ for all ∆ > 5. Let us

remark that our proof for ∆ = 5 also holds for a variant of the game where the robber is
already captured when one cop is on one incident face. On the other hand, our proof for
∆ = 3 holds verbatim to prove that three cops also suffice in a variant of the game where
the graph is embedded without crossings in any other surface, which makes it is interesting
to consider ∆ = 4 here.
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Another interesting direction would be to identify classes of plane graphs with unbounded
maximum degree in which c∗(G) ≤ f(∆(G)) for some function f . For example, what about
plane 3-trees, also known as stacked triangulations?
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