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Abstract
For a given polygonal region P , the Lawn Mowing Problem (LMP) asks for a shortest tour T that
gets within Euclidean distance 1 of every point in P ; this is equivalent to computing a shortest tour
for a unit-disk cutter D that covers all of P . We show that the LMP is algebraically hard: it is not
solvable by radicals over the field of rationals, even for a simple case in which P is a 4 × 4 square.
This implies that it is impossible to compute exact optimal solutions under models of computation
that rely on elementary arithmetic operations and the extraction of kth roots.

1 Introduction

Long before the invention of computers, geometry already faced unsolvable algorithmic
problems. This hardness was not rooted in the asymptotic complexity of finding the best of
a finite number of candidates, but in the impossibility of obtaining solutions with a given set
of construction tools: Computing the length of the diagonal of a square is not possible with
only rational numbers; trisecting any given angle cannot be done with ruler and compass,
nor can a square be computed whose area is equal to that of a given circle.

In the following, we consider the Lawn Mowing Problem (LMP), in which we are given a
(not necessarily simple or even connected) polygonal region P and a disk cutter D of radius 1;
the task is to find a closed roundtrip (a tour) of minimum Euclidean length, such that the
cutter “mows” all of P , i.e., a shortest tour that moves the center of D within distance 1 from
every point in P . The LMP naturally occurs in a wide spectrum of practical applications,
such as robotics, manufacturing, farming, quality control, and image processing, so it is
of both theoretical and practical importance. As a generalization of the classic Traveling
Salesman Problem (TSP), the LMP is also NP-hard; however, while the TSP has shown
to be amenable to exact methods for computing provably optimal solutions even for large
instances, the LMP has defied such attempts, with only some moderate recent progress [20].

The main result of this paper is to establish a fundamental reason for this perceived
difficulty: Computing an optimal lawn mowing tour is not only NP-hard, but also algebraically
hard, even for the seemingly harmless case of mowing a 4× 4 square by a unit-radius disk,
as it requires computing zeroes of high-order irreducible polynomials. As a consequence,
computing even near-optimal solutions for the LMP requires dealing with algebraic issues of
numerical approximation and accuracy, making the LMP fundamentally more challenging
than its special case, the discrete (Euclidean) TSP.
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Related Work There is a wide range of practical applications for the LMP, including
manufacturing [3, 23, 24], cleaning [9], robotic coverage [10, 11, 22, 27], inspection [15],
CAD [14], farming [4, 12, 30] and pest control [6]. In Computational Geometry, the Lawn
Mowing Problem was first introduced by Arkin et al. [1], who later gave the currently best
approximation algorithm with a performance guarantee of 2

√
3αTSP ≈ 3.46αTSP [2], where

αTSP is the performance guarantee for an approximation algorithm for the TSP.
Optimally covering even relatively simple regions by a set of n unit disks has received

considerable attention, but is excruciatingly difficult; see [7, 8, 21, 25, 28, 29]. As recently
as 2005, Fejes Tóth [16] established optimal values for n = 8, 9, 10. Progress on covering by
(not necessarily equal) disks has been achieved by Fekete et al. [17, 18].

A seminal result for understanding algebraic aspects of geometric optimization problems
was achieved by Bajaj [5], who established algebraic hardness for the Fermat-Weber problem
of finding a point in R2 that minimizes the sum of Euclidean distances to all points in a
given set. Note, however, that the Fermat-Weber problem is relatively benign in practical
difficulty, as it amounts to minimizing a smooth, convex function over a compact set, which
can be achieved with high accuracy by using a numerical approach such as Newton’s method.
This was exploited for algorithmic purposes by Fekete et al. [19].

The use of straight-edge and compass is known to be equivalent to the use of (+,−, ∗, /,√)
over Q [13]. Our main result implies that the Lawn Mowing Problem is not solvable by
radicals over Q, i.e., a solution is not expressible in terms of (+,−, ∗, /, k

√) over Q.

2 Optimal Tours in Rectangles

Recent work by Fekete et al. [20] shows that when mowing a triangle, optimal tours may
need to contain vertices with irrational coordinates. In the following we show even if P is a
4× 4 square, an optimal tour may involve coordinates that cannot be described with radicals.

I Theorem 2.1. For any rational height h ≥ 4, there are rectangles P with height h and
rational vertex coordinates for which the Lawn Mowing Problem is not solvable by radicals.

See Figure 3 for the structure of optimal trajectories. A key observation is that covering
each of the four corners (0,−2), (4,−2), (4, 2), (0, 2) of a 4×4 square S requires the disk center
to leave the subsquare λ with vertices λ0 = (1,−1), λ1 = (3,−1), λ2 = (3, 1), λ3 = (1, 1),
obtained by offsetting the boundary of P by the unit radius of D, which is the locus of all
disk centers for which λ stays inside P . However, covering the area close to the center of P
also requires keeping the center of D within λ; as we argue in the following, this results in a
trajectory as shown in Figure 3a, with a “long” portion (shown vertically in the figure) for
which the disk covers the center of P and the boundary of D traces the boundary of P , and
a “short” portion for which D only dips into λ without tracing the boundary of P .

We start our proof by considering an optimal lawn mowing tour for a rectangle and then
argue why no solution can be obtained in terms of (+,−, ∗, /, k

√) over Q.

2.1 Properties of Optimal Tours
For the 4 × 4 square S, consider the upper left 2 × 2 subsquare S0 with corners (0, 0),
(0, 2), (2, 2), (0, 2), further subdivided into four 1× 1 quadrants S0,0, . . . , S0,3, as shown in
Figure 1a, and an optimal path ω that enters S0 at the bottom and leaves it to the right.
Let ps = (pxs , 0), pt = (2, pyt ) be the points where ω enters and leaves S0, respectively. For
the following lemmas, we assume that a covering path exists that obeys the above conditions.
We will later determine that path and show that it covers S0.
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Figure 1 Computing an optimal path ω through the square S0.

I Lemma 2.2. pxs ≤ 1 and pyt ≥ 1 and either pxs = 1 or pyt = 1.

Proof. To cover s1, ω must intersect a unit circle centered in s1. Any path with ps right of
(1, 0) or pt below (2, 1) can be made shorter by shifting the point ps to (1, 0) or pt to (2, 1).
Any path with ps left of (1, 0) and pt above (2, 1) must enter S0,1, resulting in a detour. J

Without loss of generality, we assume that pxs = 1. The next step is to find the optimal
position of pt. As an optimal path ω must enter the quadrant S0,3 once, we can subdivide
the path into two parts. We denote the part from ps to S0,3 as the lower portion and from
S0,3 to pt as the upper portion of ω. For some δ > 0, let pyt = 1 + δ and pδ = (1, δ).

I Lemma 2.3. For any δ > 0, ω has a subpath pspδ.

Proof. Let s′
1 = (2, δ) and ε = s1s

′
1. Segment ε must be covered by ω. We distinguish two

cases; (i) ε is covered by the lower portion of ω or (ii) ε is covered by the upper portion of ω.
For case (i), let us assume that ε is covered by the lower portion of ω. When ω would enter
S0,1 it would also have to enter S0,0 to cover the left side of S0,0. It is clear that traversing
the segment pspδ of length δ is the best way to cover the lower portion of S0,0, S0,1, as any
other path would need additional segments in x-direction, see Figure 1b. Any path that obeys
case (ii) is suboptimal, as it has to cover ε from within S0,2, for a detour of at least 2δ. J

We can now define the optimal path ω, which has four vertices. The exact coordinates
are defined in the proof of Lemma 2.4.

I Lemma 2.4. The unique optimal lawn mowing path between two adjacent sides of S0 is
ω = (ps, pδ, q, pt) and has length LS0 ≈ 2.618.

Proof. We now identify a shortest path for visiting one point q in the unit circle C centered in
s3 dependent on δ, which is a necessary condition for a feasible path. Let c = d(pδ, q)+d(q, pt)
be the distance from both points to C. Consider an ellipse E with foci pδ, pt which touches C
in a single point, see Figure 2a. By the definition of an ellipse, the intersection point q
minimizes the distance c. For any δ ∈ [0, 1] we want to find a minimum distance c that allows
E to have a single intersection point with C. Let pc = (pxc , pyc ) be the center point of E and
dE be the distance from the center point of E and a, b the major/minor axis.

pxc = 3
2 pyc = 1

2 + δ dE = d(pδ, pc) = 1√
2

a = 1
2dE b =

√
a2 − d2

E (1)
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(b) The optimal path ω through S0.

Figure 2 Visualizations for Lemma 2.4.

The ellipse can now be defined with its center point pc, the major/minor axis a, b and the
angle θ, which is the angle between a line through pδ, pt and the x-axis. We formulate the
shortest path problem as a minimization problem while inserting Equation (1).

min c+ δ

s.t. x2 + (y − 2)2 − 1 = 0

((x− pxc ) cos(θ) + (y − pyc ) sin(θ))2

a2 + ((x− pxc ) sin(θ)− (y − pyc ) cos(θ))2

b2 = 1√
(x− 1)2 + (y − δ)2 +

√
(x− 2)2 + (y − 1− δ)2 − c = 0

The objective minimizes the total length of the path ω with variables that encode the
exact coordinates of pδ, q, pt. An intersection point of E and C with center s3 = (0, 2) is a
solution to the first and second constraints, respectively. An exact optimization approach
using Mathematica reveals that δ, qx, qy can only be expressed as the first, third, and first
roots of three irreducible high-degree polynomials fδ, fqx , fqy , see Equations (2) to (4).

fδ(x) =9x16 − 216x15 + 2514x14 − 18 846x13 + 101 755x12 − 418 512x11+ (2)
1 350 994x10 − 3 475 302x9 + 7 165 772x8 − 11 828 976x7 + 15 512 224x6−
15 916 002x5 + 12 459 638x4 − 7 145 094x3 + 2 800 022x2 − 656 964x+ 67 417

fqx(x) =256x16 − 1792x14 + 5312x12 − 8768x10 + 384x9 + 8544x8 − 1632x7− (3)
3648x6 + 1200x5 − 152x4 + 288x3 + 252x2 − 324x+ 81

fqy (x) =256x16 − 8192x15 + 122 624x14 − 1 139 712x13 + 7 361 472x12− (4)
35 034 880x11 + 127 069 376x10 − 358 188 736x9 + 792 777 952x8−
1 381 642 752x7 + 1 888 549 824x6 − 2 001 789 968x5 + 1 611 461 512x4−
951 341 552x3 + 387 921 820x2 − 97 469 232x+ 11 350 269

The value for δ ≈ 0.335752 defines the points pδ and pt. Together with the values for
qx, qy, we can define all points in ω as follows:

ps = (1, 0) pδ = (1, δ) ≈ (1, 0.336) q ≈ (0.772, 1.365) pt = (2, 1 + δ) ≈ (2, 1.336) (5)
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Figure 3 Optimal lawn mowing tours for a 4 × 4 square and a 4 × h rectangle.

The combined length of the path is δ + c ≈ 2.617676448. As ω contains a subpath that
crosses the full height of S0,0 and another subpath that crosses the full width of S0,2, both
quadrants are covered by ω, see Figure 2b. By construction, the bottom right quadrant is
covered by the segment pspδ and the point pt. The top left quadrant is covered by q, because
S0,3 is fully contained in a unit disk centered in q. Therefore, ω is a feasible path between
two adjacent edges of S0 with a length of L ≈ 2.618. J

I Lemma 2.5. A square P of side length 4 has a unique optimal lawn mowing tour T of
length L = 4LS0 , where LS0 ≈ 2.618.

Proof. We start by subdividing P by its vertical and horizontal center line into four quadrants
(squares) S0, . . . , S3 with side length 2. To cover the center point of each quadrant, a lawn
mowing tour has to intersect it at least once. As P is convex, T cannot leave P at any point.
Finally, T is symmetric with respect to the vertical and horizontal lines because otherwise,
the quadrant subpaths could be replaced by the shortest one. By Lemma 2.4, there is a
unique optimal lawn mowing path through each quadrant yielding an optimal tour of length
L = 4LS0 ≈ 4 · 2.618 ≈ 10.472, see Figure 3a. J

The optimal path from Lemma 2.4 can be used more extensively on rectangles with
fixed width 4 and arbitrary height h ≥ 4. For this, we extend the path from ps outwards
perpendicular to the 2× 2 square S0. One can use a similar construction as in Lemma 2.5 to
obtain optimal tours for arbitrary rectangles, refer to Figure 3b.

I Corollary 2.6. Any rectangle P with width 4 and height h ≥ 4 has a unique optimal lawn
mowing tour T of length L = 4LS0 + 2h− 8.

2.2 Algebraic Hardness of the LMP
As our next step, we show that the coordinates of the optimal path ω are not solvable by
radicals. For this, we employ a similar technique as Bajaj [5] for the generalized Weber
problem. A field K is said to be an extension (written as K/Q) of Q if K contains Q. Given
a polynomial f(x) ∈ Q[x], a finite extension K of Q is a splitting field over Q for f(x) if it
can be factorized into linear polynomials f(x) = (x− a1) · · · (x− ak) ∈ K[x] but not over
any proper subfield of K. Alternatively, K is a splitting field of f(x) of degree n over Q

EuroCG’23
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if K is a minimal extension of Q in which f(x) has n roots. Then the Galois group of the
polynomial f is defined as the Galois group of K/Q. In principle, the Galois group is a
certain permutation group of the roots of the polynomial. From the fundamental theorem of
Galois theory, one can derive a condition for solvability by radicals of the roots of f(x) in
terms of algebraic properties of its Galois group. We now state three additional theorems
from Galois theory and Bajaj’s work. The proofs can be found in [26, 5].

I Lemma 2.7 ([26]). f(x) ∈ Q[x] is solvable by radicals over Q iff the Galois group over Q
of f(x), Gal(f(x)), is a solvable group.

I Lemma 2.8 ([26]). The symmetric group Sn is not solvable for n ≥ 5.

I Lemma 2.9 ([5]). If n ≡ 0 mod 2 and n > 2 then the occurrence of an (n − 1)-cycle,
an n-cycle, and a permutation of type 2 + (n− 3) on factoring the polynomial f(x) modulo
primes that do not divide the discriminant of f(x) establishes that Gal(f(x)) over Q is the
symmetric group Sn.

I Theorem 2.1. For any rational height h ≥ 4, there are rectangles P with height h and
rational vertex coordinates for which the Lawn Mowing Problem is not solvable by radicals.

Proof. It suffices to show that fδ is not solvable by the radicals as it describes the y-
coordinates of two points in the solution. We provide three factorizations of fδ modulo three
primes that do not divide the discriminant disc(fδ(x)).

fδ(x) ≡ 9(x16 + 22x15 + 11x14 + 22x13 + 8x12 + 20x11 + 15x10 + 10x9 + 11x8 + 12x7+
9x6 + 10x5 + x4 + 7x3 + 13x2 + 6x+ 3) mod 23

fδ(x) ≡ 9(x+ 41)(x2 + 21x+ 15)(x13 + 8x12 + 4x11 + 46x10 + 4x9 + 14x8 + 32x7 + 14x5+
31x4 + 41x3 + 37x2 + 32x+ 41) mod 47

fδ(x) ≡ 9(x+ 19)(x15 + 16x14 + 54x13 + 7x12 + 9x11 + 36x10 + 45x9 + x8 + 45x7 + 3x6+
22x5 + 36x4 + 26x3 + 22x2 + 54x+ 23) mod 59

For the good primes p = 23, 47, and 59 the degrees of the irreducible factors of fδ(x)
mod p gives us an 16− cycle, a 2 + 13 permutation and a 15-cycle, which is enough to show
with Lemma 2.9 and n = 16 that Gal(fδ) = S16. By Lemma 2.8, S16 is not solvable; with
Lemma 2.7, this proves the theorem. J

3 Conclusion

We have shown that the Lawn Mowing Problem is algebraically hard, even when mowing a
4×4 square P by a unit-radius cutter D. This implies that computing provably optimal tours
(such as for the TSP) would involve complicated coordinates; even good approximations
(such as a PTAS) require good numerical approximations of the involved algebraic terms.

While our proof makes intricate use of the underlying structure of optimal tours, it is
conceivable that similar techniques may help to better understand the difficulty of other
excruciatingly hard optimization problems, such as disk packing or covering.
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