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Abstract
Let P be a convex polyhedron and Q be a convex polygon with n vertices in total in three-dimensional
space. We present a deterministic algorithm that finds a translation vector v ∈ R3 maximizing the
overlap area |P ∩ (Q + v)| in O(n log2 n) time. We then apply our algorithm to solve two related
problems. We give an O(n log3 n) time algorithm that finds the maximum overlap area of three
convex polygons with n vertices in total. We also give an O(n log2 n) time algorithm that minimizes
the symmetric difference of two convex polygons under scaling and translation.

Related Version A full version of the paper is available at https://arxiv.org/abs/2301.02949.

1 Introduction

Shape matching is an important topic in computational geometry, with useful applications
in areas such as computer graphics. In a typical problem of shape matching, we are supplied
two or more shapes, and we want to determine how much the shapes resemble each other.
More precisely, given a similarity measure and a set of allowed transformations, we want to
transform the shapes to maximize their similarity measure.

While there are many candidates for the similarity measure, we focus on the area/volume
of overlap or of symmetric difference. The advantage to these is that they are robust against
noise on the boundary of the images [6]. For previous results in this area, see [6, 1, 3, 4, 2, 12].

While many have studied the matching problem for two convex polytopes of the same
dimension, few have examined the problem for polytopes of different dimensions or matching
more than two polytopes. In this paper, we present a deterministic algorithm for finding the
maximum overlap area of a convex polyhedron and a convex polygon under translation in
three-dimensional space. Using this algorithm, we also solve the problems of maximizing the
overlap of three convex polygons and of minimizing the symmetric difference of two convex
polygons under homothety.

2 Preliminaries

Let P ⊂ R3 be a convex polyhedron and Q ⊂ R2 be a convex polygon with n vertices in total.
Throughout the paper, we assume that Q is in the xy-plane, and that the lowest point of P

is on the xy-plane. We want to find a translation vector v = (x, y, z) ∈ R3 that maximizes
the overlap area f(v) = |P ∩ (Q + v)|.

It is easy to observe that f(v) is continuous and piecewise quadratic on the interior of its
support. As noted in [6, 1, 3], f is smooth on a region R if P ∩ (Q + v) is combinatorially
equivalent for all v ∈ R, that is, if we have the same set of face-edge incidences between P

and Q. Following the convention of [1], we call the polygons that form the boundaries of
these regions the event polygons, and as in [6], we call the space of translations of Q the
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configuration space. The arrangement of the event polygons partition the configuration space
into cells with disjoint interiors. The overlap function f(v) is quadratic on each cell. Thus,
to locate a translation maximizing f , we need to characterize the event polygons.

For two sets A, B ⊂ Rd, we write the Minkowski sum of A and B as A + B := {a + b|a ∈
A, b ∈ B}. We also write A − B for the Minkowski sum of A with −B = {−b|b ∈ B}. We
categorize the event polygons into three types and describe them in terms of Minkowski
sums:

(I) When Q + v contains a vertex of P . For each vertex u of P , we have an event polygon
u − Q. There are O(n) event polygons of this type.

(II) When a vertex of Q + v is contained in a face of P . For each face F of P and each vertex
v of Q, we have an event polygon F − v. There are O(n2) event polygons of this type.

(III) When an edge of Q + v intersects an edge of P . For each edge e of P and each edge e′ of
Q, we have an event polygon e − e′. There are O(n2) event polygons of this type.

The reason that convexity is fundamental is due to the following standard fact, as noted
and proved in [6, 12].

▶ Proposition 2.1. Let P be a d′-dimensional convex polytope and let Q be a d-dimensional
convex polytope. Suppose d′ ≥ d. Let f(v) = Vol(P ∩ (Q + v)) be the volume of the overlap
function. Then, f(v)1/d is concave on its support supp(f) = {v|f(v) > 0}.

As in [5], we say a function f : R → R is unimodal (resp. strictly unimodal) if it increases
(resp. strictly increases) to a maximum value, possibly stays there for some interval, and then
decreases (resp. strictly decreases). Furthermore, we say a function f : Rd → R is unimodal
(resp. strictly unimodal) if its restriction to any line is unimodal (resp. strictly unimodal).

▶ Corollary 2.2 ([5]). For any line l parameterized by l = p + vt in Rd′ , the function
fl(t) = f(p + vt) is strictly unimodal.

We introduce a divide-and-conquer technique that we apply in our algorithm.

▶ Lemma 2.3 ([8]). Given n hyperplanes in Rd and a region R ⊂ Rd, a (1/r)-cutting is
a collection of simplices with disjoint interiors, which together cover R and such that the
interior of each simplex intersects at most n/r hyperplanes. A (1/r)-cutting of size O(rd)
can be computed deterministically in O(nrd−1) time. In addition, the set of hyperplanes
intersecting each simplex of the cutting is reported in the same time.

Another technique that we use in our algorithm is a generalization of Megiddo’s prune-
and-search [11]. This technique is of independent interest and can likely be applied to other
problems.

▶ Theorem 2.4. Let S =
⋃n

i=1 Si be a union of n sets of O(m) parallel lines in the plane,
none of which are parallel to the x-axis, and suppose the lines in each Si are indexed from
left to right.

Suppose there is an unknown point p∗ ∈ R2 and we are given an oracle that decides in
time T the relative position of p∗ to any line in the plane. Then we can find the relative
position of p∗ to every line in S in O(n log2 m + (T + n) log(mn)) time.

3 Maximum overlap of convex polyhedron and convex polygon

In this section, we prove our main result:
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▶ Theorem 3.1. Let P be a convex polyhedron and Q a convex polygon with n vertices in
total. We can find a vector v ∈ R3 that maximizes the overlap area |P ∩(Q+v)| in O(n log2 n)
time.

Following the convention in [6], we call a translation that maximizes the overlap function
f a goal placement. In the algorithm, we keep track of a closed target region R which we
know contains a goal placement and decrease its size until for each event polygon F , either
F ∩ interior(R) = ∅ or F ⊃ R. Then, f is quadratic on R and we can find the maximum of
f on R using standard calculus. Thus, the goal of our algorithm is to efficiently trim R to
eliminate event polygons that intersect it.

In the beginning of the algorithm, the target region is the interior of the Minkowski sum
P − Q, where the overlap function is positive. By the unimodality of the overlap function,
the set of goal placements is convex. Thus, for a plane in the configuration space, either
it contains a goal placement, or all goal placements lie on one of the two open half spaces
separated by the plane. If we have a way of knowing which case it is for any plane, we
can decrease the size of our target region by cutting it with planes and finding the piece
to recurse. More precisely, we need a subroutine PlaneDecision that decides the relative
position of the set of goal placements to a plane S.

Whenever PlaneDecision reports that a goal placement is found on a plane, we can let
the algorithm terminate. Thus, we can assume it always reports a half-space containing a
goal placement.

As in Algorithm 1, we break down our algorithm into three stages.

Algorithm 1: Pseudocode for Theorem 3.1
input : A convex polyhedron P ∈ R3 and a convex polygon Q ∈ R3 with n vertices

in total
output : A translation v ∈ R3 maximizing the area |P ∩ (Q + v)|

1 Locate a horizontal slice containing a goal placement that does not contain any
vertices of P and replace P by this slice of P

2 Find a “tube” D + ly whose interior contains a goal placement and intersects O(n)
event polygons, where D is a triangle in the xz-plane and ly is the y-axis

3 Recursively construct a (1/2)-cutting of the target region D + ly to find a simplex
containing a goal placement that does not intersect any event polygon

3.1 Stage 1
In the first stage of our algorithm, we make use of [6] to simplify our problem so that P can
be taken as a convex polyhedron with all of its vertices on two horizontal planes.

We sort the vertices of P by z-coordinate in increasing order and sort the vertices of Q

in counterclockwise order. Next, we trim the target region with horizontal planes (planes
parallel to the xy-plane) to get to a slice that does not contain any vertices of P .

▶ Lemma 3.2. In O(n log2 n) time, we can locate a strip R = {(x, y, z)|z ∈ [z0, z1]} whose
interior contains a goal placement and P has no vertices with z ∈ [z0, z1].

By Chazelle’s algorithm [7], the convex polyhedron P ′ = {(x, y, z) ∈ P |z ∈ [z0, z1]} can be
computed in O(n) time. From now on, we replace P with P ′ (see Figure 1). Without loss of
generality, assume z0 = 0 and z1 = 1.

EuroCG’23



11:4 Maximum overlap of polyhedron and polygon

Figure 1 The slice of P with z ∈ [z0, z1].

The region in the configuration space where |P ∩(Q+v)| > 0 is the Minkowski sum P −Q.
Since P only has two levels P0 = {(x, y, z) ∈ P |z = 0} and P1 = {(x, y, z) ∈ P |z = 1} that
contain vertices, the Minkowski sum P − Q is simply the convex hull of (P0 − Q) ∪ (P1 − Q),
which has O(n) vertices. We can compute P0 − Q and P1 − Q in O(n) time and compute
their convex hull in O(n log n) time by Chazelle’s algorithm [9].

3.2 PlaneDecision
Due to space constraints, we will not present the algorithm PlaneDecision. For details, see
the full version of the paper [10].

We present a perturbation method to reduce the problem of deciding the relative position
of the goal placement to an arbitrary plane to finding the maximum of the overlap over an
arbitrary plane.

▶ Lemma 3.3. Suppose we can compute maxv∈S f(v) for any plane S ⊂ R3 in time T , then
we can perform PlaneDecision for any plane in time O(T ).

Proof. The idea is to compute maxv∈S′ f(v) for certain S′ that are perturbed slightly from
S to see in which direction relative to S does f increase.

We compute over an extension of the reals R[ω]/(ω3), where ω > 0 is smaller than any
real number. Let A > 0 be the maximum of f over a plane S. Let S+ and S− be the two
planes parallel to S that have distance ω from S. We compute A+ = maxv∈S+ f(v) and
A− = maxv∈S− f(v) in O(T ) time. Since f is piecewise quadratic, A+ and A− as symbolic
expression will only involve quadratic terms in ω. Since f is strictly unimodal on P − Q,
there are three possibilities:

1. If A+ > A, then halfspace on the side of S+ contains the set of goal placements.
2. If A− > A, then halfspace on the side of S− contains the set of goal placements.
3. If A ≥ A+ and A ≥ A−, then A is the global maximum of f .

Thus, in O(T ) time, we can finish PlaneDecision. ◀

With Theorem 3.3, it suffices for us to give an algorithm finding the maximum of the
overlap over any plane. Just like in our main algorithm, we want to prune the configuration
space (now restricted to a plane), until we locate a region that contains the maximum
and that does not intersect any event polygon. In Algorithm 2, we give an outline for
PlaneDecision:

▶ Proposition 3.4. For a plane S, we can perform PlaneDecision in O(n log n) time.
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Algorithm 2: Pseudocode for PlaneDecision
input : A plane S ⊂ R3

output : A translation v ∈ S maximizing the area |P ∩ (Q + v)|
1 Compute S ∩ (P − Q) and set it to be our initial target region.
2 Locate a strip on S containing a good placement whose interior intersects O(n) event

polygons.
3 Recursively construct a (1/2)-cutting of the strip to find a triangle containing a good

placement that does not intersect any event polygon

3.3 Stage 2
With the general PlaneDecision at our disposal, we now move on to Stage 2, the main
component of our algorithm. We project the entire configuration space and the event polygons
onto the xz-plane in order to find a target region D whose preimage D + ly intersects few
event polygons, where ly is the y-axis (see Figure 2).

(a) Projection of P (b) Projection of Q

(c) Projection of the configuration space, and the target region D

Figure 2 Projecting onto the xz-plane.

The non-horizontal edges of the event polygons project to segments on the strip 0 < z < 1
on the xz-plane. We characterize our desired region D in the following lemma.

▶ Lemma 3.5. For a region D that does not intersect any of the segments that are the
projections of the non-horizontal edges of the event polygons, the preimage D + ly intersects
O(n) event polygons.

Now it remains to efficiently find such a region D with D + ly containing a goal placement
and compute the O(n) event polygons that intersect its interior.

▶ Lemma 3.6. In O(n log2 n) time, we can find a triangle D in the xz-plane such that the
interior of D + ly contains a goal placement and intersects O(n) event polygons. We can
compute these O(n) event polygons in the same time bound.
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3.4 Stage 3
Now, we have a target region R = D + ly whose interior contains a goal placement, and we
have the O(n) event polygons that intersect it.

▶ Lemma 3.7. In O(n log2 n) time, we can find a region R′ ⊂ R containing a goal placement
that does not intersect any of the O(n) event polygons.

Finally, since the overlap function is quadratic on our final region R′, we can solve for
the maximum using standard calculus. This concludes the proof of Theorem 3.1.

4 Applications

We present two applications of Theorem 3.1 to other problems in computational geometry.
First, we give a deterministic algorithm for maximizing the overlap of three convex polygons.

▶ Theorem 4.1. Let P , Q, R be three convex polygons with n vertices in total in the
plane. We can find a pair of translations (vQ, vR) ∈ R4 that maximizes the overlap area
|P ∩ (Q + vQ) ∩ (R + vR)| in O(n log3 n) time.

In this problem, the configuration space is four-dimensional. An easy extension of
Proposition 2.1 and Theorem 2.2 shows that the function of overlap area is again unimodal.
This time, we have four-dimensional event polyhedra instead of event polygons that divide
the configuration space into four-dimensional cells on which g(vQ, vR) is quadratic. We call
a hyperplane containing an event polyhedron an event hyperplane, and they are defined by
two types of events:

(I) When one vertex of P , Q + vQ or R + vR lies on an edge of another polygon. There are
O(n) groups of O(n) parallel event hyperplanes of this type.

(II) When an edge from each of the three polygons intersect at one point. There are O(n3)
event hyperplanes of this type.

To overcome the difficulty of dealing with the O(n3) event hyperplanes of type (II), we
first prune the configuration space to a region intersecting no event hyperplanes of type (I).
We then show that the resulting region only intersects O(n) event hyperplanes of type (II),
at which point we can use Theorem 2.3 iteratively to finish.

Observe that maximizing the overlap over a hyperplane in which two polygons move
relatively in a line and the other polygon moves freely corresponds precisely to the problem
of overlapping a convex polyhedron (whose cross-sections are the intersections of the two
polygons moving in a line) and a convex polygon (the third polygon). Thus, Theorem 3.1
gives us a kind of “HyperplaneDecision” which we can use to prune the event hyperplanes
of type (I).

We also give a deterministic O(n log2 n) time algorithm for minimizing the symmetric
difference of two convex polygons under homothety (a scaling and a translation), which is an
improvement to Yon et al.’s O(n log3 n) time algorithm [12].

▶ Theorem 4.2. Let P and Q be convex polygons with n vertices in total. Then we can find
a homothety φ that minimizes the area of symmetric difference |P \ φ(Q)| + |φ(Q) \ P | in
O(n log2 n) time.

We want to minimize the function h(φ) = h(x, y, λ) = |P \ φ(Q)| + |φ(Q) \ P |, where
φ(Q) = λQ + (x, y). We can rewrite this as h(φ) = |P | + |Q|λ2 − 2|P ∩ φ(Q)|. Thus,
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minimizing h is the same as maximizing the function f(φ) = |P ∩ φ(Q)| − cλ2, where
c = 1

2 |Q|.
Consider the cone C = {(x, y, λ)|λ ∈ [0, M ], (x, y) ∈ λQ}, where M =

√
|P |/c (see

Figure 3). Then f is negative for λ > M so it is never maximized. We also put P into R3

by P = {(x, y, 0)|(x, y) ∈ P}. Since f(x, y, λ) = |C ∩ (P + (−x, −y, λ))| − cλ2, the problem
reduces to maximizing the overlap area of the cone C and P under translation subtracted by
a quadratic function. Some modification of Theorem 3.1 gives Theorem 4.2.

Q C

Figure 3 Formation of the cone C.
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