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Abstract
In the art gallery problem, we are given a closed polygon P , with rational coordinates and an
integer k. We are asked whether it is possible to find a set (of guards) G of size k such that any
point p ∈ P is seen by a point in G. We say two points p, q see each other if the line segment pq is
contained inside P . It was shown by Abrahamsen, Adamaszek, and Miltzow that there is a polygon
that can be guarded with three guards, but requires four guards if the guards are required to have
rational coordinates. In other words, an optimal solution of size three might need to be irrational.
We show that an optimal solution of size two might need to be irrational. Note that it is well-known
that any polygon that can be guarded with one guard has an optimal guard placement with rational
coordinates.

Hence, our work closes the gap on when irrational guards are possible to occur.
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Figure 1 Any triangulation of a simple polygon can be three-colored. At least one of the color
classes has at most ⌊n/3⌋ vertices. This color class also guards the entire polygon, as every triangle
is incident to all three colors [7].

1 Introduction

In the art gallery problem, we are given a closed polygon P , on n vertices, with rational
coordinates and an integer k. We are asked whether it is possible to find a set (of guards) G

of size k such that any point p ∈ P is seen by a point in G. We say two points p, q see each
other if the line segment pq is contained inside P .

We show that an optimal solution of two guards might need to have irrational coordinates.
In such a case, we say a polygon has irrational guards. Specifically, we construct a polygon
that can be guarded by two irrational guards but requires three rational guards.

The art gallery problem was formulated in 1973 by Victor Klee. See, for example, the
book by O’Rourke [8, page 2]. One of the earliest results states that every simple polygon on
n vertices can always be guarded with ⌊n/3⌋ guards [4, 7].

Interestingly, it is actually very tough to find any positive algorithmic results on the art
gallery problem. It seems like the art gallery problem is almost impenetrable. For instance,
only in 2002, Micha Sharir pointed out that the problem was even decidable [5, 6, see
acknowledgments]. The decidability of the art gallery problem is actually easy once you know
methods from real algebraic geometry [3]. The idea is to reduce the problem to the first-order
theory of the reals. We encode guard positions by variables, and then we check if every
point in the polygon is seen by at least one guard. Note that this is easy to encode in the
first-order theory of the reals, as we are allowed to use existential (∃g1, g2, . . .) and universal
quantifiers (∀p = (x, y)). Since then, despite much research on the art gallery problem, no
better algorithm appeared, as far as worst-case complexity is concerned. The underlying
reason for the difficulty to find better algorithms can be explained by the fact that the art
gallery problem is ∃R-complete [9, 2]. In a nutshell, ∃R-completeness precisely entails that
there is no better method for the worst-case complexity of the problem. (∃R can be defined
as the class of problems that are equivalent to finding a real root to a multivariate polynomial
with integer coordinates. See the full version for an introduction.) More specifically, it was
shown that arbitrary algebraic numbers may be needed to describe an optimal solution to
the art gallery problem. This may come as a surprise to some readers, and was clearly a
surprise back then. Specifically, “in practice”, it seems very rare that irrational guards are
ever needed. The reason is that a typical situation is one of the following two. Either the
guards have some freedom to move around and still see the entire polygon. Or if a guard has
no freedom, it is forced to be on a line defined by vertices of the polygon. As the vertices of
the polygon are at rational coordinates, the guards will be at rational coordinates in that
case as well. Indeed, only in 2017, the first polygon requiring irrational guards was found [1].
Even though ∃R-reductions exhibit an infinite number of polygons that require irrational
guards, those polygons are not “concrete” in the naive sense of the word. And up to this day,
this is the only “concrete” polygon [1] that we know does require irrational guards. In this
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work, we find a second polygon. It is superior to the first one in the sense that it shows that
two guards are already enough to enforce irrational guards. As a single guard can always be
chosen to have rational coordinates, we settle the question of the minimum number of guards
required to have irrational guards. We summarize our results in the following theorem.

▶ Theorem 1.1. There exists a polygon with rational coordinates, such that there is only one
way of guarding this polygon optimally with two guards. Those two guards have irrational
coordinates.

Organization.

We provide background information in the full version. There we discuss our results from
different angles, we give a selected overview of related research on the art gallery problem,
and we add some background on the existential theory of the reals. In Section 2, we give an
overview of how we constructed the polygon and what is the intuition behind the different
parts. In Section 3, we give the polygon with coordinates of all vertices. Finally, in the full
version we also provide a formal proof of correctness and explain how we constructed the
polygon and what technical challenges we had to overcome.

2 Preparation

We aim to construct a polygon. This polygon should be guarded by two guards at irrational
coordinates but requires three guards at rational coordinates. We must restrict the possible
coordinates the guards can be positioned. In this section, we will explore the tools to restrict
the possible positions of the two guards within the polygon.

2.1 Basic Definitions
Each guard g will be able to guard some region of the polygon: we call this region its
visibility polygon vis(g). The visibility polygon includes all points for which the line segment
between the guard and the point is included in the polygon P . Notably, the union of the
visibility polygons of the two guards must be the art gallery. Otherwise, the art gallery is
not completely guarded.

A window is an edge of the visibility polygon vis(g) that is not part of the boundary of
P . We can find windows in the guard g’s visibility polygon, by shooting rays from g to reflex
vertices (the vertices of the polygon, with an interior angle larger than π). If these rays do
not leave the polygon at the reflex vertex, a window will exist between the reflex vertex and
the position where the ray does intersect the boundary of the polygon. Let the window’s end
be the intersection of the ray with an edge of the polygon.

Our final polygon consists of the core and a number of pockets, as shown in Figure 2.
The core of the polygon is the square in the center. We will enforce that both guards are
located in the core. As a square is a convex shape, this implies that both guards will guard
the core. The pockets are all regions outside the core. We will use pockets that are either
quadrilateral or triangular. Pockets are attached to either the core or another pocket: they
have one edge that lies on the boundary of the core or on the boundary of another pocket.
Quadrilateral pockets will always be attached to the core. Each quadrilateral pocket has one
edge that is not on the boundary of the core, nor adjacent to it. We will call this edge the
wall of a quadrilateral pocket. Similarly, triangular pockets will be attached to either the
core or a quadrilateral pocket. We will use pockets as a tool to limit the locations of the two
guards.

EuroCG’23
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Figure 2 Our final polygon: it has a core (gray), three quadrilateral pockets (blue), and four
narrow triangular pockets (yellow).

2.2 Guard Segments

We can force a guard to be positioned on a line segment within the polygon. Such a line
segment is called a guard segment. Guard segments are commonly used in the context of
the art gallery problem [1, 9]. In this section, we will describe how we construct a guard
segment. We denote by s the segment and by ℓ its supporting line.

To make s a guard segment, we add two triangular pockets where ℓ intersects ∂P . Each
of the triangular pockets has an edge on ℓ. Besides this one edge, the pockets lay on different
sides of ℓ. Only a guard on the line segment between the two pockets can guard both
triangular pockets at the same time.

We have two guards in our polygon and both will be on distinct guard segments. If the
two guard segments are not intersecting, we can enforce that there must be one guard on
each of them as follows. First, we introduce only four triangular pockets. Second, we make
the triangular pockets sufficiently narrow. In this way, it is impossible to guard two of the
triangular pockets outside of a guard segment. Thus at least one guard must be on each
guard segment. A simple construction with two non-intersecting guard segments is shown in
Figure 3.

2.3 Guarding Quadrilateral Pockets

We will now describe how given the position of guard l and a quadrilateral pocket Q will
limit the position of guard t. See Figure 4 for an illustration of the following description.
First, note that if l will not guard Q completely then there will remain some unguarded
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Figure 3 A small polygon that can only be guarded by two guards, because each guard segment
(yellow dashed line) must contain a guard. The region where a guard could guard at least one pocket
is shaded in light yellow.
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Figure 4 A polygon with guard l. The guard l defines an unguarded region in the quadrilateral
pocket, a front ray and a back ray, and a feasible segment.

region (orange) in Q. The part of the guard segment of t where the unguarded region is
visible is referred as the feasible segment. It is bounded from the back ray and the front ray.
It is clear that t must be on the feasible segment.

We can compute the front ray by first computing the window end’s s from l to the wall
of Q and then shooting a ray from s in the direction of the second reflex vertex of Q.
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Figure 5 Our complete polygon. The art gallery is shaded according to the function of each
region: gray is the core, yellow is the pockets used to create guard segments, and turquoise are
other pockets. The yellow dashed lines represent the guard segments. The coordinates of important
vertices are given.
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Figure 6 Our complete polygon. The optimal solution has two guards at irrational coordinates is
shown. The light blue regions are guarded by the upper left guard; the light red regions are guarded
by the bottom right guard; the purple (overlay of red and blue) regions are guarded by both. The
dashed lines are rays shot from the guards through reflex vertices. For each pocket, these windows
meet at a point on the art gallery’s wall, of which the coordinates are also given.
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Table 1 Coordinates of the vertices of the polygon (v1, . . . , v28), the guards (l and t), and the
window’s ends (w1, w2, w3).

v1 (0, 10) v12 (12.7, 7) v23 (4, −1.7)
v2 (2, 10) v13 (11.7, 6) v24 (4, 0)
v3 (3, 11) v14 ( 1230422

101007 , 6) v25 (0, 0)
v4 (2.3, 10) v15 ( 1016072

101007 , 4) v26 (0, 8)
v5 (4, 10) v16 (10, 4) v27 (−1, 7)
v6 (4, 465522

29357 ) v17 (10, 0) v28 (0, 8.3)
v7 (6, 312388

29357 ) v18 (6, 0) l∗ (3.7 − 2.2 ·
√

2, 11.7 − 2.2 ·
√

2)
v8 (6, 10) v19 (6, −25442

34407 ) t∗ (7.4 − 0.5 ·
√

2, 1.7 − 0.5 ·
√

2)
v9 (10, 10) v20 (4, −84128

34407 ) w1 ( 293570·
√

2+8052346
1425913 , −765670·

√
2+16485384

1425913 )
v10 (10, 6) v21 (4, 2) w2 ( 1071750·

√
2+29733818

2673483 , 1010070·
√

2+13370606
2673483 )

v11 (11.4, 6) v22 (3, −2.7) w3 ( 344070·
√

2+3108526
760803 , 293430·

√
2+1804526

760803 )

3 Complete Polygon

In this section, we will present our complete polygon: a polygon that can be guarded by two
guards if and only if both guards are situated at irrational points.

3.1 The Polygon
As we described in Section 2 and displayed in Figure 5, the polygon consists of a core and
some pockets. The polygon has four triangular pockets defining two guard segments. The
two guard segments lie on the lines y = x + 8 and y = x − 5.7. Furthermore, the polygon has
three quadrilateral pockets. In Table 1, the coordinates of the vertices of the polygon, the
coordinates of the two guards, and the coordinates of the window’s ends are given.

The walls of the three quadrilateral pockets have the supporting lines:
1. Top pocket: y = −76567·x+771790

29357 .
2. Right pocket: y = 101007·x−587372

107175 .
3. Bottom pocket: y = 29343·x−201500

34407 .

In the full version, we prove that this polygon can be guarded by two guards, if and only
if the guards are at irrational coordinates in and we discuss the difficulties we encountered
while searching for this polygon.
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